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Dimerization transitions in spin-1 chains
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We study spontaneous dimerization transitions in a Heisenberg spin-1 chain with additional next-nearest-
neighbor and three-site interactions using extensive numerical simulations and a conformal field-theory analysis.
We show that the transition can be second order in the Wess-Zumino-Witten (WZW) SU(2)2 or Ising universality
class, or first order. We argue that these features are generic because of a marginal operator in the WZW SU(2)2

model and because of two topologically distinct nondimerized phases with or without edge states. We also
provide explicit numerical evidence of conformal towers of singlets inside the spin gap at the Ising transition.
Implications for other models are briefly discussed.
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Topological matter is currently attracting a lot of attention.
One of the first examples is the spin-1 Heisenberg chain,
which has a bulk gap [1] but spin-1/2 edge states [2,3]. Spin-1
chains with more general interactions have been extensively
studied over the years, and they have in particular been shown
to undergo a spontaneous dimerization in the presence of
a negative biquadratic interaction at an integrable critical
point [4,5]. The universality class of this critical point is
SU(2)2 Wess-Zumino-Witten (WZW) with central charge
c = 3/2 [6–8]. It has been identified in other models exhibiting
spontaneous dimerization [9], and it is usually considered to
describe the generic behavior of spin-1 chains at the transition
to a spontaneously dimerized phase.

In this Rapid Communication, we identify two other generic
possibilities, Ising and first order, and we show that these
alternatives are natural consequences of general properties:
(i) the presence of topological and nontopological phases with
and without edge states, respectively, and (ii) the existence
of a marginal operator in the WZW SU(2)2 model. We also
show that combining density-matrix renormalization group
(DMRG) [10–13] simulations with conformal field-theory
(CFT) predictions for open systems gives access to the
conformal towers of the critical lines, including that of singlets
inside the spin gap on the Ising line.

We consider the spin-1 chain Hamiltonian,

H =
∑

i

(J1Si · Si+1 + J2Si−1 · Si+1)

+
∑

i

J3[(Si−1 · Si)(Si · Si+1) + H.c.]. (1)

On top of the standard Heisenberg coupling J1, it includes
two of the three interactions that appear in next-to-leading
order in the strong-coupling expansion of the two-band
Hubbard model: the next-nearest-neighbor (NNN) interaction
J2 and a three-site interaction with coupling strength J3. The
biquadratic interaction (Si · Si+1)2 has been omitted for sim-
plicity. We set J1 = 1 throughout the Rapid Communication
and concentrate on the case of J2,J3 � 0.

Let us first summarize the main results obtained using
extensive DMRG simulations and exact diagonalizations. The
phase diagram as a function of J2 and J3 consists of three
phases, each of which may be schematically illustrated by a

diagram with lines indicating valence-bond singlets formed
between pairs of sites (see Fig. 1): a Haldane phase with one
valence bond per J1 bond, a NNN-Haldane phase with one
valence bond per J2 bond, and a dimerized phase with two
valence bonds on every other J1 bond. The characterization of
the short-range correlations (including disorder and Lifshitz
lines) will be reported elsewhere [14].

The transition between the Haldane and the NNN-Haldane
phase is always first order (the energy per site has a kink),
in agreement with previous results for J3 = 0 [15]. It is
topological: The two phases cannot be distinguished by any
local order parameter, but the Haldane phase is topological
(supports gapless edge states), whereas the NNN-Haldane
phase is not (see sketches in Fig. 1).

For small J2, the transition between the Haldane and the
dimerized phases is in the SU(2)2 WZW universality class with
central charge c = 3/2 from J2 = 0, J3 � 0.111 [9] up to (and
including at) a critical end point beyond which the transition
becomes first order (see below). There is actually a simple
argument in favor of a first-order transition in this parameter

FIG. 1. Phase diagram of the spin-1 chain with next-nearest-
neighbor coupling J2 and three-site interaction J3. The transition from
the dimerized phase to the Haldane phase is continuous along the solid
line with central charge c = 3/2 and first order along the dashed line.
The transition from the NNN-Haldane phase to the dimerized phase
is a continuous transition in the Ising universality class with central
charge c = 1/2. The transition between the Haldane phase and the
NNN-Haldane phase is always first order.
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FIG. 2. Ground-state and excitation energies at J2 = 0.7 and J3 =
0.058 on the Ising line. (a) Linear scaling of the ground-state energy
per site in an open chain with 1/N2 after subtracting ε0 and ε1 terms.
(b) Linear scaling of the ground-state energy per site with 1/N2 in a
periodic chain. (c) and (d) Energy gaps in singlet and triplet sectors
for OBC as a function of 1/N for even and odd numbers of sites. The
slope of the singlet gap gives values of the velocity. Inset: conformal
towers. Gray lines show Ising conformal towers for I (N even) and ε

(N odd); blue symbols are DMRG data.

range: The fully dimerized state is an exact ground state
at J2 = 0, J3 = 1/6 [9], and it remains an exact eigenstate
along the line J2 + 3J3 = 1/2 [16], but it is not a ground
state at J2 = 1/2, J3 = 0. So a first-order transition where
the dimerization disappears abruptly has to take place. This
first-order line connects smoothly at an unusual triple point
with the first-order transition between the Haldane and the
NNN-Haldane phases [14].

Finally, the transition between the NNN-Haldane and
dimerized phases is in the Ising universality class. As shown in
Fig. 2, singlet excitations become critical and build a conformal
tower whereas the magnetic excitations remain gapped at
the transition. Note that we have reached similar conclusions
regarding the phase transitions for the spin-1 chain with NNN
and biquadratic interactions [14] in partial disagreement with
Pixley et al. [17], who in particular reached the conclusion that
the transition between the NNN-Haldane and the dimerized
phase is first order.

This phase diagram and the nature of the various transitions
can be understood using CFT techniques. We begin near the
SU(2)2 critical point where the low-energy degrees of freedom
of the spin chain can be written in terms of an SU(2) matrix

field g(x,t). The staggered component of the spin operators
becomes �Sj ∝ (−1)j tr �σg(j ), and the dimerization operator
becomes �Sj · �Sj+1 ∝ (−1)j tr g(j ). The low-energy effective
Hamiltonian is that of the SU(2)2 WZW model together with
one relevant and one marginal operator,

H = HWZW + λ1(tr g)2 + λ2 �JR · �JL, (2)

where �JL/R are the left (right) moving spin currents. The rel-
evant coupling constant λ1 controls the Haldane to dimerized
transition. When λ1 < 0, 〈tr g〉 becomes nonzero correspond-
ing to dimerization [8]. When λ1 > 0, 〈tr g〉 = 0 corresponds
to the Haldane phase. The marginal coupling constant λ2

renormalizes to zero if it is initially negative. In this regime
the Haldane to dimerized transition is second order with the
WZW model occurring along the critical line with logarithmic
corrections to scaling. These logarithmic corrections vanish at
the end of the critical line, where λ2 = 0 [18]. When λ2 > 0 it
renormalizes to large values.

To understand the full phase diagram, it is very useful to
use a conformal embedding (also called a coset construction),
an exact representation of the SU(2)2 WZW model as a direct
product of a free boson and an Ising model [19]. All operators
in the WZW model can be represented as products of free
boson and Ising operators. In particular (see the Supplemental
Material [20]),

tr g ∝ σ sin
√

πθ, (tr g)2 ∝ ε − C1 cos
√

4πθ,

�JL · �JR ∝ ε cos
√

4πθ + C2∂xφL∂xφR (3)

for constants C1 (> 0) and C2. To see how λ1 induces the
Haldane to dimerized transition, note that a positive λ1 pins
θ at 0 whereas a negative λ1 pins it at ±√

π/2, leading to
〈sin

√
πθ〉 �= 0. At the same time, a positive coefficient of ε in

the Ising Hamiltonian corresponds to the disordered phase
whereas a negative coefficient corresponds to the ordered
phase with 〈σ 〉 �= 0. Thus we obtain, from Eq. (3), 〈tr g〉 �= 0
for λ1 < 0. Remarkably, in this representation of the WZW
model, a second-order transition occurs simultaneously in
Ising and boson sectors. The first-order transition for λ2 > 0
can be understood intuitively in this representation. A large
positive λ2 favors states with 〈ε〉〈cos

√
4πθ〉 < 0. There are

then two degenerate gapped states with 〈ε〉 < 0, θ pinned at
0 corresponding to the Haldane phase or 〈ε〉 > 0, θ pinned at
±√

π/2 corresponding to the dimerized phase. Turning on λ1

splits the degeneracy, leading to a first-order transition.
So far, we have focused on the vicinity of the WZW critical

point. Let us now consider what may happen as we move
far from it along the first-order transition line. It is now no
longer permissible to only consider the couplings which are
relevant at the critical point so the Ising and boson transitions
could occur at different places in the phase diagram. For
instance, a λ3 cos 3

√
4πθ term would favor either 〈θ〉 = 0

or 〈θ〉 = ±√
π/2 depending on its sign. If λ3 changed sign

along a line in the phase diagram the transition could occur in
the boson sector without occurring simultaneously in the Ising
sector. This phase with 〈θ〉 = ±√

π/2, 〈σ 〉 = 0 corresponds
to the NNN-Haldane phase. This can be seen from the presence
of gapless S = 1/2 edge excitations when 〈θ〉 = 0 but not
when 〈θ〉 = ±√

π/2. An open boundary favors a dimer ending
at the last site. Hence 〈tr g(x)〉 becomes nonzero near the
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boundary. Thus 〈θ (x)〉 takes the value of ±√
π/2 at an open

end (see the Supplemental Material [20]), and 〈σ (x)〉 becomes
nonzero. However, 〈θ (x)〉 = 0 far from the boundary in the
Haldane phase. This rotation of θ (x) corresponds to an induced
magnetization,

∑
j

Sz
j =

∫ ∞

0
dx(dθ/dx)/

√
π = ±1/2, (4)

near an open boundary at x = 0 in the Haldane phase. By
contrast, there is no induced magnetization in the NNN-
Haldane phase since 〈θ (x)〉 = ±√

π/2 in the bulk, so it does
not rotate at the boundary. So this phase has no gapless edge
modes but also has no dimerization since 〈σ 〉 = 0. Thus,
we may identify it with the NNN-Haldane phase. We now
see that a third transition can also take place in which θ

remains pinned at ±√
π/2 whereas the sign of the ε term

in the Hamiltonian changes. This corresponds to an Ising
transition from NNN-Haldane to dimerized phases. The gap
in the boson sector, at this transition, implies a gap for all
magnetic excitations see the Supplemental Material [20]).

Let us now use CFT to extract more precise information
about the phase diagram beginning with the Ising transition.
As discussed above, an open boundary condition (OBC) favors
dimerization, corresponding to a nonzero boundary magnetic
field in the Ising model. It then follows from boundary CFT
that the magnetization at the critical point decays away from
the boundary as [21] 〈σ (x)〉 ∝ 1/x1/8 since 1/8 is the scaling
dimension of σ . For a finite system of N sites, a conformal
transformation gives 〈σ (x)〉 ∝ 1/[(N/π ) sin(πx/N )]1/8. On a
finite chain, we define the local dimerization as D(j,N ) =
|〈�Sj · �Sj+1〉 − 〈�Sj−1 · �Sj 〉|. Identifying the local dimerization
with σ , this leads to D(j,N ) ∝ 1/[N sin(πj/N )]1/8 and in
particular to D(N/2,N ) ∝ 1/N1/8. Plotting D(N/2,N ) versus
N on a log-log plot, we determine the Ising critical line by the
points where this curve is linear. We find the slope is close
to 1/8 along the entire Ising critical line. An example of data
on a line crossing the Ising critical line is shown in Fig. 3(a).
Along the critical line we also find a good fit of D(j,N ) to
1/[N sin(πj/N )]1/8 as shown in Fig. 3(b).

CFT predicts that all excitation energies, for any con-
formally invariant boundary conditions, are of the form
(πv/N)xn where v is the velocity and the dimensionless
numbers xn are universal scaling dimensions of operators
[22]. Furthermore, the ground-state energy contains a universal
term −πvc/(24N ) for OBCs and −πvc/(6N ) for periodic
boundary conditions (PBCs) where c is the central charge.
We identify OBCs with ↑,↑ boundary conditions in the Ising
model for N even and ↑,↓ boundary conditions for N odd
where the arrows refer to the directions of the boundary
magnetic fields. This follows because OBCs favor the same
sign of the dimerization at both ends of the system for N

even but opposite signs for N odd. Similarly we identify
PBCs on the spin chain with PBCs on the Ising model for
N even but antiperiodic boundary conditions on the Ising
model for N odd. We have calculated the ground-state energies
in all four cases and the lowest four excited-state energies
for OBCs and both parities of N ; see Fig. 2. Note that, in
stark contrast to the singlet sector, the singlet-triplet gaps in
Figs. 2(c) and 2(d) go to nonzero values at 1/N → 0. These

(a) (b)

(c) (d)

FIG. 3. (a) Log-log plot of the midchain dimerization as a
function of the number of sites N for J2 = 0.7 and different values
of J3. The linear curve corresponds to the Ising critical point and
the slope to the critical exponent. This leads to J3c = 0.058 and to
a slope of 0.129, in good agreement with the prediction 1/8 for
Ising. (b) Site dependence of D(j,N ) at the critical point fitted to
1/[N sin(πj/N )]d . This determines an exponent d = 0.128, again
close to the Ising prediction of 1/8. (c) Apparent critical exponent
along the SU(2)2 critical line as a function of J2. Black solid circles:
from the slope of the log-log plot D(N/2,N ) as a function of N

for the value of J3 for which it is linear. Open color circles: from
fitting D(j,N ) for different sizes at the same points. The dashed line
is the theoretical value of the exponent 3/8. The inset: central charge
along the critical line as determined from fitting the entanglement
entropy of periodic chains with the Calabrese-Cardy formula [23].
(d) D(j,N ) at the SU(2)2 critical end point fitted to
1/[N sin(πj/N )]d . The exponent is in good agreement with d = 3/8.

data on singlet energies determine ten xn parameters. The nine
parameters extracted from OBCs all agree to within 5% with
the CFT predictions for the Ising model (see Table I in the
Supplemental Material [20]). The agreement is not as good
for PBCs because the sizes accessible to DMRG are much
smaller. We plot the excited-state energies in the upper panels
of Figs. 2(c) and 2(d). The expected conformal tower structure
of excited states is clearly revealed (see the Supplemental
Material [20]). Note that the extraction of the central charge
from the entanglement entropy for PBCs and OBCs using the
Calabrese-Cardy formula [23] is tricky because of the presence
of strong oscillations (see the Supplemental Material [20]), but
the results are also consistent with c = 1/2.

As stated above, the end point of the WZW SU(2)2 is
characterized by the absence of logarithmic corrections. So this
is the only point along the line where the critical exponents can
be accurately extracted from finite sizes. For the SU(2)2 model,
CFT predicts D(j,N ) ∝ 1/[(N/π ) sin(πx/N )]3/8. The appar-
ent exponent decreases from �0.43 for J2 = 0 until it reaches
3/8 at J2 � 0.12 [see Fig. 3(c)]. As a confirmation, we have
also extracted the conformal towers at that point for OBCs with
N even or odd, and they fit well to the WZW SU(2)2 prediction
(see the Supplemental Material [20]). Along the critical line,
the central charge remains equal to 3/2, including at the end
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(a)

(b)

(c)

FIG. 4. Sketch of domain walls between (a) the Haldane and the
dimerized phases, (b) the Haldane and the NNN-Haldane phases, and
(c) the NNN-Haldane and the dimerized phases. A spin-1/2 appears
at the domain wall in the first two cases but not in the third one.

point. The fact that it only drops around J2 = 0.2 is presumably
a finite-size effect: Since the gap is due to a marginal operator,
it increases exponentially slowly above J2 = 0.12 and cannot
be seen on small systems.

To summarize, the spontaneous dimerization transition in
spin-1 chains can be WZW SU(2)2, Ising, or first order
depending on the parameters. What is the rationale behind
this unexpectedly rich situation? The first observation is
that the WZW SU(2)2 model has a marginal operator, and
in such a situation, the transition can be expected to turn
first order if its coupling constant changes sign. Regarding
the alternative between Ising and WZW SU(2)2’s, if the
transition is continuous, we would like to suggest that it is
intimately related to the nature of the domain walls between
the phases (see Fig. 4). A domain wall between Haldane
and dimerized phases necessarily carries spin-1/2 because the
Haldane phase is topological and has edge states, leading to
a transition with magnetic excitations (WZW SU(2)2 if it is
continuous), whereas a domain wall between NNN-Haldane
and dimerized phases does not because the NNN-Haldane
phase is topologically trivial with no edge states, leading to
an Ising transition in the singlet sector with gapped magnetic
excitations. These observations are consistent with the field-
theory approach. At a domain wall between Haldane and
dimerized phases θ (x) rotates by ±√

π/2, corresponding to

Sz = ±1/2 excitations, whereas at a domain wall between
NNN-Haldane and dimerized phases, θ does not rotate.

The alternative between Ising and SU(2)2 universality
classes has been first pointed out by Nersesyan and Tsvelik
[24] and Shelton et al. [25] in the related context of spin-1/2
ladders with four-spin interactions using a Majorana fermion
representation of the field theory. Calculations on specific
models with ring-exchange or frustrated leg coupling have
supported this prediction [26–38]. In that respect, the main
difference with our model is that, in the model of Nersesyan
and Tsvelik [24] and Shelton et al. [25], one goes from Ising
to SU(2)2 through a trivial point of decoupled chains [36,38]
and central charge c = 2 with no indication of an end point of
the SU(2)2 line followed by a first-order transition, a generic
feature of our approach due to the presence of a marginal
operator.

Coming back to the role of edge states at the transition,
the result summarized in Fig. 4 can easily be extended to
ladders to explain the fundamental difference between Ising
and SU(2)2 universality classes: spontaneous dimerization
transitions between phases which are both topologically trivial
(rung singlet and columnar dimer) or nontrivial (Haldane
and staggered dimer) can be expected to be generically
Ising because edge states are absent or compensate each
other, whereas spontaneous dimerization transitions between a
topological and a nontopological phase (staggered dimer and
rung singlet or Haldane and columnar dimer) must include
magnetic excitations because of the edge states and can be
expected to be generically SU(2)2 or possibly first order
with spin-1/2 solitons. Similar ideas might be extended to
transitions between valence-bond solids and dimerized phases
in other contexts, possibly in higher dimensions.
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Foundation and by NSERC Discovery Grant No. 36318-2009
and CIFAR (I.A.).

[1] F. D. M. Haldane, Phys. Lett. A 93, 464 (1983).
[2] T. Kennedy, J. Phys.: Condens. Matter 2, 5737 (1990).
[3] M. Hagiwara, K. Katsumata, I. Affleck, B. I. Halperin, and J. P.

Renard, Phys. Rev. Lett. 65, 3181 (1990).
[4] H. M. Babujian, Nucl. Phys. B 215, 317 (1983).
[5] L. A. Takhtajan, Phys. Lett. A 87, 479 (1982).
[6] I. Affleck, Nucl. Phys. B 265, 409 (1986).
[7] I. Affleck, Phys. Rev. Lett. 56, 746 (1986).
[8] I. Affleck and F. D. M. Haldane, Phys. Rev. B 36, 5291 (1987).
[9] F. Michaud, F. Vernay, S. R. Manmana, and F. Mila, Phys. Rev.

Lett. 108, 127202 (2012).
[10] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
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[12] S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
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Phys. Rev. B 66, 180404 (2002).
[28] M. Müller, T. Vekua, and H.-J. Mikeska, Phys. Rev. B 66, 134423

(2002).
[29] K. Hijii and K. Nomura, Phys. Rev. B 65, 104413 (2002).
[30] K. Hijii, S. Qin, and K. Nomura, Phys. Rev. B 68, 134403 (2003).
[31] K. P. Schmidt, H. Monien, and G. S. Uhrig, Phys. Rev. B 67,

184413 (2003).
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