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Quantum capacitance of an HgTe quantum well as an indicator of the topological phase
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Varying the quantum-well width in an HgTe/CdTe heterostructure allows for realizing normal and inverted
semiconducting band structures, making it a prototypical system to study two-dimensional (2D) topological-
insulator behavior. We have calculated the zero-temperature thermodynamic density of states DT for the electron-
doped situation in both regimes, treating interactions within the Hartree-Fock approximation. A distinctively
different behavior for the density dependence of DT is revealed in the inverted and normal cases, making it
possible to detect the system’s topological phase through measurement of macroscopic observables, such as the
quantum capacitance or electronic compressibility. Our results establish the 2D electron system in HgTe quantum
wells as unique in terms of its collective electronic properties.
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Introduction. Capacitance measurements are a premier
tool to elucidate the electronic properties of two-dimensional
(2D) electron systems [1–14]. They fundamentally probe the
thermodynamic density of states,

DT = ∂n

∂μ
, (1)

where n and μ denote the 2D system’s electronic sheet density
and chemical potential, respectively. More specifically, DT is
related to the quantum capacitance per unit area Cq and the
electronic compressibility K via

Cq = e2 DT, (2a)

K = DT

n2
. (2b)

The intriguing interplay between single-particle and
Coulomb-interaction contributions to DT has been intensely
studied theoretically, both for conventional 2D electron sys-
tems realized in heterostructures [15–18] and for few-layer
graphene [18–22]. In particular, the tendency towards negative
electronic compressibility in the low-density limit [23] has
attracted a lot of attention [3–9].

Here we show how the thermodynamic density of states
of electrons in an HgTe quantum well exhibits behavior
different from any of the previously studied 2D electron
systems, essentially because of the anomalous properties of an
interaction-related interband contribution relevant for narrow-
gap systems. Our work provides new insight complementing
the observation of unusual electric-transport properties in this
system [24–27] that relate to the existence of an unconven-
tional inverted 2D electronic band structure when the quantum-
well width d is larger than a critical value dc ≈ 6.3 nm [28–31].
The deeper understanding derived from our results also enables
novel characterization of topological phases [32] in other
2D [33,34] and bulk [32,35] materials and extends the general
knowledge about unusual collective properties of topological
and Dirac-semi-metal systems [36–38].

We calculate the thermodynamic density of states for
electrons in HgTe quantum wells, taking Coulomb interactions
into account within the Hartree-Fock approximation. To be
specific, we focus on two experimentally feasible situations

with quantum-well widths d = 5 and 7 nm, respectively,
and present predictions for DT as a function of the 2D-
system’s Fermi wave vector. In our calculations, crucial effects
arising from the finite width of electronic bound states in
the HgTe/CdTe heterostructure are included. Quite generally,
we find that interaction contributions significantly affect DT

and, thus, observables, such as the quantum capacitance and
the electronic compressibility. See Fig. 1 for a pertinent
example. More specifically, it turns out that the interband
exchange correction depends strongly on the quantum-well
width and changes its sign for a value close to dc. We
elucidate the underlying mechanisms, such as the interplay of
band-structure parameters that lead to this interesting behavior.

Model and Formalism. The theoretical framework for
our calculation of many-particle effects for electrons in an
HgTe quantum well is based on the Bernevig-Hughes-Zhang
(BHZ) Hamiltonian [28]. The latter adequately describes the
relevant single-particle states in the low-energy band structure
using basis functions |E1±〉, which are superpositions of
conduction-electron and light-hole (LH) states, and the heavy-
hole (HH) states |H1±〉. Within the representation defined by
the basis-state vector (|E1+〉,|H1+〉,|E1−〉,|H1−〉), the BHZ
Hamiltonian is block diagonal and given by

H0 =
(
H(+) 0

0 H(−)

)
, (3)

with H(s) = h(s)
μ σμ, h(s) = (C − Dk2,sAkx,−Aky,M−Bk2),

and σμ = (1,σx,σy,σz) where σj are the Pauli matrices. The
quantum number s = ±1 distinguishes spin-1/2 projections
parallel to the quantum-well growth direction, and the effective
band-structure parameters A,B,C,D,M are functions of the
quantum-well width d [39]. For simplicity, we set the irrelevant
overall energy shift C to zero. The sign of the gap parameter M

distinguishes the ordinary and inverted-band situations: Using
the convention B < 0, the system is in the topological (normal)
regime when M < 0 (M > 0).

The energy eigenvalues of the BHZ Hamiltonian (3) are
given by [28]

E
(s)
kα ≡ E

(s)
kα = −Dk2 + α

√
(M − Bk2)2 + A2k2, (4)
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FIG. 1. Density dependence of the quantum capacitance per
unit area for electrons in an HgTe quantum well. The red solid
(blue dashed) curve is obtained for a quantum-well width d =
7 nm (5 nm) corresponding to the topological (normal) situation.
Clearly distinguishable opposite trends emerge in the low-density
regime.

where α = ±1 distinguishes conduction and valence bands,
both of which are doubly degenerate in s. Due to the inherent
axial symmetry of the BHZ model, the eigenvectors of the
two 2 × 2 matrices H(s) in Eq. (3) can be expressed as a

(s)
kα =

U
(s)
φk

a
(s)
kα in terms of the polar coordinates (k,φk) for wave-

vector k with

a
(s)
kα = 1√

2

⎛
⎝α

[
1 − α(Bk2−M)√

A2k2+(Bk2−M)2

]1/2

s
[
1 + α(Bk2−M)√

A2k2+(Bk2−M)2

]1/2

⎞
⎠, (5)

and U
(s)
φk

= diag(eisφk/2,e−isφk/2).
Quantum many-body effects. The single-particle band

dispersions given in Eq. (4) are renormalized by interaction
effects. Assuming that the electrostatic (Hartree) terms are
compensated by the influence of a neutralizing background
charge density, we focus here on the exchange (Fock) con-
tributions. The fundamental quasi-2D character of the charge
carriers is accounted for by retaining the full z dependence
of quantum-well bound states through the basis functions
|E1+〉,|H1+〉,|E1−〉,|H1−〉 for the BHZ Hamiltonian. The
Fock self-energy of conduction-band electrons can then be
written as

�
(s)
k± = −2πC

∫
d2k′

(2π )2
nF

(
E

(s)
k′±

) ∫
dz

∫
dz′ e

−|k−k′||z−z′|

|k − k′|
× [

ψ
(s)
k′±(z)†ψ (s)

k+(z)
][

ψ
(s)
k+(z′)†ψ (s)

k′±(z′)
]
, (6)

where C = e2/(4πεε0) measures the Coulomb-interaction
strength, nF(E) is the Fermi function, and the ψ

(s)
kα (z) are

six-dimensional spinor wave functions comprising the bands
with 
6 and 
8 symmetry closest to the bulk-material’s
fundamental gap [40]. Intra- (inter-) band contributions to
the Fock self-energy are labeled by the subscripts + (−).
Note that terms with s �= s ′ vanish for the block-diagonal
BHZ model given above because of the orthogonality of
the associated basis states. However, such contributions do
arise when spin-orbit-coupling effects are included. Effects of
the latter will be discussed briefly at the end of this Rapid
Communication.

In the zero-temperature limit, which we consider in the
following, the Fermi functions in Eq. (6) reduce to nF(E(s)

k−) =
1 for the fully occupied valence band and nF(E(s)

k+) = �(kF −
|k|), where kF is the modulus of the Fermi wave vector
for electrons in the conduction band and �(·) denotes the
Heaviside step function. To take into account both the in-plane
dynamics described by the BHZ Hamiltonian as well as the
nontrivial spinor structure of the BHZ-model basis states, we
employ sub-band k · p theory [41,42] to write the spinor wave
functions ψ

(s)
kα (z) as superpositions,

ψ
(s)
kα (z) =

2∑
i=1

(
U

(s)
φk

)
ii
a

(s)
kα,iψ

(s)
0i (z), (7)

where the coefficients a
(s)
kα,i are the components of the cor-

responding eigenvectors Eq. (5) of the BHZ Hamiltonian.
The six-dimensional spinors ψ

(s)
0i (z) are the BHZ-model basis-

state spinors for vanishing in-plane wave vector, which are
determined by the solutions to a confined-particle problem for
the HgTe/CdTe quantum-well heterostructure. Their explicit
expressions have been given in the Supplemental Material of
Ref. [28] where for instance ψ

(+)
01 (z)T = [f1(z),0,0,f4(z),0,0]

and ψ
(+)
02 (z)T = [0,0,f3(z),0,0,0] which are normalized, i.e.,∫

dz|ψ (s)
0i (z)|2 = 1, ∀ i,s. As a result, we obtain for the intra-

and interband contributions to the Fock self-energy,

�
(s)
k± = −C

π

∫ π

0
dφ

∫ k±

0
dk′k′

∫
dz

∫
dz′ e

−r(k,k′,φ)|z−z′ |

r(k,k′,φ)

×
∑
i,j

Fij (φ)a(s)
k′±,ia

(s)
k′±,j a

(s)
k+,ia

(s)
k+,j

∣∣ψ (s)
0i (z)

∣∣2∣∣ψ (s)
0j (z′)

∣∣2
,

(8)

where the integration limits are k+ = kF (intraband) and
k− = kc (interband) with kc being an ultraviolet cutoff. In
Eq. (8), r(k,k′,φ) =

√
k2 + k′2 − 2kk′ cos φ and Fij (φ) =√

1 − (1 − δij ) sin2 φ, with φ ≡ φk − φk′ and δij being the
Kronecker symbol. The interband contribution depends loga-
rithmically on kc, which is typically chosen to be on the order of
the inverse lattice constant [19,20]. Finally, with the chemical
potential given in terms of kF as μ = E

(s)
kF+ + �

(s)
kF+ + �

(s)
kF−

and using the relation n = k2
F/(2π ), the expression (1) for

the thermodynamic density of states can be rewritten as

DT = ( π
kF

∂μ

∂kF
)
−1

. Measuring wave vectors and energies in
terms of the BHZ-model scales q0 ≡ A/|B| and E0 ≡ Aq0,
the natural unit for D−1

T is |B|. The fine-structure constant that
appears in the exchange-energy contributions to μ is given
by αqw ≡ e2/(4πεε0A) ≈ 0.19 when using ε = 20.8 as the
dielectric constant of HgTe.

Numerical results for DT. We now present results obtained
for the thermodynamic density of states in normal and topo-
logical HgTe quantum wells. Following the usual convention,
D−1

T ≡ ∂μ/∂n is shown as a function of the Fermi wave vector.
We first consider an HgTe quantum well with width d = 5 nm,
which is in the the normal (noninverted band-structure) regime.
The associated BHZ parameters are given in Table I and
correspond to an actual experimental realization [39]. For
the large-momentum cutoff of the interband contribution,
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TABLE I. Parameters of the BHZ model applicable for two
experimental realizations of HgTe quantum wells [39] having widths
of d = 5 and 7 nm, respectively.

d = 5 nm d = 7 nm

A (eV nm) 0.365 0.340
B (eV nm2) − 0.50 − 0.50
D (eV nm2) − 0.50 − 0.87
M (meV) 24.0 − 8.5

we choose kc = a−1
0 with a0 = 0.646 nm being the HgTe

bulk-material lattice constant. We show the result obtained for
D−1

T in Fig. 2, also making explicit the various contributions
to D−1

T . The purely kinetic (i.e., noninteracting) part is given
by a constant in the low-density regime,

∂E
(s)
kFα

∂n

∣∣∣∣
kF=0

= 2π

[
α

(
A2

2|M| + |B|sgn(M)

)
− D

]
, (9)

which has the form expected for an ordinary 2D electron
system [43]. However, it exhibits a weak dependence on
kF at larger carrier densities due to the HH-LH mixing of
quantum-well bound states having a finite in-plane wave
vector. The intraband interaction (Fock) renormalization term
is always negative and therefore reduces D−1

T , thus leading
to an enhancement of the electronic compressibility. At low-
enough densities, the intraband contribution drives D−1

T to
negative values. Such a behavior is also reminiscent of that
of an ordinary 2D electron system [44]. In the normal regime
(except very close to the critical well width dc), the interband
exchange contribution is also negative and thus reduces D−1

T
further. As a result, the crossover from positive to negative
values of D−1

T is shifted to higher densities. This behavior has
to be contrasted with that exhibited by single-layer graphene
where the exchange renormalization of D−1

T is positive [19,20].
Overall, from the results shown in Fig. 2, we see that
the exchange contributions strongly influence the electronic
compressibility.
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FIG. 2. Inverse thermodynamic density of states D−1
T ≡ ∂μ/∂n

of an HgTe quantum well in the normal regime (well width of
d = 5 nm). The red (blue) solid curve shows the result with (without)
interactions. The magenta dashed (green dot-dashed) curve is the
intraband (interband) exchange contribution only. The black dotted
curve is the sum of the noninteracting and intraband exchange
contributions.
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FIG. 3. Inverse thermodynamic density of states D−1
T ≡ ∂μ/∂n

of an HgTe quantum well in the inverted regime (well width of
d = 7 nm). The red (blue) solid curve shows the result with (without)
interactions. The magenta dashed (green dot-dashed) curve is the
intraband (interband) exchange contribution only. The black dotted
curve is the sum of the noninteracting and intraband exchange
contributions. Notice the positive sign of the interband exchange
contribution (green dot-dashed curve), which shifts the crossover to
negative compressibility to very low carrier densities.

We now consider the inverted regime of an HgTe quantum
well, which is realized for a well width of d > dc ≈ 6.3 nm.
Taking the BHZ parameters of a feasible experimental situation
corresponding to a well width of d = 7 nm (see Table I),
we again calculate the quantity D−1

T . The result is shown
in Fig. 3. The most salient feature is that the interband
exchange contribution is now positive, as in single-layer
graphene [19,20], and considerably larger in magnitude as
compared to the situation in the normal regime. In contrast, the
intraband exchange term is of similar magnitude and has the
same sign as in the normal case. The kinetic (noninteracting)
contribution is much larger as compared to the d = 5-nm
case, which is mainly due to the smaller band gap in the
present case—this can be inferred from Eq. (9). We see that
the electronic compressibility is reduced by up to 35% due
to exchange effects as compared with the noninteracting case.
This trend is changed only at very low densities where the
(negative) intraband contribution becomes dominant.

The striking difference observed between the interband
interaction-renormalization contributions in the topological
and the normal regimes invites more detailed scrutiny. Figure 4
illustrates the variation of intraband and interband exchange
terms as a function of the quantum-well width [45] for a fixed
carrier density of n = 1010 cm−2. The intraband contribution
is always negative and rather insensitive to a variation of d.
The interband contribution, however, depends strongly on the
quantum-well width and changes its sign in the vicinity of
the critical value of dc ≈ 6.3 nm. Also around dc, due to the
vanishing band gap, we can anticipate the onset of a divergence
in the interband contribution for kF → 0. Figure S1 in the
Supplemental Material [46] shows this even more clearly.
We can attribute the sign change in the interband exchange
contribution to D−1

T to a complex interplay of band-mixing
effects (due to the terms proportional to A in the BHZ
Hamiltonian) and the change in the band characters when
crossing over from M > 0 to M < 0. To be more specific,
we find that the heavy-hole term (i = j = 2) in Eq. (8) gives
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T. KERNREITER, M. GOVERNALE, AND U. ZÜLICKE PHYSICAL REVIEW B 93, 241304(R) (2016)

4 5 6 7 8 9
20

10

0

10

20

30

d nm

D
T

1
B

FIG. 4. Intraband (dashed red curve) and interband (solid blue
curve) exchange contributions to the inverse thermodynamic density
of states D−1

T as a function of the HgTe quantum-well width d for
a carrier sheet density of n = 1010 cm−2. The dashed vertical line
indicates the value of the critical well width of dc = 6.3 nm.

generally (especially for low densities) the largest contribution
to �

(s)
kF− (as well as to ∂�

(s)
kF−/∂n), where for M > 0 (M < 0)

it is a monotonically decreasing (increasing) function of kF.
Effect of spin-orbit coupling. We have extended our calcula-

tion of the thermodynamic density of states to the situation with
bulk-inversion asymmetry and structural-inversion asymmetry
spin-orbit coupling [29,47] and find that, only for the largest
expected magnitudes of the bulk-inversion-asymmetry energy
scale of a few meV, results change quantitatively by up to 10%.
However, our findings suggest that spin-orbit coupling affects

the electronic compressibility of electrons in HgTe quantum
wells typically only at the percent level. See the Supplemental
Material for more details [46].

Conclusions. We have presented results for the thermo-
dynamic density of states for electrons in HgTe quantum
wells in experimentally feasible situations. Interaction effects
have been included within the Hartree-Fock approximation.
We have also taken into account the finite width of the
HgTe/CdTe quantum-well heterostructure, which is necessary
to account for the attenuated Coulomb repulsion in the
transverse direction. Markedly different behavior is exhibited
for a well width of d = 5 nm (normal regime) compared to
one with d = 7 nm (topological regime). We have pinpointed
the origin of this finding as the sizable interband exchange
correction whose sign differs in the topological and normal
regimes. Thus a measurement of the quantum capacitance of
HgTe quantum wells, e.g., using HgTe double-quantum-well
configurations [48], provides a useful way to determine the
topological state of this system.

The enhancement and eventual sign change of the com-
pressibility found in the low-density limit of the nontopo-
logical phase are analogous to the behavior exhibited by
ordinary 2D electron systems with parabolic dispersion [3–9].
In contrast, the compressibility of the 2D electron system
in the topological phase is strongly suppressed by Coulomb
interactions. Additional contributions to the compressibility
arising from image charges [16,17] and disorder [49] can be
straightforwardly included to facilitate the description of real
samples.
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