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We study the effect of the long-range Coulomb interaction in j = 3/2 Dirac electrons in cubic crystals with
the Oh symmetry, which serves as an effective model for antiperovskite topological crystalline insulators. The
renormalization group analysis reveals three fixed points that are Lorentz invariant, rotationally invariant, and Oh

invariant. Among them, the Lorentz- and Oh-invariant fixed points are stable in the low-energy limit, while the
rotationally invariant fixed point is unstable. The existence of a stable Oh-invariant fixed point of Dirac fermions
with finite velocity anisotropy presents an interesting counterexample to emergent Lorentz invariance in solids.
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The discovery of Dirac electrons (broadly defined) in solids
has opened up a variety of new topics in physics for a
decade. Examples of Dirac materials include graphene [1],
topological insulators [2,3], and Dirac/Weyl semimetals [4,5].
The important feature of massless Dirac fermions is the
linear energy dispersion crossing at a point, which makes
the theory scale invariant. Still there is a difference from the
Dirac theory in high-energy physics; in solids, the speed of
electrons v is smaller than the speed of light c and hence the
Lorentz invariance is broken when electron-photon interaction
is present. Also, the velocity of Dirac electrons can differ along
different directions in a crystal.

Electron interactions can modify the Dirac dispersion.
When the Fermi level lies at the Dirac point, the Coulomb
interaction is unscreened and hence long ranged. It enhances
the speed of electrons v logarithmically, both in two and three
dimensions [6–12]. One may think that v has a logarithmic
divergence in the low-energy limit, but the relativistic effect,
namely, the coupling to the electromagnetic field, makes
it converge to the speed of light c [13–15]. This is an
example of emergent Lorentz invariance as a low-energy phe-
nomenon [16]. It is also true for two-dimensional anisotropic
Weyl semimetals with linear but tilted energy dispersion [17].

Qualitatively different results appear for generalized Dirac
electrons whose energy dispersion deviates from linearity.
For example, when two Weyl cones move and merge in
the Brillouin zone, the energy dispersion will be quadratic
along the merging direction. In such cases, stable fixed
points are anisotropic in three dimensions [18] and non-Fermi
liquid or marginal Fermi liquid in two dimensions [19,20].
A non-Fermi-liquid state is also theoretically discovered in
the Luttinger Hamiltonian with a quadratic band touching
in three dimensions [21]. Other nontrivial fixed points are
found in three-dimensional double-Weyl semimetals [22,23]
and nodal-ring semimetals [24].

Recently, a new type of Dirac electrons has been the-
orized [25] in antiperovskite materials A3BX with A =
(Sr, La, Ca), B = (Sn, Pb), and X = (O, N, C). These ma-
terials are predicted to be in or very close to a topo-
logical crystalline insulator (TCI) phase [26]. This TCI
phase was previously discovered in IV-VI semiconductors
Sn1−xPbx(Te,Se) [27–30] and has stimulated wide interest. In
both classes of materials, the nontrivial topology is protected
by mirror symmetry and results from band inversion described
by the sign change of the Dirac mass. However, unlike IV-VI

semiconductors, antiperovskites have a fundamental band gap
located at �, where both the conduction and valence bands
are fourfold degenerate consisting of j = 3/2 quartets. The
band structure near � is well described by a first-order
eight-component k · p Hamiltonian [25], which is a high-spin
generalization of the Dirac equation for spin-1/2 particles.

In this Rapid Communication, we report quantum critical
points of such j = 3/2 Dirac electrons in cubic crystals with
the Oh symmetry. The system has linearly dispersing energy
bands in all directions, with anisotropic velocity parameters
reflecting the Oh symmetry. Based on renormalization group
(RG) analysis, we find in the presence of Coulomb interaction,
j = 3/2 Dirac electrons exhibit three fixed points that are
Lorentz invariant, rotationally invariant, and Oh invariant,
respectively. The rotationally invariant fixed point is unstable
and flows to the Lorentz- and Oh-invariant fixed points that
are stable. The existence of the stable Oh fixed point, with
a finite velocity anisotropy, is rather unusual and contrasts
with previously known Dirac systems with linearly dispersing
energy bands which all exhibit emergent Lorentz invariance.

Model. The effective Hamiltonian for j = 3/2 Dirac octets
is

H (k) = mτz + v1τx k · J + v2τx k · J̃, (1)

where J is a set of spin-3/2 matrices and J̃ is a set of 4 × 4
matrices that transforms as a vector under the cubic point
group Oh. J̃ is also written as a linear combination of J and
J3. We note that k · J respects the rotational symmetry, while
k · J̃ does not. Since J are the generators of rotation, which
is continuous symmetry, their commutation relations are in
closed form

[J i,J j ] = iεijkJ k, (2)

where i,j,k correspond to three-dimensional coordinates
x,y,z. In contrast, J̃ satisfies

[J̃ i ,J̃ j ] = iεijk

(
J̃ k − 3

2
J k

)
, (3)

which is not closed.
The sign of the mass parameter m controls the topological

phase transition. We consider the quantum critical point m =
0, where the band gap closes. Then the Hamiltonian becomes

H (k) = v1k · J + v2k · J̃, (4)
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FIG. 1. Radiative corrections at one-loop order: (a) self-energy
and (b) polarization. Solid lines and wavy lines represent the electron
propagator and the Coulomb interaction, respectively.

after diagonalizing τx . Here we assume zero chemical po-
tential. It is convenient to write the Hamiltonian using the
following matrices:

γ d = 2
5 ( J − 2 J̃), γ s = 2

5 (2 J + J̃), (5)

which satisfy tr(γ i
dγ

j

d ) = tr(γ i
s γ

j
s ) = 4δij and tr(γ i

d ) =
tr(γ i

s ) = tr(γ i
dγ

j
s ) = 0. Then the Hamiltonian is rewritten

as [25]

H (k) = vd k · γ d + vs k · γ s , (6)

where the two velocity parameters are defined by vd = v1/2 −
v2 and vs = v1 + v2/2.

The 4 × 4 matrices γ i
d satisfy the anticommutation relation

{
γ i

d ,γ
j

d

} = 2δij , (7)

which indicates the Hamiltonian reduces to two copies of Weyl
Hamiltonians when vs = 0. It means that the present model
holds the Lorentz symmetry at vs = 0. γ i

d and γ i
s follow the

commutation relations[
γ i

d ,γ
j

d

] = −2iεijkγ k
d ,

[
γ i

s ,γ
j
s

] = iεijkγ k
d ,

(8)[
γ i

d ,γ
j
s

] + [
γ i

s ,γ
j

d

] = 2iεijkγ k
s ,

where the first equality shows that γ i
d are the generators of

SU (2) algebra.
We introduce the long-range Coulomb interaction

V (q) = e2

εq2
(9)

as a perturbation to the system. When the Fermi energy is zero,
the density of states vanishes at the Fermi level, and hence the
Coulomb interaction is not screened and long ranged.

Renormalization group analysis. We consider the effect
of the long-range Coulomb interaction by perturbative RG
analysis. In the following analysis, we employ the Euclidean
action and calculate the radiative corrections to one-loop order
(Fig. 1). Here the noninteracting Green’s function is given by
G0(k,iω) = [iω − H (k)]−1.

First, we calculate the one-loop self-energy 	( p,iω)
[Fig. 1(a)], which is given by

	( p,iω) = −
∫ ′

k,ω′
G0(k,iω′)V (|k − p|)

= −e2

ε

∫ ′

k,ω′
G0(k,iω′)

2k · p
k4

+ O(p2). (10)

The integral
∫ ′

k,ω′ stands for
∫

dω′
2π

∫ ′ d3k
(2π)3 , where

∫ ′
dk means

a momentum integration over the shell (�e−l ,�]. This mo-
mentum shell procedure regularizes a logarithmic divergence,

and it gives the renormalization of the velocity parameters.
The self-energy can be decomposed as

	( p,iω) = 	0iω + 	d p · γ d + 	s p · γ s , (11)

and each term is calculated by using the relation

tr	 = 4	0iω, tr
(
γ i

d	
) = 4	dp

i,

tr
(
γ i

s 	
) = 4	sp

i. (12)

The first equation leads to 	0 = 0, which is consistent with the
Ward-Takahashi identity for the present model. By introducing
the spherical coordinate for momentum k, we obtain

	d = e2

(2π )3ε
vdl

∫
sin θ dθ dφ cos2 θ

√
b + cd√

b
√

2a + 2
√

b
,

(13)

	s = e2

(2π )3ε
vsl

∫
sin θ dθ dφ cos2 θ

√
b + cs√

b
√

2a + 2
√

b
.

(14)

The functions a(k), b(k), cd (k), and cs(k) are defined by

a(k) = (
v2

d + v2
s

)
,

b(k) = (
v2

d − v2
s

)2 + 3v2
s

(
4v2

d − v2
s

) k̃4

k4
,

cd (k) = (
v2

d + 2v2
s

)k2
x + k2

y

k2
+ (

v2
d − v2

s

)k2
z

k2
,

cs(k) = 1

2

(
4v2

d − v2
s

)k2
x + k2

y

k2
− (

v2
d − v2

s

)k2
z

k2
,

with k̃4 = k2
yk

2
z + k2

z k
2
x + k2

xk
2
y . 	d and 	s give the beta

functions for vd and vs as

βvd
= d	d

dl

∣∣∣∣
l=0

, βvs
= d	s

dl

∣∣∣∣
l=0

. (15)

These beta functions yield the RG equations for vd and vs :

dvd

dl
= βvd

,
dvs

dl
= βvs

. (16)

Note that when vs = 0, the RG equations reduce to those for
Dirac electrons in three dimensions, where we have βvd

=
e2/(6π2ε)sgn(vd ) and βvs

= 0 [11].
The set of RG equations (16) provides an RG flow on

the vd -vs plane [Fig. 2(a)]. Both vd and vs become larger
in low energies, and thus the point vd = vs = 0 is unstable.
Indeed, the ratio of the two parameters r ≡ vs/vd is important
to determine the property of low-energy fixed points. The RG
equation for the ratio r is obtained from Eq. (16),

dr

dl
= α

2
√

2π2
F (r), (17)

where α ≡ e2/(4πε|vd |) is a dimensionless coupling constant,
and F (r) is an odd function depending only on r . The RG
flow for the ratio r is shown in Fig. 2(b). We can see two
kinds of stable fixed points: One is at r = vs/vd = 0, and the
other at r = ±rs with rs ≈ 2.296. The termination of a flow is
determined solely by an initial ratio r0, and does not depend
on the absolute values of vd and vs . The two types of stable
fixed points are separated by unstable fixed points at r = ±2.
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FIG. 2. RG flows and fixed points. (a) RG flow of the velocities vd and vs . There is an unstable fixed point (blue) at vd = vs = 0, and both
vd and vs become larger as one goes to low energies. (b) RG flow of the ratio r = vs/vd . Though both vd and vs diverge in the low-energy limit,
the ratio r could be finite. There are stable fixed points at r = 0 (red) and r = ±rs (rs ≈ 2.296) (green), and unstable fixed points at r = ±2
(blue). Any value of r in the red region |r| < 2 flows to the Lorentz-invariant fixed point at r = 0, and r in the green regions |r| > 2 flows to
the fixed points at r = ±rs . (c) Function F (r) that determines the fixed points of the ratio r [see Eq. (17)]. The function F (r) is an odd function
of r . We can find zeros at r = 0, 2, and rs , and the sign of F (r) determines the stability around the zeros.

The position of the fixed points corresponds to zeros of the
function F (r) [Fig. 2(c)]. The properties of the fixed points
are discussed after we see the renormalization of the coupling
constant.

Next, we consider the one-loop polarization function
�(q,iω) [Fig. 1(b)], which yields the renormalization of the
electric charge, given by

�(q,iω) = 2e2
∫ ′

k,ω′
tr[G0(k + q,iω + iω′)G0(k,iω′)]

= �2q
2 + O(q4), (18)

where the factor 2 comes from a trace of τ matrices. The
polarization does not depend on the frequency ω. When
expanding it with respect to q, we can find a logarithmic
divergence in the second-order term �2. The divergence
gives the renormalization of the electron charge, similarly
to the self-energy considered above. When we write �2 =
−e2q2lP2(r)/(3π2vd ), the RG equation for the effective
charge g ≡ e/

√
4πε is

dg2

dl
= − 4g4

3πvd

P2(r). (19)

The even function P2(r) depends only on the ratio r (Fig. 3).
For r = 0, the system consists of four copies of isotropic

Weyl fermions with P2(r) = 1, and together with Eq. (16),
we can show that the dimensionless coupling constant α

logarithmically decreases: α(l) = α0[1 + (2α0/π )l]−1 [11].
For r �= 0, P2(r) > 0 and the coupling constant also becomes
weaker for lower energies, which justifies the perturbative
RG treatment; the dimensionless coupling constant α has the
unique stable fixed point at α = 0. We observe the singularity
at r = 1, which originates from line nodes of the Fermi surface,
elongating along the cubic axes. This makes the density of
states D(E) ∝ E, in contrast to D(E) ∝ E2 for the case of the
point node for r �= 1, which changes the screening of charges.
However, this is an artifact of the linearized theory, and the
singularity arises only at r = 1, so that it does not change the
analysis of the fixed points.

Discussion. From the original Hamiltonian (4) or (6), one
would expect two fixed points: One is rotationally invariant
(v1k · J), and the other is Lorentz invariant (vd k · γ d ) [31].
Those two are indeed continuous symmetric points of the
present model. When a continuous symmetry is present,
generators of the corresponding symmetry obey Lie algebra,
i.e., the commutation relations must be closed. Using this
fact, we can identify symmetric points which have continuous
symmetry. For a linear combination of γ i

d and γ i
s , the

commutation relation is[
aγ i

d + bγ i
s ,aγ

j

d + bγ j
s

] = iεijk
[
(−2a2 + b2)γ k

d + 2abγ k
s

]
.

(20)

This has a closed form if and only if (1) b = 0 or (2) b/a = ±2.
Case (1) corresponds to r = 0 (vs = 0), where the system
is Lorentz invariant, and case (2) corresponds to r = ±2,
which has rotational symmetry. Otherwise, the model has no
continuous symmetry, with at most the cubic symmetry Oh.

Since the RG flow is symmetric under the inversion of r ,
we concentrate our analysis on r � 0. It is easily confirmed
that the two symmetric points are fixed points, and actually we

FIG. 3. Function P2(r) that characterizes the renormalization of
the effective charge. It depends only on the ratio r . The singular
behavior at r = 1 comes from the line nodes.
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found the zeros of the function F (r) at r = 0 and r = 2. The
question is whether they are stable or unstable. Considering
the symmetry of the model is controlled solely by the
ratio r , there is little likelihood of both points being stable.
Assuming that both are stable and that there is no other fixed
point, F (r) should touch but not cross zero at r = 2. In this
case, however, the point r = 2 is subtle because it is stable for
r > 2 but unstable for r < 2.

A more natural choice is that F (r) crosses zero at r = 2
to give other fixed points. In other words, this system with
seemingly two fixed points requires another fixed point for
a reasonable RG flow. From the one-loop RG analysis,
we have observed in Figs. 2(b) and 2(c) that the stable
fixed point locates at r = rs(>2) and that hence r = 2 is
unstable.

In low energies, the system is either Lorentz or Oh invariant.
The difference can be measured by angle-resolved photoe-
mission spectroscopy, which directly observes the electron’s
energy band structure. Another possible way of its detection is

a measurement of magnetic susceptibility. Because the system
is isotropic (anisotropic) when it is Lorentz invariant (Oh

invariant), the measurement of the directional dependence
of magnetic susceptibility may shed light on the electronic
structure at low energies.

The important finding is that the j = 3/2 Dirac fermions
have the non-Lorentz-invariant stable fixed point in addition
to the Lorentz-invariant fixed point. The Oh-invariant stable
fixed point appears because the two continuous symmetric
points are not stable fixed points at the same time. Restoration
of the Lorentz invariance as a low-energy phenomenon is not
universal when several continuous symmetries are present, and
the property of a critical point will depend on the underlying
symmetry of crystals. Further interesting physics topics may
be hidden under this quantum criticality.
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