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Quantum impurities develop fractional local moments in spin-orbit coupled systems
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Systems with spin-orbit coupling have the potential to realize exotic quantum states which are interesting
both from fundamental and technological perspectives. We investigate the physics that arises when a correlated
spin- 1

2 quantum impurity hybridizes with a spin-orbit coupled Fermi system. The intriguing aspect uncovered
is that, in contrast to unit local moments in conventional systems, the impurity here develops a fractional local
moment of 2/3. The concomitant Kondo effect has a high Kondo temperature (TK ). Our theory explains these
features including the origins of the fractional local moment and provides a recipe to use spin-orbit coupling (λ)
to enhance the Kondo temperature (TK ∼ λ4/3). Even as our finding of such rich phenomena in a simple looking
many-body system is of interest in itself, we also point out opportunities for systems with tunable spin-orbit
coupling (such as cold atoms) to explore this physics.

DOI: 10.1103/PhysRevB.93.241111

Systems with Rashba spin-orbit coupling (RSOC) have
emerged as hosts of many new developments in condensed
matter physics [1]. Examples include materials with topolog-
ical bands [2,3], electron gases at oxide interfaces [4,5], cold
atomic gases [6], etc. The study of quantum impurities in
these systems, therefore, is of importance both from basic and
applied perspectives.

A correlated quantum impurity in a Fermi gas (without
RSOC) can give rise to the Kondo effect—screening of the
impurity magnetic moment below a characteristic Kondo
temperature TK [7]. The Kondo effect and associated TK in
spin-orbit coupled systems have had their share of attention.
Malecki pointed out that the Kondo effect is not destroyed
by RSOC [8], which has been confirmed in a variational
calculation [9]. Žitko and Bonča [10] reported that the
increase/decrease of TK depends on microscopic parameters
and attributed it to the change in density of states (DOS)
engendered by RSOC. Zarea et al. reported an enhancement
of TK using an effective projected s-d-like model [11] (see
also Refs. [12–14]). In a broader context, the effects of
nonuniform (even diverging) DOS on impurity physics have
been investigated in metals [15,16], semiconductors [17], and
superconductors [18]. Although the above discussion may
suggest that quantum impurity problems with RSOC and other
systems with structured DOS have been comprehensively
addressed, in this Rapid Communication we demonstrate a
surprising result not found in the works cited hitherto.

We study a quantum impurity (with a repulsive correlation
energy for double occupancy) that hybridizes with a Fermi
gas with RSOC (strength λ). When RSOC and the correlation
energy are large enough, unlike the conventional unit local
moment, we find here that the impurity develops a fractional
local moment (the fraction is 2/3). This moment couples
antiferromagnetically with the Fermi gas, and forms a Kondo-
like ground state where the gas screens the fractional moment.
Remarkably, the resulting TK (where the screening stops
to be operative upon increase of temperature) is large—a
significant fraction of the Fermi energy—and can be tuned
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with increasing RSOC (TK ∼ λ4/3). We establish these results
using a variety of methods from mean-field theory, variational
approach, and quantum Monte Carlo numerics. That many-
body effects produce an unexpected fractional moment state in
such a seemingly rudimentary model is itself of fundamental
interest. We not only elucidate the physics of the fractional
local moment in the context of RSOC systems, but we
further identify the essential ingredients (power of infrared
divergence of DOS) in any system necessary to realize this
physics (including the size of the fractional moment). We also
discuss possible experimental systems that can realize these
phenomena, e.g., cold atomic systems.

Preliminaries. We consider a gas (“conduction bath”)
of two-component (spin- 1

2 , σ = ↑ , ↓) fermions in three

dimensions (3D) with density n0 ≡ k3
F

3π2 , and an associated

Fermi energy EF = k2
F

2 [19]. With a RSOC of strength λ, the
spin of a fermion is locked to its momentum k, resulting in
“helicity” α = ±1 states. In terms of fermion operators c

†
kα ,

the conduction bath kinetic energy is

Hc =
∑
kα

[εα(k) − μ]c†kαckα, (1)

where [20] εα(k) = k2

2 − αλ|k| and μ is the chemical potential.
The spin is polarized along k for α = 1 and opposite to k for
α = −1. Thus, c

†
kσ = ∑

α f α
σ (k)c†kα where coefficients f α

σ (k)
are determined by k [see Supplemental Material (SM) [21]].
We introduce a quantum impurity d, with Hamiltonian

Hd =
∑

σ

(ε̃d − μ)ndσ + Und↑nd↓, (2)

at the origin of the box of volume � containing the RSOC
fermionic bath. Here, ndσ = d†

σ dσ , ε̃d is the “bare” impurity
energy (see below), and U (∼ correlation energy) is the local
repulsion between two ↑ -↓ fermions at the impurity. A crucial
aspect is the local hybridization of the bath fermions with the
impurity state given by

Hh = V√
�

∑
kσ

(c†kσ dσ + d†
σ ckσ ). (3)
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The Hamiltonian H = Hc + Hd + Hh describes (see SM) the
Anderson impurity problem [22] in a RSOC fermionic bath.
We study the ground state and finite temperature properties of
this system using various techniques. Our results (3D setting)
are also applicable to other spatial dimensions (particularly
2D), and also to more general anisotropic RSOC of cold atomic
systems [23].

It is useful to note that the RSOC Fermi gas itself (no
impurity) undergoes changes with changing λ. For the given
density n0, increasing λ causes the topology of the Fermi
surface [23] to change at λT = kF

3√4
. For λ > λT , the Fermi sea

is a spherical annulus solely of + helicity fermions. For λ �
λT , μ varies as μ(λ)

EF
= 1 − 1

3√2
( λ
λT

)
2
, and as μ(λ)

EF
= 28/3

9 ( λT

λ
)
4

for λ � λT .
Ground state [Hartree-Fock (HF) mean-field theory]. A

ground state with a broken rotational symmetry is assumed,
such that M = 〈nd↑ − nd↓〉 is nonzero. M is self-consistently
determined by minimizing the ground state energy [22].

This calculation (and all others that we present below)
requires an important technical input. Unlike the usual case
where the bath has a finite bandwidth, the continuum fermions
considered here do not. This leads to ultraviolet divergences
(due to fermions at large momenta) requiring regularization.
Our approach is to make the impurity energy ε̃d a bare
parameter (see SM for details), trading it for the physical value
εd of the impurity level via the relation

εd = ε̃d − 2V 2

�

∑
|k|��

1

|k|2 = ε̃d − V 2�

π2
, (4)

where � is an ultraviolet cutoff. This procedure provides a
route to make all interesting observables to be independent of
cutoff �.

Figure 1(a) shows “magnetization” M of the impurity in
the U -λ plane, showing three distinct regimes. For any λ, M

vanishes when U < Uc [Uc(λ) is shown by the dashed line
in Fig. 1(a)]. For U > Uc, M ≈ 1 when λ/kF � 1, consistent
with known results [22]. Most interestingly, for λ/kF � 1 and
U > Uc, we find that M ≈ 2/3, motivating the more detailed
investigations below.

Ground state (variational). To obviate any artifacts due
to the artificially broken symmetry of the HF calculation,
we now construct a variational ground state (see Ref. [24])
with a “rigid” Fermi sea of bath fermions and two added
particles whose spin states are unbiased (see SM). We find
that the ground state for all λ and U is rotationally invariant
with a zero total (spin+orbital) angular momentum (J = 0,
singlet). The size of the impurity local moment, characterized
by S2

z ≡ 〈(nd↑ − nd↓)2〉, depends on λ and U . As seen from
Fig. 1(b), there are four distinct ground states. (i) For λ � kF

and U < Uc [Uc depends on λ, and is shown by a dashed line in
Fig. 1(b)], S2

z vanishes and the impurity is doubly occupied. (ii)
For λ � kF and U > Uc, S2

z � 1, corresponding to the Kondo
state where the impurity has a well-formed local moment that
locks into a singlet with the bath fermions. Interestingly, in
this regime of λ, Uc falls with increasing λ, i.e., small λ aids
the formation of the Kondo state (see also Ref. [11]). The
other two states occur for λ � kF , where Uc increases with
increasing λ. (iii) For U > Uc, we find a strongly correlated

FIG. 1. Ground state in U -λ plane: Results for V/E
1/4
F = 0.1,

εd = μ(λ)/2. (a) Impurity moment M = 〈nd↑ − nd↓〉 in the Hartree-
Fock (HF) ground state. (b) Size of impurity moment S2

z = 〈(nd↑ −
nd↓)2〉 in the variational ground state. (c) and (d) Results along slices
A(U/EF = 0.4) and B(U/EF = 1.0) shown in (b). Both HF and
variational ground states show a fractional local moment (shown
schematically by the broken vector) of 2/3 for λ/kF � 1, and U/EF

larger than a λ-dependent critical value shown by the dashed line in
(a) and (b).

state (vanishing double occupancy) with a fractional local
moment of S2

z = 2/3. (iv) For U < Uc, an intriguing state
is seen with an impurity occupancy of 4/3, moment 4/9, and
double occupancy 〈nd↑nd↓〉 = 4/9. The crossovers between
these states are clearly demonstrated in Fig. 1(c), which shows
various quantities evolving with λ for U = 0.4EF , and in
Fig. 1(d) for U = EF . Indeed, the HF results discussed before
are consistent with those of the variational calculations (VCs).
We note that the first excited state of the VC is a triplet state
(J = 1). The energy of this excited state compared to the
singlet ground state gives an estimate of the Kondo scale TK ,
which is discussed in detail below.

Finite temperature (quantum Monte Carlo). Several natural
questions arise, including how the fractional local moment
reveals itself at finite temperatures. We address this using the
quantum Monte Carlo (QMC) method of Hirsch and Fye [25]
(see SM for details) which, in addition, also provides an
unbiased corroboration of the results of the previous sections.
Figures 2(a)–2(c) show the temperature-dependent results
(including the impurity magnetic susceptibility χ ) obtained
from QMC for a λ and U that possesses a fractional local
moment in the ground state. Three temperature regimes are
clearly seen. At high temperature T � U , we have the free
orbital regime [26,27] where T χ (T ) ≈ 1

2 [Fig. 2(b)], followed
by a regime where T χ (T ) ≈ 2

3 at lower temperatures. At even
lower temperatures (temperature scale TK ) there is a crossover
to the Kondo state. The interesting aspects of these results is
that the impurity local moment S2

z attains a value of 2/3 in
the same temperature regime where T χ (T ) ∼ 2

3 and remains
so at low temperatures, even below the Kondo temperature
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FIG. 2. Finite T physics: QMC results for U/EF = 0.5, λ/kF =
5√
6
, and V/E

1/4
F = 0.1. (a) Impurity observables, and (b) and (c)

impurity magnetic susceptibility χ as a function of temperature T . χ0

in (c) is the low temperature susceptibility. The Kondo temperature
TK is estimated from QMC results by the location of the peak in χ

as shown in (c). (d) Dependence of TK on λ (U/EF = 1.0). Results
(a)–(c) are obtained using L = 512 imaginary time slices, while L =
128 is used to obtain the TK for various values of λ in (d). Sampling
error bars are smaller than the symbol sizes.

TK . This clearly indicates the formation of a fractional local
moment of 2/3 at the impurity, and screening of the same by the
bath fermions at lower temperatures, confirming our ground
state results. QMC also allows us to extract TK as shown in
Fig. 2(c), and its dependence on λ is shown in Fig. 2(d). The
remarkable aspect is the large Kondo temperature scale that
is a significant fraction of EF , which interestingly increases
with increasing λ in the fractional local moment regime [28].
Reassuringly, the energy scale obtained from VC also agrees
with the QMC result (up to a factor of 1

2 , T
QMC
K ≈ 1

2T VC
K ), as

shown in Fig. 2(d).
Discussion. What is the physics behind these results? In

the absence of RSOC (λ = 0), the sole one-particle effect of
hybridization on the impurity is to broaden its spectral function
Ad (ω) from a Dirac delta at εd to a Lorentzian of width � ∼
V 2ρ(μ), where ρ(ω) (∼ √

ω for λ = 0) is the DOS of the bath.
Matters take a different turn when λ = 0 due to the infrared
divergence of the DOS of the bath [ρ(ω) ∼ λ2√

ω
at near ω = 0;

see Fig. 3(a)]. A bound state appears for any V for λ = 0,
i.e., the states {c†kα,d†

σ } reorganize themselves into a set of

scattering states created by a
†
km and a one-particle bound state

b
†
m (quantum numbers: k = |k|, and m = ± 1

2 is the z projection
of the total angular momentum J = 1/2.). In particular,

b
†
1
2

=
√

Zd
†
↑ +

∑
kα

Bkαc
†
kα, (5)

where Z is the weight of the d-impurity state in the bound
state b, and B’s are coefficients of the bath states. Now, Z

depends on λ in a most interesting way. For a given εd and V ,
Z is vanishingly small for λ smaller than a critical value [see
Fig. 3(b)]. For larger λ, Z attains a constant value (of 2

3 for the
3D RSOC) independent of λ. The energy of the bound state εb

FIG. 3. Fractional local moment and high TK : (a) Density of states
of the bath ρ(ω) with filled states up to μ(λ). The spectral function
Ad (ω) of the d state at εd after hybridization with the bath is also
shown. (b) Weight (Z) of the impurity d state in the bound state, and
(c) energy of the bound state εb, as function of λ. (d) “Universal”
Kondo TK scale as a function of U estimated from the variational
calculation where TK

|εb | ≈ 0.155 + |εb |
U

.

also has interesting characteristics as shown in Fig. 3(c). For
small λ, the binding energy is small and εd dependent, while

for large λ, εb

EF
≈ −(V 2λ2

k3
F π

)
2/3

and becomes independent of εd .

The one-particle physics just discussed provides crucial
clues to the physics even when U is nonzero. Clearly, the
natural basis for analysis is provided by the b-bound state and
the a-scattering states. For small λ, the bound state has very
little d character and the physics is quite similar to the system
without RSOC. The fall in Uc seen in Figs. 1(a) and 1(b) owes
to the falling chemical potential of the gas for our choice of
εd = μ(λ)/2. At larger λ, the bound state b is deep. Since the
b state has only a fraction

√
Z of d state, even a large U on

the d state does not entirely forbid double occupancy of the b

state. Physically, the part of the b state with d character will
“feel” a correlation energy Z2U , while the other part remains
uncorrelated. At large U , the “d part” of b will thus be singly
occupied, forming a fractional local moment. This argument
provides an expression for the critical Uc required to form
a fractional local moment, as Uc ∼ 1

Z
|εb| and indeed matches

(up to a multiplicative factor of ≈ 2) the result at large λ shown
in Figs. 1(a) and 1(b). In fact, these observations also explain
the regime of U < Uc at large λ. Here, the b state is doubly
occupied, and this corresponds to a d occupancy of 2Z, and
〈nd↑nd↓〉 = Z2 and S2

z = 2Z(1 − Z), all in agreement with
results of Fig. 1.

Turning again to U > Uc, the origin of the high TK of the
Kondo state formed by the fractional local moment can be
understood from the variational calculation. As noted, the first
excited state in VC is a triplet state made of a singly occupied
b state and a scattering state at the chemical potential. This
state is clearly a scale εb above the ground state. Thus in the
large U limit we expect the Kondo scale TK to be proportional
to εb, as indeed found by explicit calculation [see Fig. 3(d)].
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FIG. 4. Generic fractional local moments: QMC results for
an impurity hybridizing with a conduction bath with ρ(ω) =

1
π2 (

√
2ω + λ√

2
ωr

λ2r ) [V/E
1/4
F = 0.1, λ/kF = 1√

2
( 10√

3
)

2
1−2r , U/EF = 2,

εd = μr (λ)/2, L = 128] for different values of r . (a) Impurity
observables and (b) susceptibility χ as a function of temperature.
The values of εb/EF ≈ −0.1 for all cases.

This provides a route to obtain large Kondo temperatures as
TK ∼ λ4/3. Also note that the physics of the fractional local
moment formation in this system is very different from that
noted in Ref. [29] which occurs in a s-d system that has a
ferromagnetic coupling to the bath.

Finally, why is Z numerically equal to 2
3 ? What controls

this? Can it be tuned? We show that Z is entirely determined
by the exponent that characterizes the infrared divergence of
the density of states, independent of details such as spatial
dimensions. For a system with

ρ(ω) = 1

π2

(√
2ω + λ√

2

ωr

λ2r

)
, (6)

we show (see SM) that Z(r) = 1
1−r

. We have performed QMC
calculations with the impurity hybridizing to a bath with the
given DOS in Eq. (6), and indeed find the anticipated fractional

local moments [see Fig. 4(a)]. We further see [Fig. 4(b)]
that there are two distinct intermediate temperature regimes,
TK � T � |εb|, which is the “fractional local moment regime”
with T χ ≈ Z(r), and the asymmetric local moment regime
between |εb| � T � U , where T χ ≈ 2

3 . Interestingly, for the
3D RSOC, the susceptibility alone cannot discern these two.

This system can be realized in a cold atom setting by
combining approaches described in Ref. [30] for the 3D RSOC,
and [31] for the impurity (see also Refs. [32–34]). Signatures
of the fractional local moment formation can be probed using
radio-frequency (rf) spectroscopy [35] on the impurity. A finite
concentration of well-separated quantum impurities would
show a well-separated peak in the rf spectrum of ↑ spin,
proportional to the concentration and the weight Z. The bath
states make up a fraction of (1 − Z) ∼ 1

3 of the bound state,
with an equal quantum mechanical admixture of ↑ and ↓ states
of the bath. If the rf spectrum of the bath atoms is probed, this
will again result in a well-separated peak (at the bound state
energy) ∝ (1 − Z). A combination of these two measurements
can provide evidence for the physics discussed here.

Analogous physics applies to the 2D system with RSOC
which has a similar infrared divergence of ρ(ω) (∼ 1√

ω
). Such

2D systems with strong spin-orbit coupling have been realized
in interfaces [4,36] and surfaces [37] where the RSOC scale is
comparable to the Fermi energy. It will be interesting to explore
ways to realize the physics of the fractional local moments in
these systems as well.
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