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The impact of the electron-electron Coulomb interaction on the optical conductivity of graphene has led to a
controversy that calls into question the universality of collisionless transport in this and other Dirac materials.
Using a lattice calculation that avoids divergences present in previous nodal Dirac approaches, our work settles
this controversy and obtains results in quantitative agreement with experiment over a wide frequency range. We
also demonstrate that dimensional regularization methods agree, if the regularization of the theory in modified
dimensions is correctly implemented. Tight-binding lattice and nodal Dirac theory calculations are shown to
coincide at low energies even when the nonzero size of the atomic orbital wave function is included, conclusively
demonstrating the universality of the optical conductivity of graphene.
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I. INTRODUCTION

In graphene, numerous electronic properties with energy
sufficiently below the scale v� � 1–1.5 eV are governed
by the linear Dirac spectrum with velocity v [1]. Examples
are the minimal conductivity in disordered samples [2], the
odd-integer quantum Hall effect at high magnetic fields [3],
and the observation of Klein tunneling through potential
barriers [4]. These observations are explained in terms of
noninteracting Dirac fermions, while the electron-electron
Coulomb interaction clearly affects other experimental results
such as the fractional quantum Hall effect [5,6], hydrodynamic
transport behavior [7–12], and the logarithmically enhanced
velocity, as seen in magneto-oscillation [13], angular resolved
photoemission spectroscopy [14], and capacitance measure-
ments of the density of states [15].

Given this success, it is remarkable that there exists a rather
long-standing controversy in the theoretical description of
Coulomb interaction corrections to the optical absorption of
graphene [16–24]. Experiments report an optical transmission
close to 97.7% [25,26], a value that corresponds to noninteract-
ing Dirac electrons. Considering Coulomb interactions within
a renormalization group analysis, one finds for the optical
conductivity (ω � v�)

σ (ω) = σ0[1 + Cα(ω) + · · · ]. (1)

Here, σ0 = πe2/(2h) is the universal value of the optical
conductivity of noninteracting Dirac particles [27] and α(ω) =
α/[1 + 1

4α ln(v�/ω)] is a running, renormalized, dimension-
less coupling constant that measures the strength of the
Coulomb interaction at the frequency scale ω, with bare value
α ≡ α(v�) = e2/(�vε) [28,29]. Here, e is the electron charge
and ε = (ε1 + ε2)/2 is determined by the dielectric constants
ε1,2 of the material above and below the graphene sheet.

The value of the coefficient C is the issue of the controversy,
with different theoretical approaches yielding different values
for C. The origin of these discrepancies can be traced to
the low-energy nodal Dirac approximation for graphene with
linear spectrum ε(q) = ±v|q| for |q| � � with momentum
cutoff �. A perturbative analysis of corrections due to

Coulomb interactions to σ (ω) yields individual Feynman
diagrams that are logarithmically divergent in the cutoff �.
While these divergences cancel if one adds up all diagrams,
the finite result, which determines C, turns out to be dif-
ferent for different approaches to handle the divergences.
Since σ (ω) determines the transmission coefficient T (ω) =
[1 + 2πσ (ω)/c]−2 [30], this issue is experimentally relevant
and only a rather small value of C is consistent with current
experimental observations [18]. These controversies were
believed to be resolved when two of us demonstrated that
a calculation that respects conservation of the electric charge
leads to [18]

C = 19 − 6π

12
, (2)

a value that was first determined by Mishchenko [17]. The
essential claim of Ref. [18] was that, while different results
can be obtained within the nodal approximation (as found in
earlier work [16]), this ambiguity is eliminated when the Ward
identity is enforced.

However, subsequent investigations [19,20] led to an
alternate result for C, calling into question this picture. In
particular, Juricic et al. [19] used the nodal approximation
along with dimensional regularization of the integrals (altering
the spatial dimension to d = 2 − ε with ε → 0 at the end of the
calculation), obtaining a much larger value C ′ = (22 − 6π )/12

FIG. 1. One plaquette of graphene’s honeycomb lattice with blue
spheres representing carbon atoms. The carbon-carbon distance is a

and two electron pz orbitals of typical width λ are illustrated.
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within a calculation that also obeyed the Ward identity at
least for finite ε. This larger value was also obtained in
Ref. [20], who claimed to perform a tight-binding calculation.
The authors of Ref. [20] concluded that the source of the
error was the linearized spectrum and concluded that a proper
treatment of the spectrum in the entire Brillouin zone (BZ) is
needed to determine the optical conductivity. It was added that
this unexpected behavior is related to a chiral anomaly or due
to nonlocal optical effects [31].

Given these discrepancies, an obvious question is whether C
is indeed a universal number. If states in the entire BZ matter,
one could easily construct new dimensionless quantities γ

and the coefficient C in Eq. (1) might depend on γ . Then,
distinct analytic results would merely correspond to different
limits of C(γ ). An example for such a dimensionless quantity
is γ = λ/a, where a ≈ 1.42 Å is the carbon-carbon distance
and λ the characteristic size of the pz-orbital Wannier function
of the sp2 hybridized carbon atoms in the graphene lattice (see
Fig. 1). Then, only a detailed quantum chemical analysis would
be able to determine the correct optical conductivity, even for
frequencies small compared to the bandwidth. It would also
imply that a formal renormalization procedure, as discussed in
Ref. [32], would not suffice to generate a correct result, leading
to a breakdown of the widely used nodal approximation for
graphene.

Here, we show that C is, in fact, a universal number that is
independent of high-energy microscopic or cutoff-dependent
details. We demonstrate that it is given by the expression in
Eq. (2) and that it can be correctly obtained within a low-energy
effective nodal Dirac description of graphene. Our conclusions
are based on two independent calculations: (i) An evaluation of
the leading perturbative Coulomb correction to the optical con-
ductivity using the full tight-binding graphene band structure.
This unequivocally determines C. It furthermore shows that
C is universal and independent of, for example, the width of
the atomic Wannier orbitals. (ii) A field-theoretical analysis of
the interaction corrections to the conductivity within the Dirac
description, which we use to demonstrate that the result for C
is affected by the order of limits d → 2 and cutoff � → ∞.
Taking the limits in the correct order yields the result of the
lattice tight-binding calculation in (i).

Our main results are captured in Fig. 2, which shows the
interaction correction coefficient obtained within the lattice
tight-binding approach as a function of frequency ω. Clearly,
the lattice result agrees with the numerical value C given
in Eq. (2). Below, we also explain how to correctly obtain
this value within the Dirac approximation of graphene using
different regularization schemes. Furthermore, the inset of
Fig. 2 proves that the interaction correction coefficient is
universal and independent of the ratio λ/a, where λ is the
size of the atomic orbitals on the graphene atoms and a is the
lattice constant.

Below, we determine the correct value for C in Eq. (1), but
also explain why other approaches failed to reach the correct
conclusions. This should settle all aspects of the existing
controversy about the value of C. Our work demonstrates that
the Dirac cone approximation can be safely applied for low-
energy properties, that the longitudinal optical conductivity
is not affected by a chiral anomaly or states far from the
Dirac cone, and that no subtlety due to nonlocal effects in the

FIG. 2. The main figure shows the interaction correction coeffi-
cient as determined by our lattice calculation (red dots) as a function
of frequency ω/D, where D is the bandwidth of the lattice theory. The
lattice result is in clear agreement with the predicted value Eq. (2)
from nodal theory [17,18]. The inset shows that the result in the
low-frequency limit (ω/D = 0.015) is independent of the ratio λ/a

(i.e., universal).

conductivity occurs. Finally, we show how to properly include
interaction corrections within the lattice theory, which is
essential for physical quantities where a nodal approximation
cannot be employed.

The remainder of the paper is organized as follows: In
Sec. II, we start from a lattice tight-binding description of
graphene and determine the optical conductivity, including
leading Coulomb corrections, in the collisionless regime.
Allowing for a finite extent of the Wannier functions λ, we
demonstrate that C is indeed universal, i.e., independent of
the ratio λ/a, and takes a value that is, within the numerical
accuracy, given in Eq. (2). Further, we explain why previous
lattice-based attempts [20,31] failed to reach the correct
conclusion.

A by-product of our calculation is the optical conductivity
of noninteracting electrons in graphene for a nearest-neighbor
tight-binding electronic band structure: σ0(ω,TB). This al-
lows us to correct previously reported theoretical results of
Refs. [25,30] and to demonstrate that σ0(ω,TB) deviates from
the Dirac result more strongly than reported there. We compare
the corrected theoretical prediction for the optical transmission
T (ω) with the experimental data of Ref. [25].

In Sec. III, we show how to correctly obtain C within
a field-theoretical description of graphene using the nodal
Dirac approximation. We demonstrate that if one employs
a Wilson momentum shell renormalization group approach
and chooses to use dimensional regularization (in d = 2 − ε

spatial dimensions) of divergent integrals, the interaction
coefficient C acquires a dependence on the order of limits
ε → 0 and ultraviolet cutoff � → ∞ at the end of the
calculation. The correct order of limits yields the same result
for C as the lattice calculation.

Following earlier work by Teber et al. in Ref. [33],
we show in Sec. III A that this ambiguity does not appear
when, instead of the Wilson momentum shell renormalization
group technique, one employs a different renormalization
procedure and fully regularizes the theory within the modified
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minimal subtraction MS scheme. Within the MS procedure of
dimensional regularization, the noninteracting (bare-bubble)
conductivity diagram contributes to the value of the interaction
correction coefficient. This is the key difference to the work of
Juricic et al. in Ref. [19] who also used dimensional regular-
ization but only of the perturbative diagrams (instead of the full
theory) and thus obtained the result C ′. Therefore, the apparent
ambiguity in the value of the interaction coefficient is due to
the fact that certain diagrams contributing to the conductivity
give different results within different regularization schemes.
In Sec. III B, we explore this and consider such diagrams in
d = 2 − ε but including a ultraviolet cutoff �. We show that
these diagrams only combine to give the correct value for C
when the order of limits (ε → 0 and � → ∞) is correctly
taken.

We conclude in Sec. IV and refer to the Appendices for
details of a number of calculations that are discussed in the
main text.

II. TIGHT-BINDING APPROACH TO THE OPTICAL
CONDUCTIVITY

In this section, we calculate the self-energy �(k) and the
optical conductivity σ (ω) to leading order in perturbation
theory within a full lattice approach that considers the nearest-
neighbor tight-binding energy spectrum of graphene. We begin
in Sec. II A by defining the noninteracting lattice Hamiltonian
H0, the bare lattice Green’s function Gk,iω, and the current
operator J k on the lattice. In Sec. II B, we derive the Coulomb
interaction Hamiltonian on the graphene lattice. In Sec. II C,
we use it to calculate the electronic self-energy �(k) on
the lattice, which describes the renormalization of the Fermi
velocity due to interactions. In Sec. II D, we numerically
compute the optical conductivity σ (ω) using the Kubo formula
in a full lattice description: in Sec. II D 1 we first obtain the
noninteracting result σ0(ω), before we calculate, in Sec. II D 2,
the lowest-order corrections due to Coulomb interactions.

A. Single-particle Hamiltonian and current
operator on the lattice

Graphene is a honeycomb lattice of carbon atoms spanned
by the triangular Bravais lattice vectors Ri = i1a1 + i2a2

with i1,2 ∈ Z, primitive vectors a1,2 =
√

3
2 a(±1,

√
3), and basis

vectors v1,2. One choice is v1 = 0, v2 = (0,−a) as can be
seen in Fig. 3. The electron creation operators c

†
Ri �σ

create
an electron with spin σ on the corresponding lattice site
(Ri ,�) with � = 1,2 denoting the basis site v�. We often
write c

†
Ri1σ ≡ a

†
Ri σ

for � = 1 and c
†
Ri2σ ≡ b

†
Ri σ

for � = 2, and
introduce a spinor composed of electron creation operators on
the two basis sites as

c
†
Ri σ

= (
c
†
Ri1σ ,c

†
Ri2σ

) = (
a
†
Ri σ

,b
†
Ri σ

)
. (3)

With these definitions it follows that the tight-binding Hamil-
tonian reads as

H0 =
∑
k��′σ

c
†
k�σHk��′ck�′σ , (4)

FIG. 3. Honeycomb crystal lattice of graphene, showing two
interpenetrating (red and blue) sublattices of carbon atoms. The
Bravais lattice with lattice vectors Ri = i1a1 + i2a2 is defined to be
the red sublattice, with a two-atom basis defined by v1 = 0 (the red
points) and v2 = −aŷ (the blue points), where a is the carbon-carbon
distance. The three nearest-neighbor vectors are uα = δα + v2 − v1

with nearest-neighbor Bravais vectors δ1 = (0,0), δ2 = a1, and
δ3 = a2.

with cRi �σ = 1√
N

∑
k eikRi ck�σ . In case of only nearest-

neighbor hopping t , one finds Hk = −t hk · σ with the vector
hk = (Re hk,−Im hk) given by hk = 1 + eika1 + eika2 and
Pauli matrices σ = (σx,σy). Explicitly, this reads as

Hk = −t

(
0 hk

h∗
k 0

)
, (5)

with hk = 1 + 2 cos(
√

3
2 kxa)ei 3

2 kya . The energy spectrum con-
sists of two bands with energy εk± = ±t |hk|, and a linear Dirac
spectrum emerges near the Dirac points K± = 2π

3a
(± 1√

3
,1).

The bare Green’s function is given by Gk,iω = (iω − Hk)−1,
and reads as explicitly

Gk,iω = 1

ω2 + t2|hk|2
(−iω thk

th∗
k −iω

)
. (6)

The current operator follows via the usual Peierls substitution
t → teieAuα of the hopping element to the nearest-neighbor
site at uα from taking the derivative J = −(∂AH0)|A=0. Alter-
natively, it can be found from J = i[H0,P] with polarization
operator P = ∑

Ri ,�,σ
(Ri + v�)c†Ri �σ

cRi �σ [34]. In both ways,
one finds

J Ri
= − iet

�

∑
δα

[
(δα + v2 − v1)b†Ri+δα

aRi
− H.c.

]
(7)

with nearest-neighbor Bravais lattice vectors δα ∈
{(0,0),a1,a2}. In momentum space, it takes the form

J k =
∑

k,�,�′,σ

c
†
k�σ

(
0 j k
j∗

k 0

)
��′

ck�′σ (8)

with explicit components

jx,k =
√

3tae sin

(√
3

2
kxa

)
ei 3

2 kya (9)

jy,k = −itae

[
cos

(√
3

2
kxa

)
ei 3

2 kya − 1

]
. (10)
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In the following, we often set e = a = 1 since it can be easily
reinstated in the final result.

B. Coulomb interaction Hamiltonian

Electrons interact via the Coulomb interaction, which is
described by the Hamiltonian

Hint = e2

2

∑
σσ ′

∫
d3r d3r ′ ψ

†
rσψ

†
r ′σ ′ψr ′σ ′ψrσ

ε|r − r ′| , (11)

where r,r ′ are three-dimensional real-space position vectors,
i.e., r = (ρ,z) with ρ = (x,y). The graphene sheet is assumed
to be located in the x-y plane with z = 0. The field operators

ψ rσ =
∑
Ri ,�

ϕ(r − Ri − v�)cRi �σ (12)

are defined via the Wannier pz-atomic orbitals ϕ(r) localized
on the sp2-hybridized carbon atoms at sites (Ri ,�). In the
evaluation of the Coulomb matrix elements, i.e., when Eq. (12)
is inserted into Eq. (11), we assume that ϕ∗(r − Ri − v�)ϕ(r −
Rj − v�′) is small unless i = j and � = �′. The density of spin
σ is thus approximated by

ψ†
rσψrσ ≈

∑
Ri ,�

c
†
Ri �σ

cRi �σ |ϕ(r − Ri − v�)|2 . (13)

Using this approximation, and inserting the Fourier trans-
form of the real-space Coulomb interaction e2

ε|r−r ′| =∫
d2q

(2π)2

∫
dqz

2π
eiq·(ρ−ρ ′)eiqz(z−z′) 4πe2

ε(q2+q2
z ) , we obtain

Hint =
∫

r,r′
q,qz

eiq(ρ−ρ ′)eiqz(z−z′) 4πe2

ε
(
q2 + q2

z

)
×

∑
Ri ,Rj

�,�′

|ϕ(r − Ri − v�)|2|ϕ(r ′ − Rj − v�′)|2

× c
†
Ri �σ

c
†
Rj �′σ ′cRj �′σ ′cRi �σ , (14)

where
∫
r
= ∫

d3r ,
∫
q

= ∫
d2q

(2π)2 , and
∫
qz

= ∫
dqz

2π
. To evaluate

the integration over r and r ′, we shift r → r + Ri + v� and
similarly for r ′, an operation that introduces phase factors of
the form eiq·(Ri+v�). The summations over Ri and Rj then
implement lattice Fourier transforms on the operators cRi �σ ,
leading to

Hint = 1

2

∫
d2q

(2π )2
V (q)

∑
�,�′

eiq(vl−vl′ )

×
∑

kk′σσ ′
c
†
k+q�σ c

†
k′−q�′σ ′ck′�′σ ′ck�σ . (15)

In the following, we will often incorporate the summation over
�,�′ as a matrix multiplication and introduce the matrix

Mq =
(

exp(iqv1) 0
0 exp(iqv2)

)
. (16)

In physical terms, it accounts for the spatial separation of
the two carbon basis atoms and renders integration over
momentum q finite. The Coulomb interaction matrix element

in Eq. (15)

V (q) = 4πe2
∫ ∞

−∞

dqz

2π

|ρ(q,qz)|2
ε
(
q2 + q2

z

) (17)

is determined by the electron density of the three-dimensional
atomic orbital ρ(q,qz) = ∫

d3r|ϕ(r)|2ei(qρ+qzz). Using the 2pz

orbitals with effective Bohr radius a∗
B , we obtain V (q) =

2πe2F(q)/(ε|q|), where the form factor was fitted to F(q) =
exp(−|q|a∗

B) and a∗
B � 0.9 Å [35]. In the following, we use

the phenomenological form

V (q) = 2πe2 exp(−|q|2λ2/2)

ε|q| (18)

that follows from an orbital wave function that has Gaussian
shape in the graphene plane and is pointlike in the z

direction: ϕ(r) = ϕ(x,y,z) = δ(z) 1
λ
√

π
exp[−(x2 + y2)/2λ2].

Here, λ corresponds to the characteristic size of the orbital
(see Fig. 1). In the limit of pointlike atomic orbitals λ → 0,
we find V (q) = 2πe2/(ε|q|).

An important remark is that all momentum vectors in
Eq. (15) are two dimensional. Crucial for our subsequent
analysis is the fact that the sums

∑
k,k′ in Eq. (15) run over

the first BZ, while the integral over q goes over the infinite
momentum space, i.e., it is a combined sum over transferred
momenta of the BZ and a sum over all reciprocal lattice vectors.
This distinction was ignored in earlier work [20]; see, however,
Ref. [21] for a discussion of this issue. This follows from
the fact that the electron density of the orbitals |ϕ(r)|2 is not
confined to the discrete lattice points.

C. Electronic self-energy on the lattice

Before turning to the optical conductivity, let us investigate
the electronic self-energy �(k) within the lattice tight-binding
formulation. We note that within the nodal Dirac approxima-
tion of graphene, the self-energy explicitly depends on the
momentum cutoff � [28,29]. In a lattice theory an ultraviolet
cutoff is naturally provided by the inverse lattice constant
1/a. We thus expect that the self-energy does not exhibit
any ultraviolet divergences despite the fact that it involves an
(infinite) momentum integration. In this section, we verify this
directly by explicitly evaluating the self-energy on the lattice.

The self-energy arising from Eq. (15) follows in standard
perturbation theory as [see Fig. 4(a)]

�(k) = −
∫

d2q

(2π )2
V (q)T

∑
ω

M−qGk+q,iωMq , (19)

where the matrix Mq is defined in Eq. (16) and the bare
Green’s function is given in Eq. (6). Evaluating the frequency

integration yields �(k) =
(

0 �12
�∗

12 0

)
with

�12(k) = −1

2

∫
d2q

(2π )2
V (q)eiφ(k+q)eiq(v2−v1) (20)

and exp[iφ(k)] = hk/|hk|. In order to show that the integration
over momentum q yields a finite result, we first notice that
the momentum argument k of the self-energy lies in the first
Brillouin zone (BZ) [see Eq. (15)]. The self-energy is periodic
in reciprocal lattice vectors G, i.e., �(k + G) = �(k), and
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FIG. 4. (a) Feynman diagram of the electronic self-energy.
Dashed line corresponds to Coulomb interaction and solid line to bare
Green’s function. (b) Lattice self-energy �12(k) for momentum close
to the Dirac node K ≡ K+ for different Wannier orbital sizes λ/a.
The inset shows the logarithmic divergence of the slope (=velocity
correction) close to the node. Results are obtained using Eq. (25) with
summation running over the 4.6 × 104 Bravais lattice vectors Ri of
smallest magnitude.

performing a Fourier transformation to real space yields the
self-energy as a function of Bravais lattice vectors

�12(Ri) =
∑

k

�12(k)e−ik·Ri . (21)

The back transformation is explicitly given by �12(k) =
A

∑
Ri

eik·Ri �12(Ri), where A = 3
√

3
2 a2 is the unit-cell area.

We insert Eq. (20) into (21), switch the order of integration,
and shift k → k′ = k + q, which is valid as the integrand is
periodic under k → k + G, to arrive at

�12(Ri ) = −1

2

∫
d2q

(2π )2
V (q)eiq·(Ri+v2−v1)F (Ri) (22)

with function

F (Ri) =
∑

k′
ei[φ(k′)−k′ ·Ri ] . (23)

Note that the momentum summation in Eq. (23) is restricted to
the first Brillouin zone and can thus be conveniently performed
numerically. The advantage of this transformation to real space
is that it allows to perform the (infinite) momentum integration
over q exactly. This integration is the Fourier transform of the
Coulomb interaction potential V (q) evaluated at position Ri +
v2 − v1. It thus depends on the form of the Wannier functions
ϕ(r) [see Eq. (17)]. Using pointlike Wannier orbitals, i.e., λ →
0 in Eq. (22), the integration over q simply returns the real-
space Coulomb interaction and the self-energy in momentum
space is given by

�12(k) = − e2

2ε
A

∑
Ri

eik·Ri
1

|Ri + v2 − v1|F (Ri) . (24)

We have thus traded a numerically intensive infinite mo-
mentum integration over q for an infinite sum over Bravais
lattice vectors Ri . It turns out that the function F (Ri) decays
sufficiently fast as a function of |Ri | such that the sum can be
numerically evaluated to great precision. In all our presented
results (see Figs. 2, 4, 7, and 8), the real-space summations
run over the 4.6 × 104 Bravais lattice vectors Ri of smallest
magnitude.

Considering a finite in-plane width of the Wannier orbitals
λ > 0, the self-energy takes the form

�12(k) = − e2

2ε

A

λ

∑
Ri

eik·Ri

√
π

2
e−|Ri+v2−v1|2/(4λ2)

× I0

( |Ri + v2 − v1|2
4λ2

)
F (Ri) , (25)

where I0(x) is the modified Bessel function of the first kind.
Clearly, Eq. (25) reduces to Eq. (24) in the limit λ � a.

It is clear from Eq. (24) that a potential divergence in �12(k)
cannot come from the short-distance behavior of the Coulomb
interaction (since the denominator of 1

|R+v2−v2| never reaches
zero) but only relies on the convergence of the sum at large
Ri . This convergence can be traced back as being due to the
factor eiq(v2−v1) in Eq. (20) that oscillates rapidly at large |q|,
causing the integral to vanish at large |q|. However, we find
that the slope of �12(k) close to the Dirac nodes K± exhibits
a logarithmic divergence. This is shown in Fig. 4(b) and is a
well-known property found in the Dirac approximation that
we now see holds in the full tight-binding theory as well. We
observe in the inset of Fig. 4(b) that different Wannier orbital
widths only affect the prefactor of the logarithm. As we show
below, one of the two main contributions to the conductivity
relies on determining �12(k) for all momenta in the BZ by
computing the sum in Eq. (24).

D. Optical conductivity

We determine the real part of the optical conductivity via
the Kubo formula

σ (ω) = − ImχJ (ω)

ω
, (26)

where χJ (ω) is the retarded current-current response function.
A detailed derivation of the Kubo formula can be found in Ap-
pendix A. Expanding perturbatively in orders of the Coulomb
interaction strength α gives χJ = χ

(0)
J + χ

(1)
J + · · · , where

χ
(0)
J refers to noninteracting electrons (see Fig. 5(a)]. The

term χ
(1)
J is the leading-order interaction correction depicted

in Figs. 5(b)–5(d) with self-energy (b,c) and vertex (d) parts,
giving rise to contributions χ

(1,bc)
J and χ

(1,d)
J calculated below.

The optical conductivity σ and the interaction correction
coefficient C are then determined by adding all contributions
as σ = σ (0) + σ (1) + · · · with σ (i) = −Imχ

(i)
J /ω.

In the following, in Sec. II D 1 we first evaluate the lattice
expressions for noninteracting electrons χ

(0)
J . In Sec. II D 2,

we then turn to the calculation of the interaction corrections
χ

(1)
J .
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(a) (b)

(c) (d)

FIG. 5. Panel (a) shows the Feynman diagram for the noninter-
acting current-current correlation function χ

(0)
J . Panels (b)–(d) show

the lowest-order Coulomb interaction corrections: (b) and (c) are
self-energy diagrams and (d) the vertex correction.

1. Result for noninteracting electrons

The optical conductivity for noninteracting electrons is
determined by the free current-current response function χ

(0)
J ,

which is diagrammatically shown in Fig. 5(a) and reads as

χ
(0)
J (iω) = −T

2

∑
k,ε,ν

Tr[JkνGk,iεJkνGk,iε+iω]

= −1

2

∑
k,ν

(h∗
kjν,k − hkj

∗
ν,k)2

t |hk|(4|hk|2 + ω2/t2)
. (27)

Here, ε denotes a summation over Matsubara frequen-
cies and ν = x,y. We evaluate χ

(0)
J by first analytically

continuing iω → ω + iδ and then computing the remaining
one-dimensional integral. A straightforward numerical eval-
uation yields the result shown in Fig. 6, which shows that
the (zero-frequency) Dirac result σ (0) = σ0 = e2/(4�) (for
spinful electrons) is valid for ω � t and breaks down close
to the van Hove singularity at ω = 2t . We also evaluate σ (ω)
analytically by expanding perturbatively in small ω/t to arrive
at (for details see Appendix A 1)

σ (ω) = π

32ω
ρ

(
ω

2

)
(18 + ω2) − 1

8

ω2

36
(28)

≈ σ0

(
1 + 1

9
ω + O(ω3)

)
. (29)

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FIG. 6. Conductivity σ0(ω) for noninteracting electrons, obtained
within the lattice nearest-neighbor tight-binding calculation and
normalized to its value at zero frequency.

Here, we have set t = 1 and used that the density of states is
given by

ρ(E) = 1

(2π )2

32E

√
1 − E

3 K
[ −16E

(E−3)(1+E)3

]
3(3 − E)(1 + E)3/2

. (30)

Here, K[m] is the complete elliptic integral of the first kind.
Importantly, beyond the Dirac approximation our results differ
from previously reported ones [25,30]. As shown in Fig. 8
below this has consequences for the experimentally observable
optical transmission through graphene, which differs more
strongly from the noninteracting Dirac limit than previously
reported.

2. Interaction corrections to the optical conductivity

In this section, we determine the leading-order interaction
correction to the optical conductivity χ

(1)
J . The corresponding

Feynman diagrams are shown in Figs. 5(b)–5(d) with self-
energy part χ

(1,bc)
J in Figs. 5(b) and 5(c) and vertex part χ

(1,d)
J

in Fig. 5(d). The analytic expressions of these contributions
read as

χ
(1,bc)
J (iω)

= −T 2
∑
kεε′ν

∫
d2q

(2π )2
V (q)

× Tr(JkνGk,iω+iεJkνGk,iεMqGk+q,iε′M−qGk,iε),

(31)

χ
(1,d)
J (iω)

= T 2

2

∑
kεε′ν

∫
d2q

(2π )2
V (q)

× Tr(JkνGk,iω+iεMqGk+q,iω+iε′JkνGk+q,iε′M−qGk,iε).

(32)

Here, Gk,iω denotes the bare Green’s function [see Eq. (6)]
and the matrix Mq [see Eq. (16)] accounts for the spatial
separation of the two carbon basis atoms. Like in case of the
self-energy discussed in Sec. II C, it plays an important role
in the following evaluation of χ

(1)
J as it renders the integration

over momentum q finite.
To obtain χ

(1,bc)
J , we insert the result for the self-energy

�(k) into Eq. (31). The self-energy is obtained by summing
over 4.6 × 104 Bravais lattice vectors using Eq. (25). As
shown in detail in Appendices A 2 and A 3, we then first
analytically continue iω → ω + iδ, before evaluating the
remaining momentum summation over the first Brillouin zone.
By first performing the analytic continuation, the momentum
summation turns into a one-dimensional integration along a
contour around the two Dirac nodes (in case of small external
frequency ω), which can be efficiently computed numerically.

The vertex contribution χ
(1,d)
J in Eq. (32) is evaluated in a

similar way and we refer to Appendices A 3 and A 4 for details.
The presence of the matrix Mq inside the trace again ensures
convergence of the q integration.

As shown in Fig. 7, the individual contributions σ (1,j ) of
self-energy and vertex diagrams to the optical conductivity
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FIG. 7. Plot of the self-energy σ (1,bc) and vertex-correction σ (1,d)

contributions to the frequency-dependent conductivity, normalized to
σ0α [see Eq. (33)]. The separate contributions diverge in the low-
frequency limit ω � D.

correction

σ (1) = σ0α C = σ (1,bc) + σ (1,d) = σ0α(Cbc + Cd ) (33)

diverge logarithmically in the low-frequency limit ω/D → 0,
where D = 6t is the bandwidth. Their sum, however, remains
finite and, as shown in Fig. 2, yields (within numerical
accuracy) the coefficient C with the numerical value (19 −
6π )/12 given in Eq. (2). The inset of Fig. 2 shows that σ (1)

is independent of the ratio λ/a, demonstrating the universal
nature of the optical conductivity of graphene.

To compare with experiment, we use our result of the
optical conductivity σ (ω) to calculate the optical transparency
of graphene T (ω). In Fig. 8, we compare experimental results
for T (λω), where λω = 2πc/ω is the wavelength, reported by
Nair et al. in Ref. [25] with different theoretical approaches
of computing σ (ω), both using the Dirac approximation and
using the full tight-binding (nearest-neighbor) lattice theory.
We observe that in the optical range, the main correction to

FIG. 8. Optical transmission through graphene as function of
wavelength λω. Comparison of experimental results (red dots) from
Ref. [25] and theory: noninteracting Dirac fermions σ0(Dirac) and
tight-binding theory σ0(ω,TB); interacting tight-binding predic-
tion σ (C,TB) = σ0(ω,TB)[1 + Cα(ω)], and σ (C ′) = σ0(ω,TB)[1 +
C ′α(ω)]. Note that σ0(ω,TB) deviates from σ0(Dirac) for higher
frequencies more strongly than previously reported in Refs. [25,30].

the noninteracting Dirac approximation result σ0(Dirac) stems
from the nonlinearity of the band structure, i.e., from deviations
from the linear dispersion in the tight-binding band structure
of graphene. The additional interaction corrections are minute
because the coefficient C is incidentally quite small. Note that
a larger coefficient such as C ′ implies a much more pronounced
shift of the transparency from the noninteracting result (which
is not observed experimentally).

How does our numerical result of C given in Eq. (2) compare
with Ref. [20], which claims to have performed an evaluation
of the conductivity of the tight-binding model, but find the
larger value C ′? Following the details of Ref. [20] included in
the Supplemental Material of that paper one finds that, in the
end, the authors do not evaluate the conductivity numerically,
but perform a nodal approximation and regularize divergent
integrals in a fashion that violates charge conservation. The
final expression of the conductivity coefficient of Ref. [20]
is not the correct lattice version of the conductivity anyway,
as Eq. (15) of that work lacks the distinction between BZ
restricted and unrestricted momentum integrations, discussed
above.

III. FIELD-THEORETICAL APPROACH IN
THE DIRAC LIMIT

Within the Dirac theory of graphene, both self-energy
and vertex contributions to the interaction correction of the
conductivity σ (1,bc) and σ (1,d) involve divergent integrals as,
e.g., the momentum cutoff is sent to � → ∞ or the physical
dimensionality is restored ε → 0. The main goal in this section
is to reconcile the results of dimensional regularization as
presented in the detailed calculations of Juricic, Vafek, and
Herbut (JVH) in Ref. [19] with the tight-binding results of
Sec. II. The authors of Ref. [19] regularize the divergent
integrals appearing in the calculation of σ (1,j ) (j = bc,d) by
working in d = 2 − ε dimensions, add both contributions, and
take the limit ε → 0 in the end.

An alternative scheme to perform dimensional regulariza-
tion was presented by Teber and Kotikov (TK) in Ref. [33]. It
is based on the modified minimal subtraction MS scheme [36],
and the corresponding continuum renormalization group (RG).
In Sec. III A, we describe the MS calculation in detail and
confirm the TK results. As found by TK, although adding the
interaction correction diagrams b, c, and d yields the numer-
ical result C ′ for the correction coefficient, one must consider
that within the MS scheme of dimensional regularization, the
bare-bubble contribution is also renormalized. This gives an
additional contribution that finally yields the numerical result
C for the interaction correction coefficient [see Eq. (2)], in
agreement with the lattice theory of Sec. II.

In Sec. III B, we add to the insight of TK by examining
the conductivity scaling relation in d = 2 − ε dimensions
[37], which relates the true conductivity (left side) to the
renormalized one (right side):

σ (ω,α) = lim
�→∞

lim
ε→0

bεσ (ω/ZT ,α(b),�) . (34)

Here, b > 1 is a scaling factor, ZT is the renormalization factor
of the frequency equal to ZT (b) = [4ε + α(bε − 1)]/4εb, and
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the running coupling constant reads as α(b) = 4εαbε/[4ε +
α(bε − 1)] [29]. We compute the conductivity of graphene
in d = 2 − ε dimensions, but including an ultraviolet (UV)
momentum cutoff �. Importantly, we show that the limits of
ε → 0 and � → ∞ do not commute, a phenomenon that we
refer to as UV quirk.

If one furthermore employs the relation between the
conductivity and density-density correlator χρ used in the
original work of Mishchenko [17], it is possible to precisely
isolate the origin of the UV quirk as coming from the
self-energy (bc) diagrams. We show that, if one maintains a UV
cutoff in d dimensions (as implied by the Wilson momentum
shell RG), the result C is obtained when the limit d → 2 is
taken. In contrast, if one works in d = 2 − ε dimensions but
with � → ∞, the self-energy (bc) diagrams yield a different
result, leading to the coefficient C ′. Importantly however, in
this case of � → ∞, the theory must be regularized using the
MS scheme, which yields the numerical values C in Eq. (2)
for the interaction correction coefficient (see Sec. III A), in
agreement with the lattice calculation.

A. Continuum renormalization group and modified minimal
subtraction MS scheme

In this section, we largely follow the work of Teber
and Kotikov (TK) in Ref. [33], in particular highlighting
the differences between the dimensional regularization using
the modified minimal subtraction MS scheme compared to
the Wilson momentum shell RG. When using dimensional
regularization, we do not introduce an UV cutoff � to
our system. The system is regularized by the dimensionless
parameter ε. As reported by JVH and TK (and confirmed by
us), dimensional regularization of the interaction-dependent
diagrams leads to a result implying that the correction
coefficient is C ′ = 22−6π

12 [19,33]. However, as found by TK,
the whole theory is divergent and needs to be regularized
by the continuum renormalization group. This is done by
introducing counterterms that remove these divergences. After
this renormalization procedure, it is found that the bare-bubble
contribution is also modified, finally yielding the correction
coefficient C = 19−6π

12 .
Our starting point is the action of graphene

S =
∫

dτ

∫
ddx ψ

†
0

(
∂τ + ie0A

0
0 + v0(−i∇σ )

)
ψ0

+
∫

dτ

∫
ddγ x

(
∂xA

0
0

)2
, (35)

where d = 2 − ε is the spatial dimensionality of the electronic
degrees of freedom and dγ = 3 that of the gauge fields Aν

0 ≡
A0 with ν ∈ {0,1,2} ≡ {τ,x,y}. The subscript “0” denotes bare
quantities such as the fermionic field ψ0 and the gauge field
A0, which mediates the Coulomb interaction with potential

V (q) = 2πe2

|q|
r−ε

0 π−ε/2�
(

1
2

)
�

(
1−ε

2

) . (36)

The length scale r0 is introduced in such a way that the
Coulomb potential has the correct units in d = 2 − ε. From
this action, one can derive physical observables which are
divergent in the limit ε → 0. One of these divergent physical

observables is the self-energy

�(q) = �(q)v0q · σ = α0
22ε−3�

(
ε
2

)
�

(
1 − ε

2

) (r0q)−εv0q · σ . (37)

Note that the self-energy is proportional to 1/ε, which follows
from expanding the function �(p) for small ε:

�(p) ≈ α0

4

1

ε
+ α0

4
[ln(4) − ln(pr0) − γ ] + O(ε) . (38)

Here, we explicitly see that the theory has divergences. In order
to render it finite, we introduce renormalized (physical) fields,
which we denote with a subscript “R”:

ψ0 = √
ZψψR, (39)

A0 =
√

ZAAR, (40)

v0 = ZvvR, (41)

e0 = Z1

Zψ

√
ZA

eR = ZeeR , (42)

which leads to the following renormalized Lagrangian density:

LR = Zψψ
†
R∂τψR + ie0

√
ZAZψψ

†
RA0

RψR

+ZvZψvRψ
†
R(−i∇ · σ )ψR + ZA

(
∂xA

0
R

)2
. (43)

To obtain a finite theory, we introduce counterterms via
Zψ = 1 + δψ , ZA = 1 + δA, Zv = 1 + δv , and Ze = 1 + δe.
These counterterms are chosen in such a way as to cancel the
divergences. In the case of the self-energy, we find

�(q) = �R(q)vRq · σ + δvvRq · σ + δψ (i� + vRq · σ ).

(44)

From Eq. (38), we know that the divergence of the self-energy
is independent of frequency, and thus δψ = 0 and therefore
Zψ = 1. The velocity counterterm, on the other hand, must
cancel the divergence of the self-energy, demanding

δv = −αR

4

1

ε
⇒ Zv =

(
1 − αR

4ε

)
. (45)

The electric charge e remains unrenormalized in graphene, i.e.,
Ze = 1.

Next, we will use the modified minimal subtraction MS
scheme, where one introduces a physical energy scale μ in such
a way that the physical observables become dimensionless and
the divergence is removed [36]. In other words, we substitute
the divergence 1/ε by a logarithm depending on the physical
scale μ:

1

ε
→ ln (μ/ω) . (46)

Using this substitution, the slope of the self-energy becomes

�R(p) = αR

4

1

ε
+ αR

4
ln

(
4e−γ

pr0

)
= −αR

4
ln

(
pr0

μ̃/ω

)
,

(47)

with μ̃ = 4e−γ μ. As shown in detail in Appendix B, the same
procedure yields for the coupling constant α and the velocity
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v the nondivergent observables

α(μ) = α04εe−2γ εμ̃−2ε

1 + α0
4

1
ε
4εe−2γ εμ̃−2ε

→ α(μ) = α0

1 + α0
4 ln

(
μ

ω

) ,

(48)

v(μ) = v0 + e2
0

4ε
4εe−2γ εμ̃−2ε → v(μ) = v0 + e2

0

4
ln

(
μ

ω

)
.

(49)

Finally, the bare noninteracting optical conductivity σ0, which
requires calculating the bare-bubble diagram in spatial dimen-
sion d = 2 − ε, is given by

σ0,0(ω) = e2
0NAε

∣∣∣∣v0

ω

∣∣∣∣
ε

, (50)

with

Aε = 4−2+επε/2 (1 − ε)

�
(
1 − ε

2

) . (51)

To remove all divergences in the theory, we have to replace
all bare quantities such as the charge e0 and the velocity v0 by
their renormalized values, which yields

σ0,R(ω) = e2(μ)

4ε
e2γ εμ̃2εNAε

∣∣∣∣∣
(
1 − α(μ)

4ε

)
vR

ω

∣∣∣∣∣
ε

, (52)

where e2(μ) = 4εe2
0e

−2γ εμ̃−2ε (for details see Appendix B).
According to Eq. (48), one can choose α(μ) such that it is a
small quantity, reflecting that α is marginally irrelevant at the
upper critical dimension d = 2. We can thus approximate [33](

1 − α(μ)

4ε

)ε

≈ 1 − α(μ)

4
. (53)

Inserting this into our expression for the noninteracting
conductivity and taking the limit ε → 0, we obtain

σ0(ω) ≡ σ0,R(ω) = σ0

(
1 − α(ω)

4

)
, (54)

where σ0 = e2
0N/16 with N = 4. Importantly, the bare-bubble

result is modified due to the velocity renormalization. Remark-
ably, as found by TK, this term combines with the O(α) vertex
and self-energy diagrams in Figs. 5(b)–5(d), which yield,
within dimensional regularization in d = 2 − ε dimensions,
an interaction correction coefficient [19,33]

C ′ = 22 − 6π

12
. (55)

Although this apparently leads to a result that disagrees with
other regularization schemes, regularizing the full theory (via
counterterms) leads to the additional contribution in Eq. (54),
which must be included. Summing all terms to order α finally
yields

σ (ω) = σ0

(
1 + C ′α(ω) − α(ω)

4

)
= σ0[1 + Cα(ω)]. (56)

The final interaction correction coefficient therefore takes the
value in Eq. (2):

C = 19 − 6π

12
, (57)

in agreement with the lattice calculation of Sec. II.

B. Wilson momentum shell RG combined
with dimensional regularization

In this section, we show that combining the Wilson
momentum shell RG (WRG) with dimensional regularization
(DR) yields an ultraviolet (UV) quirk as the physical dimension
d = 2 of graphene is restored at the end of the calculation.
Specifically, we demonstrate that the order of limits of sending
the UV cutoff � to infinity and the parameter ε, introduced by
DR in d = 2 − ε dimensions, to zero does not commute. In
practice, this means that the additional renormalization factor
appearing in the bare-bubble term of the TK calculation [see
Eq. (54)] is not present when we use the WRG in d = 2 − ε

dimensions. This factor only occurs in the absence of any
cutoff (pure DR), when counterterms are required to regularize
the theory. As shown in the previous Sec. III A, in this
case the counterterm O(α) contribution of the noninteracting
conductivity combines with the coefficient C ′ arising from
the leading-order self-energy and vertex interaction correction
diagrams to, again, yield the correction coefficient C. In
contrast, the WRG approach in d dimensions directly obtains
C without the factor in Eq. (54), as long as � is sent to ∞ only
at the end of the calculation, i.e., in particular after ε → 0.

In the following, in Sec. III B 1, we first review in strictly
d = 2 the approach by Mishchenko from Ref. [17] of using
the density-density correlator χρ(q,ω) to obtain the optical
conductivity via

σ (ω) = lim
|q|→0

ω

|q|2 Imχρ(q,ω). (58)

Then, in Sec. III B 2, we discuss how this calculation changes
if the integrals are regularized by changing the dimension
to d = 2 − ε instead of using a momentum cutoff. Finally, in
Sec. III B 3 we show the appearance of an UV quirk by keeping
a momentum cutoff in d = 2 − ε dimensions. We demonstrate
that the two limits � → ∞ and ε → 0 do not commute and
that the correct order of limits, which is sending ε → 0 before
� → ∞ as demanded by the WRG, yields the results C in
agreement with the lattice calculation.

1. Conductivity via Mishchenko’s approach in d = 2 and with
momentum cutoff �

Let us evaluate the conductivity following Mishchenko’s
approach of using the density-density correlator [17]. We
work in d = 2 dimensions and keep a momentum cutoff �

in the Coulomb interaction potential. Within this approach,
divergences only appear in the self-energy diagrams [similar
to Figs. 5(b) and 5(c)]. This makes it easier to see the impact
of the regularization scheme, i.e., momentum cutoff versus
dimensional regularization, which is discussed in the next
Sec. III B 2.

Within Mishchenko’s approach, the conductivity is ob-
tained via Eq. (58), where χρ is the retarded density-density
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correlator. To obtain the self-energy contributions to Eq. (58) [see Figs. 5(b) and 5(c)], we need to compute the self-energy that
we have previously shown to be given by [18]

�(k) = −
∫

d2q

(2π )2

∫
dε

2π
V (k − q)Gq,iε = 1

4
αvk · σ ln

(
4�

√
e

k

)
, (59)

where V (q) = 2πe2

|q| θ (� − |q|) contains the momentum cutoff �. With this result, the contribution due to the self-energy type
diagrams is (note we multiplied by 2 for the two diagrams, have N = 4 and set v = 1 for brevity)

χ (1,bc)
ρ (q,ω) = −1

2
Ne2α

∫
d2p

(2π )2

∫
dε

2π
ln

4�
√

e

p
Tr

(−iεσ0 − p · σ

ε2 + p2

−i(ε + ω)σ0 − ( p + q) · σ

(ε + ω)2 + ( p + q)2

−iεσ0 − p · σ

ε2 + p2
p · σ

)
.

(60)

Evaluating the trace yields

χ (1,bc)
ρ (q,ω) = −1

2
Ne2α

∫
d2p

(2π )2

∫
dε

2π
ln

4�
√

e

p

−2

(ε2 + p2)2

p4 − 3ε2p2 − 2εωp2 − q · p(ε2 − p2)

(ε + ω)2 + ( p + q)2
. (61)

Expanding to quadratic order in q and integrating over angles gives (keeping only the q2 term)

χ (1,bc)
ρ (q,ω) = −1

2
Ne2α

q2

8π3

∫ ∞

0
p dp

∫ ∞

−∞
dε ln

4�
√

e

p

8p2π

(ε2 + p2)2

(ω + ε)(ω + 2ε)[p2 − ε(ω + ε)]

[p2 + (ε + ω)2]3
. (62)

To proceed, we restore the velocity v and introduce the dimensionless variable p̃ = vp/ω. Evaluating the frequency integral
results in

χ (1,bc)
ρ (q,ω) = −1

2
Ne2α

q2

8π3

1

ω

∫ ∞

0
dp̃ p̃ ln

v�
√

e

p̃ω

π2(4p̃2 − 1)

p̃(4p̃2 + 1)2
= Ne2α

64

q2

ω
. (63)

Note that the integral over p̃ was a sum of two terms due to
the formula

ln
v�

√
e

p̃ω
= ln

v�
√

e

ω
− ln p̃ . (64)

However, the first integral containing the factor ln(v�
√

e/ω)
vanishes. Thus, despite a divergent self-energy, resulting in the
cutoff dependence of the integrand, the corresponding contri-
bution to the conductivity is not divergent and independent of
�. Upon analytic continuation, we find the contribution to the
conductivity

σ (1,bc) = σ0
α

4
, (65)

or Cbc ≡ σ (1,bc)/σ0α = 1
4 . This agrees with Eq. (13) in

Ref. [17] by Mishchenko.
As we have noted, within this approach, the vertex (d)

diagram [see Fig. 5(d)] contains no divergences and is given
by

σ (1,d) = σ0α
8 − 3π

6
, (66)

or Cd = (8 − 3π )/6. This finally leads to

σ = σ0

(
1 + α

19 − 6π

12

)
, (67)

in agreement with the lattice calculation. Next, we discuss how
dimensional regularization can give a different result via the
appearance of an UV quirk.

2. Dimensional regularization without momentum cutoff

We now consider how the results of the last section change
if one works in d = 2 − ε dimensions to regularize the integral
instead of using a momentum cutoff �, i.e., sending � → ∞.
The limit ε → 0 is performed at the end of the calculation. In
this case, we find a result that is obtained by simply replacing
the logarithm in the self-energy in Eq. (59) with the self-
energy derived from dimensional regularization and altering
the dimensionality of the momentum integral. We find that the
self-energy in d dimensions is proportional to [19]

�(p) ∝ p−ε
�

[
1−ε

2

]
�

[
3−ε

2

]
�

[
ε
2

]
π�[2 − ε]

= 1

ε
− 1

2
γ + ln 4 − ln p + O(ε) . (68)

As noted above, when calculating χρ one performs an
integration over momentum p [see Eq. (63)] and only the
ln p part of Eq. (68) contributes. Given this fact, one may ask
how a different result can arise in dimensional regularization
compared to regularization by a momentum cutoff � since the
only change is the replacement ln � → 1

ε
(up to additional

constant terms). In strictly two dimensions, but with the
self-energy evaluated in d = 2 − ε dimensions (to regularize),
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one finds for the dimensionless integral [see Eq. (63)]

Id=2,�=∞ ≡ χ (1,bc)
ρ

16π3ω

Ne2αq2

=
∫ ∞

0
dp̃ p̃

[
1

ε
− 1

2
γ + ln

4

p̃

]
4p̃2 − 1

p̃(4p̃2 + 1)2

=
∫ ∞

0
p̃ dp̃ ln

1

p̃

4p̃2 − 1

p̃(4p̃2 + 1)2
= −π

4
, (69)

where we have used that the integral over the momentum-
independent piece in square brackets vanishes. The subscript
of Id=2,�=∞ refers to the dimensionality of the p-momentum
integral d in Eq. (69) and to the momentum cutoff � used
in the evaluation of the self-energy in (2 − ε) dimensions. In
Eq. (69), we used the expression for the self-energy in Eq. (68),
which is evaluated in (2 − ε) dimensions with a momentum
cutoff sent to infinity. Clearly, Id=2,�=∞ = −π/4 would yield
the result in Eq. (67) whether the cutoff comes from � or
from dimensional regularization. However, in d dimensions,
the integration measure of the p-momentum integral also
changes, and instead of Eq. (69) one rather needs to consider
Id=2−ε,�=∞, which reads as

I2−ε,∞ =
∫ ∞

0
dp̃ p̃1−ε

(
1

ε
− 1

2
γ + ln

4

p̃

)
4p̃2 − 1

p̃(4p̃2 + 1)2

= −π

2
, (70)

where we took ε → 0 at the end of the calculation. Impor-
tantly, in Eq. (70), the part of the integral coming from the
momentum-independent parts of the square brackets does not
vanish. Instead, it is proportional to ε and yields a finite
contribution when multiplied by 1/ε. This difference doubles
the size of the self-energy (bc) diagrams, from π/4 in Eq. (69)
to π/2 in Eq. (70).

Since the vertex diagram does not change, because it is
convergent, this would lead to the final conductivity correction
proportional to the coefficient C ′ = (22 − 6π )/12, as reported
by JVH [19]. In Sec. III B 3, we show, however, that this
conclusion is erroneous as it does not correctly take into
account that the Wilsonian momentum shell RG implicitly
requires a finite momentum cutoff �, even in d = 2 − ε

dimensions. Note that in Eq. (70), we approximated the
self-energy by its Taylor series expression up to order O(ε0),
but the same result is obtained if one instead uses the full
power-law expression of Eq. (68).

3. Spatial dimension d = 2 − ε but sharp cutoff

Let us now consider a calculation in d = 2 − ε dimensions
that still keeps a momentum cutoff �. This is motivated by the
observation that when performing a Wilson momentum shell
RG in d dimensions, one implicitly keeps a cutoff � around
which momentum shells are integrated out. While we need a
cutoff � once we restore the physical dimension d = 2, we
naively expect it to play no role once we work in d = 2 − ε

dimensions since all momentum integrations are finite for ε >

0. Nevertheless, as we now show, here an UV quirk appears
once we consider the limits ε → 0 and � → ∞, which turn
out to not commute. In d = 2 − ε dimensions and maintaining

a UV cutoff �, the self-energy is of the form

�(p) ∝
∫ �

p

qd−1dq

q2
= 1

ε
(p−ε − �−ε). (71)

Plugging this into the integral for χ (1,bc)
ρ in Eq. (63), we obtain∫ ∞

0
dp p1−ε 1

ε
(p−ε − �−ε)

4(vp)2 − ω2

p[4(vp)2 + ω2]2

=
(

ω

v

)1−2ε π
4

(
ω
v�

)ε − π
2

ω2
, (72)

which reveals the UV quirk: the order of limits of sending the
UV cutoff � → ∞ and the dimensional parameter ε → 0 do
not commute. As a result, the numerical value of the interaction
correction coefficient

C

(
ε,

ω

�

)
= 22 − 6π − 3

(
ω
v�

)ε

12
(73)

is affected by the order of limits. If we first take the limit of
ε → 0 before � → ∞, we obtain C. However, if we instead
take � → ∞ first before ε → 0, we obtain C ′, i.e.,

lim
ε→0

[
lim

�→∞
C

(
ε,

ω

�

)]
= C ′, (74)

lim
�→∞

[
lim
ε→0

C

(
ε,

ω

�

)]
= C. (75)

Within Wilson momentum shell RG, the solution to this
ultraviolet quirk is to always maintain a nonzero cutoff �,
first setting ε → 0. As shown in Eq. (75), this procedure
unambiguously yields the coefficient C. If we instead wish
to set � → ∞ first then, although the theory is regularized,
additional singularities appear in the limit ε → 0. A correct
handling of this limit requires regularizing the full theory (not
just the self-energy and vertex diagrams) using, for example,
the minimal subtraction scheme reviewed in the preceding
subsection. This procedure then again yields the numerical
value C for the interaction correction coefficient, in agreement
with our lattice calculation in Sec. II.

IV. CONCLUSION

In conclusion, we have evaluated the optical conductivity
σ (ω) of graphene including the lowest-order Coulomb inter-
action corrections within a full lattice tight-binding approach.
In the noninteracting limit, we correct previous results of
the conductivity σ0(ω) beyond the Dirac limit σ0 = e2

4�
.

Considering interactions, within our lattice calculation we
explicitly show that σ (ω) is universal and independent of other
dimensionless quantities such as the ratio of the width of the
atomic orbitals λ to the lattice constant a (in the frequency
regime ω < v�).

Equipped with this insight, we address in the second part
of our work a controversy of how to obtain the correct
result for σ (ω) within a Dirac low-energy description of
graphene, where only the linear part of the spectrum is
taken into account. Such a theory needs to be regularized
and, as previously reported, different regularization schemes
apparently yield different results. Here, we resolve this issue
by demonstrating the appearance of an ultraviolet quirk when
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dimensional regularization is combined with the momentum
shell renormalization group. In this situation, the order of limits
of sending the dimensionality to the physical dimension and
the momentum cutoff to infinity do not commute. We point out
the correct order of limits and show that this leads to a final
result in agreement with our lattice calculation.

Our work thus validates previous Dirac approximation
calculations, and resolves a long-standing controversy about
the correct way to regularize the Dirac theory showing clearly
why previous incorrect approaches failed. Since descriptions
of electronic systems by effective low-energy models such
as the Dirac Hamiltonian of graphene are the cornerstone
of condensed matter physics, it is gratifying that our work
confirms the quantitative accuracy of this method.

A practical implication of this insight is that dimensional
regularizations with d = 2 − ε for the fermionic degrees of
freedom are full of subtleties. If one wants to investigate the
role of Coulomb interactions in graphene and wishes to avoid
a regularization via an explicit cutoff, it is technically easier
to perform this regularization with regards to the embedding
space of the photon field dγ = 3 − η. This approach was
performed in Ref. [18] and immediately yields the correct
result and no order of limit issues occur.

Note added. Recently, a quantum Monte Carlo analysis
appeared [38] with results that are consistent with ours.
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APPENDIX A: PERTURBATIVE CALCULATION
OF THE CONDUCTIVITY

The frequency-dependent conductivity follows from the
Kubo formula, which we now briefly review [34]. Using the
Peierls substitution to couple an electromagnetic gauge field
to electrons on the honeycomb lattice, we have

H0(Ai) = −t
∑

Ri

3∑
n=1

(a†(Ri)b(Ri+δn)e−iδn·Ai +H.c.). (A1)

Here, the electron charge has been set to unity. Taylor
expanding to linear order gives

H0(Ai) = H0 − A
∑

Ri

J(Ri) · Ai , (A2)

J(Ri) = −i
t

A

3∑
n=1

[a†(Ri)b(Ri + δn) − b†(Ri + δn)a(Ri)],

(A3)

with A the unit cell area. Within time-dependent perturbation
theory, the current density at site Ri is

〈Jμ(Ri ,t)〉 = A

∫ ∞

−∞
dt ′

∑
Rj

χJ,μ,ν(Ri ,Rj ; t − t ′)Aν(Rj ),

(A4)

χJ,μ,ν(Ri ,Rj ; t − t ′) = i�(t − t ′)〈[Jμ(Ri ,t),Jν(Rj ,t
′)]〉,

(A5)

where in the second line we defined the retarded current-
current correlator. Assuming the vector potential is uniform
and has the time dependence A(t) = e−iωt

iω
E, with E the electric

field, we find

〈Jμ〉 = σμνEν, (A6)

σμν(ω) = 1

ω
χJ,μ,ν(ω), (A7)

where χJ,μ,ν(ω) is the spatial and temporal Fourier transform
of Eq. (A5). Equation (A7) for the optical conductivity is
equivalent to Eq. (26). As usual, this quantity can be obtained
from the corresponding Matsubara function

χJ,μ,ν(i�) = 1

NA

∫ β

0
dτ ei�τ 〈Jμ(τ )Jν(0)〉. (A8)

In this formula, N is the number of Bravais lattice points, A

is the unit-cell area, and β = 1
kBT

(although we always work
in the zero-temperature limit). Here, Jμ(τ ) is given by Eq. (8).
Henceforth, we shall drop the subscript μ,ν in the definition
of χJ,μ,ν(i�), which we need for the case of μ = ν.

1. Bare-bubble diagram

To compute the conductivity, we need to evaluate χJ,μ,ν (i�)
to leading order in perturbation theory. We start with the
zeroth-order result, which is the “bare-bubble” diagram
[Fig. 5(a)] of the main text. Setting μ = ν = y yields

χ
(0)
J (i�) = −T

∑
k,ω

Tr[Ĵy,k,0Gk,iωĴy,kGk,iω+i�] (A9)

= −
∑

k

[h∗
kjy,k − hkj

∗
y,k]2

t |hk|(4|hk|2 + �2/t2)
. (A10)

Here, Ĵμ(k) is defined in Eq. (8) and in the second line we
evaluated the frequency integration and the trace. Next, we
rewrite the current component jy(k), defined in Eq. (10), as

jy,k = −ita

2
[hk − 3], (A11)

j ∗
y,k = ita

2
[h∗

k − 3], (A12)
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and obtain for our retarded current correlator

χ
(0)
J (i�) = ta2

4

∑
k

18|hk|2 + 4|hk|4 − 12|hk|2(hk + h∗
k) + 9

(
h2

k + h∗2
k

)
|hk|(4|hk|2 + �2/t2)

. (A13)

Upon analytically continuing i� → ω + iδ,

1

4|hk|2 + �2
→ P.V.

1

4|hk|2 − ω2
+ i

π

2ω
δ(ω − 2|hk|), (A14)

with P.V. denoting the principal value (and we assumed ω > 0) and taking the imaginary part, we obtain the retarded correlator

χ
(0)
J (ω) =

∑
k

(
ta2π

32

)[
18 + 4|hk|2 + 18

[Rehk]2 − [Imhk]2

|hk|2 − 24[Rehk]

]
δ

(
|hk| − ω

2t

)
(A15)

=
∑

k

(
ta2π

32

)
g(hk)δ

(
|hk| − ω

2t

)
. (A16)

In this expression, we have kept the dimensionful quantities a and t , although henceforth we shall set them to unity and measure
the frequency in units of t . Due to the delta function constraint, we can integrate the above expression analytically. Therefore,
we split up the function g[h(k)] into two functions and define

g1(|hk|) = 18 + 4|hk|2, (A17)

g2(hk) = 18
[Rehk]2 − [Imhk]2

|hk|2 − 24[Rehk] . (A18)

First, we evaluate the expression

χ
(0)
J,1(ω) = π

16

∑
k

g1(|hk|)δ(2|hk| − ω). (A19)

We introduce the density of states per unit cell as

ρ(E) =
∑

k

δ(E − |hk|) =
∫

d2k

(2π )2

4∑
i=1

1∣∣∂kx,i

∣∣hkx,i ,ky

∣∣∣∣δ(kx − kx,i) (A20)

with the kx,i being the solution to E = |hk|:

kx,1 = − 2√
3

arccos

{
1

4

[
−2 cos

(
3ky

2

)
−

√
2
√

2E2 − 1 + cos(3ky)

]}
,

kx,2 = + 2√
3

arccos

{
1

4

[
−2 cos

(
3ky

2

)
−

√
2
√

2E2 − 1 + cos(3ky)

]}
,

kx,3 = − 2√
3

arccos

{
1

4

[
−2 cos

(
3ky

2

)
+

√
2
√

2E2 − 1 + cos(3ky)

]}
,

kx,4 = + 2√
3

arccos

{
1

4

[
−2 cos

(
3ky

2

)
+

√
2
√

2E2 − 1 + cos(3ky)

]}
(A21)

describing curves that encircle the Dirac points at kR = 4π
3a

( 1
2
√

3
x̂ + 1

2 ŷ) and kL = 4π
3a

(− 1
2
√

3
x̂ + 1

2 ŷ) when the y component is
restricted to k− < ky < k+ with

k±(E) = 2π

3
± arccos(1 − 2E2)

3
. (A22)

We can calculate the density of states analytically and obtain

ρ(E) = 1

(2π )2

32E

√
1 − E

3 K
[− 16E

(E−3)(1+E)3

]
3(3 − E)(1 + E)3/2

, (A23)

where K[m] is the complete elliptic integral of the first kind. One part of the correlation function is thus given by

χ
(0)
J,1(ω) = π

32

∑
k

g1(|hk|)δ(|hk| − ω/2) = π

32
ρ

(
ω

2

)
g

(
ω

2

)
= π

32
ρ

(
ω

2

)
(18 + ω2). (A24)
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In order to evaluate the expression

χ
(0)
J,2(ω) = π

16

∑
k

g2(hk)δ(2|hk| − ω), (A25)

we expand the above formula near the node h(kR + k) and
write the deviation from the node in polar coordinates k =
(k,θ ),∣∣hkR+k

∣∣ � 3
128k(64 − 7k2 + 16k cos 3θ − k2 cos 6θ ),

(A26)

valid to O(k3). The approximate solution to ω = 2|hkR+k| is

k1(θ,ω) = 1
3ω − 1

36ω2 cos 3θ

+ 1
1728 [7 + 8 cos2 3θ + cos 6θ ]ω3, (A27)

that is valid to O(ω3). The factor g2[h(k)] is, to the same order,

g2(kR+k) � 9
32 [k3(− cos 11θ ) + 3(5k2 − 16)k cos θ

+ (64 − 20k2) cos 2θ + 2k{2(k2 − 16) cos 3θ

− 8(cos 5θ + 3k) + k[8 cos 4θ + 8 cos 6θ

+ 3k cos 5θ + 2 cos 8θ (1 − 2k cos θ )]}]. (A28)

From the delta function, we will also need

d

dk

∣∣hkR+k

∣∣ = 3

64
(64 + 32k cos 3θ − 21k2 − 3k2 cos 6θ ).

(A29)

Then, assuming the same contribution comes from each node
(which we have verified), we will have

χ
(0)
J,2(ω) = π

8

∫ 2π

0
dθ

∫ ∞

0
dk kg2(k)δ(2|hk| − ω) (A30)

= π

8

∫ 2π

0
dθ k1(θ,ω)

1∣∣ d
dk1

2
∣∣hkR+k1

∣∣∣∣g2(kR + k1),

(A31)

where we evaluated the radial k integral. To evaluate the
integral, we simply insert k1(θ,ω) into the factors (A29) and
(A30), insert them into the integrand, and Taylor expand order
by order in ω before evaluating the angle integrations. We
obtain

χ
(0)
J,2(ω) = −ω

8

ω2

36
. (A32)

Upon inserting the combined result into Eq. (A7), we find the
frequency-dependent conductivity plotted in Fig. 6 and given
by the formula

σ (ω) = π

32ω
ρ

(
ω

2

)
(18 + ω2) − 1

8

ω2

36
(A33)

≈ σ0

(
1 + 1

9
ω + O(ω3)

)
, (A34)

with σ0 the zero-frequency limit for spinless fermions (rein-
serting correct factors of e2 and �, previously set to unity)

σ0 = 1

8

e2

�
. (A35)

In comparing to the known result for the conductivity of N

species of Dirac fermions, σ0 = N
16

e2

�
, recall that here we have

N = 2, since we are considering the spinless case (but have
summed over two nodes).

2. Interaction corrections to the conductivity

The leading-order interaction corrections to the conductiv-
ity, that are linear order in the effective fine-structure constant
α, can be expressed in terms of self-energy (diagrams b and c)
and vertex type (diagram d) Feynman diagrams, as depicted
in Figs. 5(b), 5(c), and 5(d) of the main text. The self-energy
contribution is

χ
(1,bc)
J (i�)=−2T

∑
k,ω

Tr[Gk,iω−i�JμkGk,iω�(k)Gk,iωJμk],

(A36)

with the overall 2 coming from there being two such diagrams.
The vertex contribution is given by

χ
(1,d)
J (i�) =

∑
k

∫
d2q

(2π )2
V (q)Tr[Iμ(k,�)M−q

× Iμ(k + q,−�)Mq], (A37)

with

Iμ(k,�) = T
∑

ω

Gk,iωJμ pGk,iω−i�. (A38)

We emphasize that momentum summations are always over
the Brillouin zone and q integrations are always over the
entire two-dimensional (2D) momentum space, an issue that
was neglected in Ref. [20] [see Eq. (15) of this work]. As in
our calculation of the self-energy, a crucial simplification of
Eqs. (A36) and (A37) will involve writing these in a way that
allows us to analytically evaluate the q integration.

Before analyzing these results in the subsequent sections,
we first recall the result for the bc and d contributions within
the nodal approximation. In this approximation, regularizing
the integrals by imposing a large momentum cutoff � on the
Coulomb potential (a procedure which obeys the Ward identity
[18]), we obtain

Imχ
(1,bc)
J (ω) = −1

2
αωσ0 ln

8�v

ω
, (A39)

with v = 3ta/2�, and

Imχ
(1,d)
J (ω) = 1

2
αωσ0

[
ln

8�v

ω
+ 19 − 6π

6

]
, (A40)

yielding the sum

Imχ
(1,bc)
J (ω) + Imχ

(1,d)
J (ω) = σ0α

19 − 6π

12
. (A41)

These formulas for the bc and d contributions are of course
approximately valid within the tight-binding theory, with the
replacement of the UV cutoff � → 1/a, so that we expect
each contribution to go as ∼ω ln ω. This creates numerical
difficulties, as each term is large, requiring a cancellation
to return the value that is consistent with the nodal result
∝ 19−6π

12 � 0.0125. However, as shown in the main text,
our numerical calculations are indeed consistent with this
value.
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3. Diagrams b and c

Starting with Eq. (A36), we first evaluate the frequency integration and the trace. Then, we find (summing over the xx and yy

components and dividing by 2)

χ
(1,bc)
J (i�) = −

∑
p

1

4|h p|3
[

D1( p)

4|h p|2 + �2
+ D2( p)

4|h p|2 − �2

(4|h p|2 + �2)2

]
, (A42)

where the functions D1( p) and D2( p) are given by

D1( p) = 2(h∗�12 − h�21)
{
(h∗)2

(
j 2
x + j 2

y

) − h2[(j ∗
x )2 + (j ∗

y )2]
}
, (A43)

D2( p) = (h∗�12 + h�21)
[
(h∗)2

(
j 2
x + j 2

y

) + h2[(j ∗
x )2 + (j ∗

y )2] − 2(jxj
∗
x + jyj

∗
y )|h|2]. (A44)

Although this expression is complicated, all that is left is to analytically continue i� → ω + iδ and take the imaginary part. The
analytic continuation can be performed using Eq. (A14) for the term proportional to D1( p) and

4|h|2 − �2

(4|h|2 + �2)2
= d

d�

�

4|h|2 + �2
→ d

dω

ω

4|h|
[

1

2|h| + ω + iδ
+ 1

2|h| − ω − iδ

]
(A45)

for the term proportional to D2( p). After taking the imaginary part (and assuming ω > 0), we have

Imχ
(1,bc)
J (ω) = −π

∑
p

1

16|h p|4 D1( p)δ(ω − 2|h p|) − π
d

dω

∑
p

ω

16|h p|4 D2( p)δ(ω − 2|h p|). (A46)

To evaluate this, then, we determine �12(k) for k within the BZ by evaluating the summation over R for a large set of Bravais
lattice vectors. With the delta function constraint, all that remains is a numerical integration over p along the curves ω = 2|h( p)|
(which go around the Dirac nodes).

4. Diagram d

Next, we turn to Eq. (A37). Our first task is to evaluate Eq. (A38). We find

Iμ( p,�) = 1

|h p|(4|h p|2 + �2)
Vμ( p,�), (A47)

Vμ( p,�) ≡
(

1
2 i�[h pj

∗
μ p − h∗

pjμ p] h2
pj

∗
μ p − |h p|2jμ p

h∗2
p jμ p − |h p|2j ∗

μ p
1
2 i�[h∗

pjμ p − h pj
∗
μ p]

)
. (A48)

Now, we have

χ
(1,d)
J (i�) =

∫
d2q

(2π )2
V (q)

∑
p

1

|h p|(4|h p|2 + �2)

1

|h p+q |(4|h p+q |2 + �2)
Tr[Vμ( p,�)M−qVμ( p + q,−�)Mq], (A49)

which we now proceed to simplify. Recall that, in the bc diagram, we expressed the self-energy as a summation over Bravais
lattice vectors, so that the q integration did not need to be performed numerically (i.e., it was performed analytically to yield the
real-space Coulomb interaction). In the present case of Eq. (A49), we can perform a similar trick by first writing the integral as

χ
(1,d)
J (i�) =

∑
p

1

|h p|(4|h p|2 + �2)
Tr[Vμ( p,�)Qμ( p,−�)], (A50)

Qμ( p,−�) ≡
∫

d2q

(2π )2
V (q)

M−qVμ( p + q,−�)Mq

|h p+q |(4|h p+q |2 + �2)
. (A51)

Much like the self-energy, we can express Qμ( p,−�) as a sum over Bravais lattice vectors of a summand for which the q
integration may be performed analytically. The result is

Qμ( p,−�) = A
∑

R

ei p·R ∑
p′

e−i p′ ·R
(

Vμ,11( p′,−�) e2

|R| Vμ,12( p′,−�) e2

|R−aŷ|
Vμ,21( p′,−�) e2

|R+aŷ| Vμ,22( p′,−�) e2

|R|

)
1

|h p′ |(4|h p′ |2 + �2)
, (A52)

which now involves a summation over Bravais lattice vectors and an integration over the BZ. Inserting this into Eq. (A49),
evaluating the trace, and simplifying, we find

χ
(1,d)
J (i�) = e2A

∑
R

∑
p,p′

ei( p− p′)·R 1

|h p|(4|h p|2 + �2)

1

|h p′ |(4|h p′ |2 + �2)

×
[
Vμ,11( p,�)Vμ,11( p′,−�) + Vμ,22( p,�)Vμ,22( p′,−�)

|R|

+ Vμ,21( p,�)Vμ,12( p′,−�)

|R − aŷ| + Vμ,12( p,�)Vμ,21( p′,−�)

|R + aŷ|
]
. (A53)
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The next step is to analytically continue, using Eq. (A14). For the imaginary part, we will clearly have two terms, one with
δ(ω − 2|h( p)|) and one with δ(ω − 2|h( p′)|). However, since the integrand is symmetric under exchanging p and p′ and also
R → −R, these two terms are identical. We finally obtain [summing over the xx and yy components and dividing by 2, and
using Eq. (A48)]

χ
(1,d)
J (ω) = −e2A

∑
μ=x,y

∑
R

∑
p,p′

ei( p− p′)·R[h pj
∗
μ p − h∗

pjμ p][h p′j ∗
μ p′ − h∗

p′jμ p′]

×
[

ω2

2|R| + h∗
ph p′

|R − aŷ| + h ph
∗
p′

|R + aŷ|
]

π

2ω
δ(ω − 2|h p|) 1

|h p||h p′ |P.V.
1

4|h p′ |2 − ω2
, (A54)

the result for the retarded correlator. To evaluate this diagram, we must numerically evaluate the momentum integrations over
the Brillouin zone and the summation over BL vectors R. This result for pointlike Wannier functions can again be generalized
to the case of the Coulomb potential given in Eq. (18). Upon substituting the expression 1

|R−aŷ| by
√

π
2

1
λ
e−|R−aŷ|/4λ2

I0( |R−aŷ|2
4λ2 )

and analogously for 1
|R| and 1

|R+aŷ| , the nonzero width of the onsite Wannier function is taken into account.

APPENDIX B: CONTINUUM RG/ MINIMAL
SUBTRACTION SCHEME

Our starting point is the action of graphene:

S =
∫

dτ

∫
ddex ψ

†
0

[
∂τ + ie0A

0
0 + v0(−i∇σ )

]
ψ0

+
∫

dτ

∫
ddγ x

(
∂xA

0
0

)2
, (B1)

where the subscript X0 denotes the bare quantities. Here,
de is the spatial dimensionality of the electron degrees of
freedom (henceforth, we call de → d = 2 − ε) and dγ = 3
is the dimensionality of the gauge fields A0 mediating the
Coulomb potential. Taking a closer look at the action of
graphene, we can derive the dimensionality of the fermionic
fields and of the electrical charge. Since the action has to be a
dimensionless quantity, we find the fermionic fields have the
following dimensionality:

[ψ0] = de

2
, (B2)

while the bosonic fields of the photons have the dimension[
A

μ

0

] = 1 − ε. (B3)

We can now deduce from these conditions that the dimension
of the electrical charge e0 is given by

[e0] = ε. (B4)

We have seen in Eq. (B4) that the bare charge has dimensional-
ity [e0] = ε. However, in order to have the electrical charge as
a dimensionless quantity, we again introduce the parameter μ:

e2
0

μ2ε
= e2(μ)Ze ⇔ e2

0 = e2(μ)

4ε
e2γ εμ̃−2ε ⇔ e2(μ)

= e2
04εe−2γ εμ̃−2ε . (B5)

Upon recalling Eqs. (41) and (45), we see that the velocity is
renormalized by

v0 =
[

1 − 1

4ε
α(μ)

]
v(μ), (B6)

which can be rewritten as

v(μ) = 4εv0

4ε − α(μ)
. (B7)

Now, we can define our coupling constant as

α(μ) = e2(μ)

v(μ)
. (B8)

Combining the above equation with Eqs. (B5) and (B7), we
obtain for the coupling constant the following expression:

α(μ) = α04εe−2γ εμ̃−2ε

1 + α0
4

1
ε
4εe−2γ εμ̃−2ε

. (B9)

Next, we replace again the divergence by the logarithm,
using 1

ε
→ ln (μ/ω), and then take the limit ε → 0. This

yields

α(ω) = α0

1 + α0
4 ln

(
μ

ω

) . (B10)

Treating the velocity in an analogous way leads to

v0 = v(μ) − 1

4ε
e2(μ) ⇒ v(μ) = v0 + e2

0

4ε
4εe−2γ εμ̃−2ε .

(B11)

After replacing the divergence and taking the limit ε → 0, we
obtain

v(ω) = v0 + e2
0

4
ln

(
μ

ω

)
. (B12)
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