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Nonsymmetrized noise in a quantum dot: Interpretation in terms of energy transfer
and coherent superposition of scattering paths
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We calculate the nonsymmetrized current noise in a quantum dot connected to two reservoirs by using the
nonequilibrium Green function technique. We show that both the current autocorrelator (inside a single reservoir)
and the current cross-correlator (between the two reservoirs) are expressed in terms of transmission amplitude and
coefficient through the barriers. We identify the different energy-transfer processes involved in each contribution
to the autocorrelator, and we highlight the fact that when there are several physical processes, the contribution
results from a coherent superposition of scattering paths. Varying the gate and bias voltages, we discuss the
profile of the differential Fano factor in light of recent experiments, and we identify the conditions for having a
distinct value for the autocorrelator in the left and right reservoirs.
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I. INTRODUCTION

Since the beginning of the 2000s, it has been known that to
characterize finite-frequency current fluctuations in quantum
conductors, one has to measure and calculate the nonsym-
metrized noise, which corresponds to the emission noise at
positive frequency and to the absorption noise at negative
frequency [1,2]. This is related to the fact that the current
operators do not commute for quantum systems [3,4]. In taking
the symmetrized noise, one mixes the emission and absorption
parts, and the relevant information is lost. Despite the growing
interest in nonsymmetrized finite-frequency (NSFF) noise in
quantum systems both experimentally [5—13] and theoretically
[14-29], there is no clear and direct interpretation of the
physical processes that contribute to the noise, even for
noninteracting systems. Here we show that it makes sense
to interpret each contribution to the NSFF autocorrelators
in terms of the energy-transfer process, following the ideas
developed by several authors. Indeed, it has been shown
that the frequency at which the NSFF noise is evaluated
corresponds to the energy provided or absorbed by the detector
[14] or by the electromagnetic environment, and that current
fluctuations produce radiation of photons/plasmons in a phase-
coherent conductor [30-42]. To address this issue from a
theoretical point of view, one can use either the scattering
theory [43—46] or the nonequilibrium Green function (NEGF)
technique [47,48]. Whereas the former method applies to non-
interacting systems, the latter can be extended to interacting
ones. However, the NEGF technique has been used so far only
for the calculation of symmetrized noise [49].

In this article, we present two methods to derive the noise
spectrum for a quantum dot (QD) connected to two reservoirs.
The first method is based on the NEGF technique and allows
us to express the NSFF autocorrelators and cross-correlators
in terms of the transmission amplitude and transmission
coefficient through the barriers. The second method is based
on a detailed analysis of all the different physical processes
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that contribute to the autocorrelators by emitting energy in
one reservoir, paying attention to considering the coherent
superposition of scattering paths when more than one process
is involved. The cross-correlators cannot be obtained within
the second method, but we check that for the autocorrelators
the two methods lead to the same expressions. We benchmark
our results with the known results existing in the literature in
some given limits, notably in the noninteracting limit when
the scattering theory can be used, and we discuss the charge
fluctuations in the QD.

The paper is organized as follows: in Sec. II, we present
the system, the model, and the details of the NSFF noise
calculation within the NEGF technique, and we discuss the
results. In Sec. III, we present a method for the determination
of the NSFF autocorrelators based on a careful analysis of the
various scattering processes that lead to energy transfer. For an
Anderson-type transmission amplitude, we identify in Sec. IV
the conditions to get distinct autocorrelators in the left and
right reservoirs, and we discuss the differential Fano factor
profile. We conclude in Sec. V.

II. NONSYMMETRIZED NOISE

We consider a QD connected to two reservoirs described
by the noninteracting single-level Anderson Hamiltonian
H = H; + Hg + Hr + Hp, where H, = ), _, ekc,tck is the
Hamiltonian of the left (@ = L) and right (0@ = R) reservoirs,
Hr =3 o /& Zkea(ch,Tcd + H.c.) is the transfer Hamilto-

nian, and Hp = £od'd is the Hamiltonian of the QD. c/(d')
and c(d) are the creation and annihilation operators of one
electron in the reservoirs (QD). The quantities &y, &, and Vj
are, respectively, the QD energy level, the energy of an electron
with momentum k in the reservoir, and the transfer-matrix
element between the corresponding states. The spin degree of
freedom can be included without any complication.
The objective is to calculate the NSFF noise defined as

Saﬂ(w) = foo Saﬁ(t’o)eiiwtdt, (1)

o0
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where Syp(2,0) = (AL, (AT, 4(0)) is the current correlator and
Al (1) = I(t) — (1), with I, the current operator from the
« reservoir to the central region through the « barrier given by

I, = (ei/h) D rea (ch,id - Vk*dfck), and ([,) is its average
value.

A. Noise calculation using the NEGF technique

Following Haug and Jauho [48], we first substitute the
expression of the current operator in the correlator and obtain
[50]

2
7 e cd,> ! * cda,> /
Suptt) =35 Y WiVeGi™™ (1) = ViVi Gy~ (1.r')
kea,k'ef
— VIV G (1)) 4+ VEVEGES (1,1)]
— (Ia) (), )

where Gfd’>(t,t’), with i = 1-4, are the greater components
of the two-particle Green functions mixing c; and d operators
defined as

Gi"” (1) = —(c{(d(D)el (1)), 3)
G5~ (1.t) = = (DA (e (), @
|
. e
Saﬂ(‘f,l',) = Saﬁsa(fvr/) + ﬁ Z

kea,k'ep
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G5 (1.1) = —(d (Der(t)e, (1)d (), &)

G (1,6 = —(d! (e (A (W )er (1)), (6)

We introduce Gfd(r,t/) with 7 > 7/, the contour-ordered

(along the Keldysh contour C [51] ) counterparts of Gfd' Z(t,1),
as well as Saﬁ(‘l,',‘(/), the contour-ordered counterpart of
Sup(t,t’). We then derive and solve the equations of motion
for Gl?'d(r,r’ ) in order to express them in terms of (i) the
contour-ordered one-particle Green function for the discon-
nected reservoirs defined as gi(t,7’) = —i(TCck(r)c,T{,(r’))o,
where T¢ is the contour-ordering operator, (ii) the contour-
ordered one-particle Green function for the QD connected
to the reservoirs, G(t,7') = —i(Ted(v)d (r)), and (iii) the
contour-ordered two-particle Green functions for the QD,
GEZ)(r,r’,rl ,T2), defined as

GP(r,7',11,1m) = —(Ted(D)d(t)d (1)d (), ()
G (r,7,11,1) = —(Ted(v)d (t)d(x)d (), (8)
GO, 7 11,1) = —(Ted'(0)d(t)d(r)d (1)), (9)

GO(r,7,11,m) = —(Ted (0)d (2)d(r)d(r)).  (10)

After a series of manipulations, we get

VAZE // drdo[—gu(t1,0)gr (2, TGP (r,7 11, 1) + g2, g (7', T1)

x G217, 11,1) — gi(T, 1) (12, 7)GY (7,7, 11, 12) — gu(T,1)ge (v, )G (1,7 11, 0)] — (L) (), (11)

where S,(1,7") = (¢?/h?) D kew |V’ [gr(/,T)G(1,7") + gi(t,7)G(',7)]. To go further, one needs to write and solve the
equation of motion for the two-particle Green functions for the QD, which is an ambitious task. However, for a noninteracting
system, the QD two-particle Green functions can be decouple into a product of two QD one-particle Green functions. We get

2

, ~ e
Sap(1,7) = bapSa(T.T) + o5 > ViViel? // dridn[—gi(t1,7)gr (12, 7)G(7,12)G (T, 71) + gi(T2, T)gw (7', T1)
kea,k’'ep
x G(1,7)G(11,12) + gi(1, 1) & (12, TG (', 1)G(11,12) — gi(T,71) 8k (T', 1) G(12,7)G (11, T)]. (12)

The different terms appearing on the right-hand side of Eq. (12)
correspond to the connected part of the noise (the last four
terms being the ones where the two integrals over 7; and 1,
are intertwined). The last term _<ia)(iﬂ) appearing on the
right-hand side of Eq. (11) is no longer present since it is
exactly canceled by the disconnected part of the noise (in
which the two integrals over t; and 7, can be done separately).

Next, we perform an analytical continuation of Eq. (12), we
substitute the one-particle Green functions for the reservoirs
and the QD by their expressions given in Ref. [48], and
we make a Fourier transform, assuming that all the Green
functions are time-translation-invariant (see Appendix A for
the details of the calculations). Moreover, the coupling strength
between the QD and the reservoirs, Iy () = 27| Vi (€)|? 0u(€),
with p,(e) the density of states in the reservoir o and
Vu(€) = Vieq, is assumed to be energy-independent (exact
in the wide-band limit). In addition, we consider symmetric
coupling [52],ie., ', =T =T.

[
B. Results and discussion

Within these assumptions, we obtain the following expres-
sion for the NSFF noise:

2 00
Sp@ =5 Y [ dempeorsele - o). a3
ys v

where f; (&) is the Fermi-Dirac distribution function, fah (&) =

1 — f5(e), and where the matrix elements M ;/ g (¢,w) are listed
in Table I. They are expressed in terms of the transmission
amplitude ¢(¢) = i['G" (¢), with G"(¢) the QD retarded Green
function, and of the transmission coefficient 7 (g) = r(&)t*(g)
through the barriers. The NSFF noise is composed of four
contributions, each of which is given by the integral over
the energy e of the matrix elements Mgg(s,w) weighted
by the product of the electron distribution function f7(¢)
and the hole distribution function fﬁh(s — hw). When o = 8,
Eq. (13) gives the expressions of the NSFF autocorrelators
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TABLE 1. Expressions of the matrix elements Mé’ff (e,w) appearing in Eq. (13).

Ml (e.0) y=8=1L y=8=R y=L =R y=RS8=1L
a=1L T(e)T (¢ — hw) T(e)T (¢ — hw) T (e — hw)[l — T ()] Tl —T(e — hw)]
B=L +t(e) — t(e — hw)|?

oa=R T(e)T (¢ — hw) T(e)T (¢ — hw) T —T(e — hw)] T (e — hw)[1 — T (e)]
B=R +t(e) — t(e — hw)|?

a=1L t(e)t*(e — hw) t*(e)t(e — hw) t(e)t(e — hw)[1 —t*(e)]  t*(e)t*(e — hw)[1 — t(e)]
B =R <{[1 — %[ — t(e — )] — 1} x{[1 — t(&)][1 — t*(¢ — hw)] — 1} x[1 — t*(e — hw)] x[1 — t(e — liw)]

o =R t*(e)t(e — hw) t(e)t*(e — hw) t*(e)t*(e — hw)[1 — t(e)] t(e)t(e — hw)[1 — t*(e)]
B=L <{[1 =t — t*(c — hw)] — 1} x{[1 — £*(e)[1 — £(e — hw)] — 1} x[1 — t(e — hw)] X[l — t*(¢ — hw)]

Spi(w) and Sgr(w); when o # B, it gives the expressions
for the NSFF cross-correlators Spr(w) and Sgy(w). The
calculations presented here apply for a noninteracting QD.
However, Eq. (13) holds even in the presence of Coulomb
interactions in the QD provided that the QD two-particle
Green function can be decoupled into a product of two QD
one-particle Green functions, as discussed above (equivalent
to neglecting the vertex corrections). The effects of the
interactions will then be entirely contained in the transmission
amplitude #(¢) and the coefficient 7 (g).

Since Syp(w) = S/}‘a (), the sum of Sgg(w) over the indexes
a, B of the two reservoirs is a real quantity equal to

2
> Saple) = = /
op

oo

delt(e — hw) — ()|

x Y fue)fl (e — ho). (14)
yé

The above double sum is related to the charge fluctuations
[21,44,53] in the QD as shown in Appendix B. Indeed,
for an Anderson-type transmission amplitude, i.e., 7(g) =
il'/(e — &y +il"), Eq. (14) leads to Zaﬂ Sup(w) = szQ(a)),
with Sq(@) = [ dt e7 " (AQ()AQ(0)) the noise associated
with the fluctuations of the charge O =ed'd in the QD.
At zero-frequency or for an energy-independent transmission
amplitude, Zaﬁ Sup(w) vanishes. This sum is nonzero only
when ?(¢) acquires energy dependence, as is the case, for
example, when the system is coupled to an electromagnetic
environment [54].

It is important to stress that our result for Sy ; (w) differs
from the expression of the NSFF noise given in Ref. [46] in
which the term |£(g) — t(e — Fiw)|? is absent. However, when
we symmetrize Eq. (13) with respect to the frequency, we get
an expression that coincides exactly with the result obtained by
Biittiker using scattering theory [43] in which the emblematic
term |t(g) — t(e — hw)|* is also present. Moreover, at zero
temperature our result coincides with the expressions obtained
by Hammer and Belzig in Ref. [24], and at equilibrium the
fluctuation-dissipation theorem holds since we get S(w) =
2hwN ()G (w), with N(w) the Bose-Einstein distribution
function and G(w) the ac conductance (the reservoir indexes
can be removed in that limit). This confirms the validity of our
calculations. We have also checked that by using scattering
theory (noninteracting limit), we get an expression for the
NSFF noise in terms of the matrix elements M ;’ " (¢,w) identical
to that obtained in Eq. (13) using the NEGF technique.

III. COHERENT SUPERPOSITION
OF SCATTERING PATHS

Let us now proceed to the second method that we develop to
calculate the NSFF autocorrelators, i.e., Sy 7 (w) and Sgg(w),
which correspond at positive frequency to the emission noises
in the left and right reservoir, respectively [1,2]. It consists in
identifying the physical processes involved in the generation
of current noises. For this, one must go back to the definition
of the noise given above, stating that it is the Fourier transform
of a two-particle correlator, say, for instance, Sy, (¢,0) =
(AT (t)AI.(0)) for the autocorrelator in the left reservoir.
From this and due to charge and energy conservation, one can
see that Sy (w) corresponds to the transition probability from
an initial state formed by creating a pair of one electron with
energy ¢ and one hole with energy ¢ — fw in either the left or
the right reservoir, to a final state where the electron-hole pair
is located in the left reservoir and then recombines emitting
energy hw on the left reservoir side. Figure 1 illustrates all
the possible processes along which the system transits from
such an initial state to that final state. Note that in order to
contribute to the noise, the physical process must allow either
the electron or the hole of the electron-hole pair to experience
an excursion into the QD.

We first discuss the contributions to S; ; (w) when one starts
from an initial state with an electron-hole pair located in the left
reservoir, i.e., proportional to f7(g) th(a — hw). In this case,
there exist three distinct processes allowing the electron or the
hole to experience an excursion into the QD: in the first process,
illustrated in Fig. 1(a;), the hole of the initial electron-hole
pair is reflected by the left barrier while its electron partner
moves back and forth between the left reservoir and the QD
before emitting energy hiw by recombining with its hole partner
in the left reservoir. The corresponding transition probability
amplitude is 71 (¢,w) = t(e)r*(¢ — hw). In the second process,
illustrated in Fig. 1(ay), the hole of the electron-hole pair
moves back and forth between the left reservoir and the QD
while its electron partner is reflected by the left barrier before
emitting energy /iw by recombining with the hole present in the
left reservoir. Its amplitude reads t(g,w) = r(e)t*(e¢ — hw).
Finally in the third process, illustrated in Fig. 1(a3), both the
hole and the electron of the electron-hole pair move back and
forth between the left reservoir and the QD before emitting
energy hw by recombining together. Its amplitude is f3(¢,w) =
t(e)t*(e — hw). These three processes lead to the follow-
ing contribution to the noise: |t;(g,w) + f(e,w) + t3(8,a))|2
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FIG. 1. Illustration of the processes that contribute to Sy, (w)
with the transfer of energy hw (yellow wavy line) in the left reservoir.
The green (blue) circle represents an electron (hole) with energy e
(¢ — hw). The solid (dashed) red arrow line represents a transmission
process with probability amplitude #(¢) [t*(¢ — hw)]. The solid
(dashed) black arrow line represents a reflection process with
probability amplitude r(¢) [r*(¢ — hw)]. The coherent superposition
of processes (a;), (ay), and (a3) leads to the M LLLL (¢,w) contribution,
process (b) to the M} (e, ) contribution, process (c) to the M} X (¢,w)
contribution, and process (d) to the M RE(e,w) contribution.

corresponding to the coherent superposition of the three
transmission processes in question. The amplitudes rather than
the probabilities have to be summed over the different pro-
cesses since the wave function of the system is antisymmetric
under exchange of particles due to the Pauli principle. As a
result, the processes in which electrons or holes are either
transmitted or reflected are not distinguishable [16,44]. We
have checked that |¢;(g,w) + t(g,0) + t3(¢,w)|? is identical
to MEE(e,w) = T(e)T (¢ — hw) + |t(e) — t(e — hw)|* using
the relations r(¢) = 1 — #(¢) and t(g) + t*(g) = 27 (¢). These
latter two relations hold for the noninteracting single-impurity
model with symmetric barriers. The former relation arises from
the matrix relation S(¢) = 1 — 7(¢) connecting the S and the
scattering matrices, whereas the latter relation corresponds
to the generalized optical theorem [55] resulting from the
unitarity property of the S matrix—holding when only elastic
scattering of electrons occurs, as is the case here—providing
that the former relation is satisfied.

The physical processes involved in the three other contri-
butions to the noise Sy ; (w) can be identified in the same way.
For the contribution proportional to f¢(¢) f 1’-‘} (¢ — hw), one has
to start from an initial state in which both the electron and
the hole of the pair are in the right reservoir. There is a single
process as illustrated in Fig. 1(b). Both the electron and the
hole have to move across the entire structure from the right to
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the left reservoir through the QD before recombining to emit
energy hw in the left reservoir. The latter process leads to the
following contribution to the noise: |#(&)t*(¢ — hw)|?, which is
identical to MXR(e,w) = T ()7 (¢ — hw). The same analysis
can be carried out for the last two contributions proportional
to fi(e)fi(e —hw) and fi(e)fi(e — hw) leading to the
identification of processes (c) and (d) of Fig. 1 and to the
expressions of Mff(e,w) and MLRLL(E,a)).

Note that these processes describe the contributions to
Sy (w) up to any order in the coupling strength I'. In the
weak-coupling limit, the processes (a;), (az), (c), and (d)
are of order I'?, whereas the processes (a3) and (b) are of
order I'*. Similar physical processes can be found to explain
the contributions to Sgg(w). It is not possible, however, to
find such a simple picture for the NSFF cross-correlators
Srr(w) and Sgp(w) since they are not real, and thus they
are nonobservable quantities [14].

IV. OUT-OF-EQUILIBRIUM NOISE SPECTRUM
AND FANO FACTOR

To illustrate our results, we use the following exact form
for the dot electron Green function in the noninteracting
Anderson single-impurity model, G"(¢) = (¢ — &9 + il
This expression leads to a Lorentzian-type expression for the
transmission amplitude #(¢) =il'/(e — gy + iT"), where we
recall that I" is the coupling strength between the QD and the
reservoirs and &g is the QD energy level. The autocorrelator
and the cross-correlator spectrum, as well as the Fano factor
defined as the ratio between the zero-frequency noise and the
current, are quantities that are well discussed in the literature
[14,21,24]. Here, we choose to focus on the following features:
the conditions to observe distinct autocorrelators in the left and
right reservoirs, and the profile of the differential Fano factor.

A. NSFF noise in left and right reservoirs

From Table I, we see that the expressions for the autocorre-
lators in the left and right reservoirs are distinct. For example,
in the zero-temperature limit and at positive frequency and
positive bias voltage, the autocorrelators are given by

2 153
Sii(w) = & de T(s — o)1 — T(e)], (15)
h nwr+ho
and
e2 123
Srr(@) = — deT(e)[l —T(e — hw)], (16)
h nr+ho

which are nonequal when the frequency is nonzero and
when the transmission coefficient is energy-dependent. Such
a difference between the left and right autocorrelators is also
reported in Refs. [28,39]. Its origin is the distinct energy of the
carriers contributing to Sy 1 (w) or to Sgg(w) when transferred
through the junction (¢ — hw versus ¢). There is an additional
condition that appears when one plots the noise spectrum: the
potential profile through the junction has to be nonsymmetric
in the sense that the dot energy should not stand in the middle of
the potential barrier, i.e., &g # (. + r)/2. Indeed, in Fig. 2
(in which we take gy = 0) we see that when u; + ug # 0,
the autocorrelators in the left and right reservoirs are different
(compare orange, red, and purple lines) and that it is only when
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FIG. 2. Autocorrelators in units of e2I" /A in (a) the left reservoir
and (b) the right reservoir at kzT/eV = 0.01, I'/eV = 0.02, and
g0 =0 for {u;, = eV,ug = 0} (orange lines), {u; = 0.8 eV,ug =
—0.2 eV} (red lines), {u, = 0.6 eV,ugr = —0.4 eV} (purple lines),
and {iu; = 0.5eV, urp = —0.5 eV} (black lines).

ur + png =0 that these two quantities coincide (compare
black lines). Thus, Sy (w) differs from Sgg(w) provided that
the following three conditions are fulfilled: nonzero frequency,
energy-dependent transmission, and nonsymmetric potential
profile.

As expected in the zero-temperature limit, the emission
noises Sy (w) and Sggr(w) (at positive frequency) drop to
zero for frequency higher than voltage: the system cannot
supply energy larger than the energy provided to it (here
the voltage). The absorption noise (at negative frequency)
has no such limitation. We observe that for hw < —eV,
Spr(w) and Sgr(w) converge to the same value (equal to
¢’T"/h), even when the above conditions meet. Finally, S; ; (w)
and Sggr(w) differ from each other in the interval fiw €
[—eV,0[ U ]0,eV]provided that 7 (¢) is energy-dependent and
&0 # (Ur + Kr)/2. In any other situations, the autocorrelators
in the left and right reservoirs coincide.

B. Differential Fano factor

The differential Fano factor was introduced in re-
cent experimental works [10] and defined as F(Vs,w) =
|[dSLL/dV]VS/[ed(iL)/dV]Vs_ﬁw/e|. It corresponds to the
ratio of the derivative of the noise with bias voltage at V = Vj
to the differential conductance at V = Vg — hw/e, where w
is the frequency at which the noise is measured. We plot
F(Vs,w) in Fig. 3 as a function of gate energy &; and bias
voltage Vy at two values of the frequency, fiw,;/T" = 0.1 and
hw,/T" = 1. In agreement with the fact that the system cannot

4
0.8 20
2
= ~ 5 15
-2 i 1.0
-4 L { M os
-4 -2 0 -’4’-’2“0’2’"4”'
() eo/F (b) /T 0

FIG. 3. Differential Fano factor F(Vs,w) as a function of gate
energy &g and bias voltage Vg (both normalizedby I")atks T/ T = 0.1
for two values of the frequency: (a) hw;/I" = 0.1 (low frequency)
and (b) Aw,/ ' = 1 (high frequency).
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emit energy larger than the supplied energy e Vs, we observe
that F(Vy,w) is strongly reduced for bias voltages Vg smaller
than the frequency in absolute value (see the black horizontal
band in both graphs of Fig. 3). At low frequency [Fig. 3(a)],
F(Vg,w) is always smaller than 1, meaning that the noise
is sub-Poissonian. At higher frequency [Fig. 3(b)], F(Vs,w)
takes values higher than 1 in some regions, meaning that the
noise is super-Poissonian with an upper limit for F(Vs,w)
equal to 2, in agreement with Ref. [24]. Such an increase
of F(Vs,w) with increasing frequency has been measured
in a carbon nanotube QD when placed in the Kondo regime
[10]. Even if the analysis carried out here is not intended to
describe the Kondo effect, it is worth noting that this increase
of F(Vy,w) with increasing frequency constitutes a general
trend. At both low and high frequencies, F(Vs,w) is reduced
in the bands surrounding the first bisectors, &g = +eVs/2inthe
case of a symmetric profile of the chemical potentials on either
sides of the QD, i.e., ;. g = £eVs/2. These bands correspond
to a maximal conductance with a transmission close to 1.
The results reported in the two graphs show similarities with
what has been observed experimentally in Ref. [10] with a
characteristic pattern composed of six areas of the nonzero
differential Fano factor separated by narrow bands in which
the differential Fano factor is strongly reduced. Experimentally
in the presence of the Kondo effect, the bands surrounding the
bisectors are no longer straight but become curved due to the
effect of the interactions.

V. CONCLUSION

In summary, we have derived the expression of the NSFF
noises in a single-level QD connected to reservoirs using the
NEGF technique. Both the auto- and cross-correlators are
expressed in terms of the transmission amplitude 7(e) and
coefficient 7 (¢). We have identified the physical processes at
the origin of the contributions to the autocorrelators. We have
shown that when the electron-hole pair is initially present in
the reservoir emitting the energy, the contributions to the noise
can be interpreted in terms of a coherent superposition of three
distinct processes. On the contrary, when the electron and/or
the hole of the pair is initially in the nonemitting reservoir,
only one type of physical process exists and contributes to
the noise. We have also shown that for a noninteracting
QD, the differential Fano factor as a function of gate and
bias voltages presents interesting features reminiscent of
the experimental measurements. The methods presented and
tested here could be extended to treat many situations involving
Coulomb interactions and other transmission amplitudes and
coefficients, such as multiple-channel systems, QDs with
multiple energy levels, or quantum point contacts embedded
in an electromagnetic environment.
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APPENDIX A: CURRENT NOISE
From Eq. (12), we have Syp(7,7) = Zle C‘%(r,r’) with

2
e /
Cop(0.7) = 35 D IVilPlgu(®' )G, T) + &u(r,T)G (T, 1), (A1)
kea
82 ! /
ey =55 2 WiVl [[ dundnGms e d)GE men.o. (A2)
kea,k’'ef
82 ,
Cop(r,7) = =) > leVk/IZ// dtidn,G(t,7)gr (v, 11)G(11,12) 8k (T2, T), (A3)
kea,k’'ef
62 / /
Cop(r.t) = 7 > IVka/IZ// dtidtogi(t,1)G (11, 12)8k (12, 7)G(T',7), (A4)
kea,k’'ep
62
== 3 vl [[ dndnatrnGm g w6, (A3)
kea,k'ep

Performing the analytical continuation [48] of the previous equations, we obtain Seg(t,t’) = Z?zl ng (t,t") with

2
!/ e <[4/ > / > / <[4/
Copt:1) = 35 D IViPIgl (' .0G™ (1.0) + 87 (1,)G (1,1, (A6)
kea
7 62 / / A A
Cop(t,") = —m > |Vkar|2/f dudt[G" (', 1)gg (11,1) + G=(¢,11)g (11, DG (1,12)gp (12.,17) + G (t,12) g (12,1)],
kea,k'ep
(A7)

62
Cear =5 Y PG ) [ [ dndnlg )G gt ) + gL )G gd )
kea k'ep

+ g5 (', 1)G (11, 12) 8¢ (12.1)] (AB)

62 ,
Cogt.t) = = > IViVelPG(n) // dndn[ g (1,11)G* (1, 1)gp (12,1") + 8;(1,1)G™ (11,12)g} (12,1

kea,k'ep
+ g1 (t,11)G" (t1,12)gp (12.1)], (A9)
ez / / /
Cot) = — > IVka/IZ// didn[g7 (t.1)G(11,1") + gp(1,1)G” (t1,1)][ g4 (' 1) G=(12.1') + g5 (1, 12)G“ (12,1)].
kea,k’'ep
(A10)

Considering the Fourier transform of the Green functions in the latter expressions in the case of a time-translation invariance
(steady state), we get Syp(w) = Zle Cé’;(a)) with

2 00
Cly(w) = % > |Vk|2/ delgr (€)G™ (& — hw) + g7 (¢ — hw)G=(&)18up, (Al1)

kea

62 o0 )
Cp@) == D IViViel’ f de[G' ()87 (e)G" (e — hav)gfi (e — haw) + G (e)gf ()G (¢ — hav)gl(e — hew)
kea,k'ep i

+G=(8)g;(e)G" (¢ — hw)g; (e — hw) + G=(e)gi(e)G™ (¢ — hw)gy (e — ha))], (A12)

2 00
Col(w) = % Z [V, Vi |2 f de[G™ (e — hw)gl(e)G' (£)gf (e) + G7 (e — hw)g} (8)G=(e)gf (¢)

kea,k'ep
+ G (¢ — hw)gg ()G (e)g(e)], (A13)
2 o0
Cop(@) = % A7 / de[G=(e)g7 (€ — hw)G (e — hw)g. (e — ho) + G=(e)gj(e — hw)G (e — hw)gl (e — hw)
kea,k'ep %
+ G=(e)gj(e — hw)G' (¢ — hw)gj (¢ — hw)], (A14)
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NONSYMMETRIZED NOISE IN A QUANTUM DOT: ...

2

C)(w) = —% 3

kea,k'ep

+G” (e — hw)gj (e — ho)G=(e)g}.(e) + G~ (¢ — hw)gi(e — hw)G(e)g (e)].

i)

PHYSICAL REVIEW B 93, 235449 (2016)

|VieViel? / de[G(e — hw)g] (6 — hw)G=(e)gu(e) + G*(¢ — hw)g] (e — hw)G(e)gfi (¢)

(A15)

In the expressions of each contribution Céﬂ (w) to the noise, we report the bar Green functions of the reservoir,

8rea(®) = 2imfi()8(e — 1),
Srea(€) = —2imf1(e)8(e — 1),
Sieo(e) = [e — & +i0T]71,

8ie(8) = [e —&r —i0F] 7,

(A16)
(A17)
(A18)

(A19)

where f¢(¢) is the Fermi-Dirac distribution function associated with the reservoir o, and f(¢) = 1 — f¢(¢). In the wide-band
approximation limit, where Iy (¢) = 2w p,(¢)| V(e)|*is independent of energy, we obtain the following expression for the NSFF

noise:
2

Sup(@) = %Fa&yﬂ /oo de[—ifl(e — hw)G=(e) + ifl(e)[G (¢ — hw) — G“(e — hw) + G~ (s — how)]]

2 00
+ %FaFﬂ / d8[G<(€)G>(8 — hw) — fj(e)fg‘(e — hw)G" (e)G" (¢ — hw) — f;(e)f;‘(e — hw)G(e)G% (¢ — hw)

+[fL(©)G (e) — f5()G“()]G™ (¢ — hw) + [ fi(e — hw)G“ (e — hw) — f4 (¢ — hw)G' (¢ — hw)|G=(#)].

For a noninteracting QD, we have [48]

G'(e) — G(e) = —iG" ()T + TrIG(e),

G=(e) =iG"(&)[TL f{(e) + Tr ()]G (o).

(A20)

(A21)

(A22)

Using il'G"(¢) = t(e) and G~ (¢) = G"(¢) — G%(¢) + G=(¢), and considering symmetrical barriers, 'y, = I'p =T, we get

G (e) — G(e) = —w (A23)
- it ., .
G=(e) = T[fL(e) + fr@®]. (A24)
G™(e) = —@[ﬁ’(e) + fr@®)]. (A25)

Incorporating the latter expressions into Eq. (A20), we get Eq. (13) with matrix elements M ;’g (¢,w) given in Table 1.

APPENDIX B: CHARGE NOISE

The charge noise is defined as the Fourier transform of the
charge fluctuations on the QD,

So(@) = / di e (AQWADO).  (BI)

where  AQ@) = 0()—(0), with Q@) =eN@t) =
ed'(t)d(t). Performing the decoupling of the QD two-particle
Green function, we get

(AQ()AQ(0)) = (d'(1)d(0))(d(1)d!(0)), (B2)

which leads to

So(w) = ¢* / dt e ' G=(0,1)G” (¢,0)

[ee]

2 00
- %/ de G=()G (¢ — hw). (B3)

[
Using Eqgs. (A24) and (A25) and introducing the transmission
amplitude ¢(¢) = i['G"(¢), we finally obtain

2

So(w) = % / de T(e)T (e — hw) Y f(e) fil(e — ho).

y$
(B4)

In the case of an Anderson-type transmission amplitude, 7(g) =
il'/(e — &y +il"), we have

2
lt(e) — t(e — hw))* = %T(s)?’(s — hw), (B5)

which leads when one compares Eq. (B4) to Eq. (14) to the
equality

D Sup(@) = 0 Sq(w). (B6)
af
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