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Tunable Fano resonances and enhanced optical bistability in composites of coated cylinders due to
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Theoretical studies of the optical bistability in two-dimensional nonlinear composites, where Kerr type
dielectric/nonlocal metal core-shell cylinders are randomly embedded in the host medium, have been carried out.
Within the quasistatic approximation, we demonstrate the tunable Fano resonances in the scattering spectra of the
single core-shell cylinder based on different degrees of nonlocality in the linear case. It is found that nonlocality of
the metallic shell would enhance the Fano resonance peak and the near-field strength, thus it can further boost the
nonlinear response of the core-shell cylinder in both near field and far field, indicating the nonlocality-enhanced
optical bistability. Furthermore, we show that nonlocality can efficiently reduce the bistable switching threshold
of the nonlinear composite, and these self-tunable optical resonant scatters can be used as all-optical switches
and nanomemories.
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I. INTRODUCTION

Nanosized dielectric/metal structures have long been used
as optical metamaterials to realize light manipulation [1].
Nonlinear optical effects [2] that could enable nonlinear
light-matter interaction have played an important role in
modern optics and provide potential applications on ultrafast
optical switching, optical transistors, optical modulation, and
so on [3]. Compared with single nonlinear dielectric or
metal, the composite structure consisting of dielectric and
metal can support surface plasma [4], which will confine and
enhance the local electromagnetic fields, hence significantly
boosting the nonlinear optical response. Such effects arise from
coherent oscillations of conduction electrons near the surface
of noble-metal structures [4,5], whose resonances are strongly
dependent on the size and shape of the inclusions, as well as the
dielectric medium. Recently, compact plasmonic-enhanced-
nonlinear functionalities with dielectric/metal materials have
been widely investigated [6–10].

Optical bistability is one remarkable feature of nonlinear
effects [11,12]. It is a way of controlling light with light where
a nonlinear optical systems shows two different values of the
local field intensity for one input intensity [13]. This novel
property can give the optical structures the function to control
two distinguishing stable states with the history of the input
light, which can be further employed in optoelectronics and
logic elements. Along this line, one of our authors developed
a self-consistent mean-field approximation in conjunction
with the spectral representation method to investigate the
optical bistability of nonlinear plasmonic composites [14,15].
It showed that there exists double optical bistability and
optical tristability in nonlinear plasmonic composites of
nonspherical nanoparticles. Most recently, we proposed the
graphene wrapped nonlinear composite and achieved the
optical bistability in its near fields as well as the transmission
spectra [16]. Due to recent advances in the development
of high-quality nanostructured systems, it is possible to
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engineer the field penetration inside the nanostructure to use
its nonlinear response. For instance, plasmonic kinks, solitons,
and domain well are reported in arrays of nonlinear plasmonic
nanoparticles [17,18]. Light switching and routing in nonlinear
metal-dielectric nanoantennas [19] and optical bistability in a
nonlinear plasmonic nanoantenna array with reflecting surface
[20] are the other demonstrations. Some researchers also
proposed nonlinear plasmonic cloaks [21] and film-coupled
plasmonic nanocubes [22] to realize giant all-optical scattering
nanoswitches controlled by moderate pumping intensity.

On the other hand, once the dimension of the dielec-
tric/metal structure is down to the tens-of-nanometers level,
the electron-electron interactions in the dielectric response
of metals should be taken into account [23]. Consequently,
conventional local solution of Maxwell’s equations are no
longer able to describe electromagnetic properties accurately.
In this regard, nonlocal theory should be adopted because
of its more accurate description in comparison with local
theory [24,25]. Nonlocality arises from the electron-electron
interactions and leads to the spatial dispersion of metals, hence
it will play a further role in the metal’s surface plasmons.
In fact, nonlocality was found to reduce the expected field
enhancements [26–35], suggesting that nonlinear processes
may also be affected. Actually, influence of surface electrons
interaction on the nonlinear current in the gap of the two
dimer [36] was reported. Recently, nonlocal effects on third
harmonic generation in the gap nanostructure [37,38] are also
studied. To the best of our knowledge, nonlocal effects on the
optical bistability have not been explored yet. In this paper,
we theoretically propose a two-dimensional dielectric/metal
composite where Kerr dielectric core-nonlocal metallic shell
cylinders are embedded in the host medium, and we show
that the inclusion of nonlocal effects can dramatically alter
the near-field configuration and far-field scattering signals
of core-shell cylinder composite. We demonstrate that the
nonlocality would lead to the tunable Fano resonances
in the scattering spectra of the core-shell inclusion. It is found
that the nonlocality can significantly reduce the switching
threshold of the optical bistability in the near field and far field,
suggesting a nonlocality enhanced nonlinear optical device.

2469-9950/2016/93(23)/235439(8) 235439-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.235439


YANG HUANG AND LEI GAO PHYSICAL REVIEW B 93, 235439 (2016)

FIG. 1. Schematic diagram of the model.

II. FORMULATION

Let us first start with a linear case of two-dimensional
composite, whose schematic diagram is shown in Fig. 1. We
consider the external electric field E = E0(ω)êx lighting upon
an infinitely long core-shell nanocylinder with inner radius a

and outer radius b, embedded in the host medium εh. The shell
material of the cylinder is described by a spatial dispersive
dielectric function ε(k,ω). Since the size of the nanocylinder
is much smaller than the incident wavelength here, we neglect
the retardation effect. Outside the cylinder, the total electric
potential, including the external and induced ones, is given by

V (r) = −E0r cos θ + α

r
cos θ, (1)

where r = (r,θ,z) is the cylindrical coordinate whose origin
is at the cylinder center and α is the induced line dipole
polarizability. The corresponding displacement vector D is
determined by the following relation,

D(r) = −εh∇V (r). (2)

Inside the shell region, we introduce the so-called semi-
classical infinite barrier (SCIB) model [39,40] to derive its
electrostatic potentials. The electric field and displacement
vector satisfy the electrostatic equations,

∇ · D = 0
(3)

∇ × E = 0

with the field intensity E and the displacement D being related
through the nonlocal relation in homogeneous medium,

D(r) =
∫

ε(r − r′,ω)E(r′)d3r ′. (4)

We then define the potential for the displacement as

D(r) = −∇VD(r) (5)

and introduce an infinite fictitious media as the assumption
of an SCIB model. With charge sources of the appropriate
symmetry located on the inner and outer interfaces, we get the
Poisson-type equation to solve as

∇2VD(r) = [Aδ(r − a) + Bδ(r − b)] cos θ, (6)

where A and B are the unknown coefficients to be determined.
Taking the Fourier transform of Eq. (6), we have

−k2VD(k) =
∫

[Aδ(r − a) + Bδ(r − b)]e−ik·r cos θd2r.

(7)
Note that e−ik·r can be expanded as

e−ik·r =
∞∑

n=−∞
(−i)nJn(kr)e−in(θ−θk ), (8)

where (k,θk) and (r,θ ) are the cylindrical coordinates of k and
r, respectively, and Jn(x) is the Bessel function of the first
kind. Substituting Eq. (8) into Eq. (7), we yield

VD(k) = i2π
AaJ1(ka) + BbJ1(kb)

k2
eiθk . (9)

Taking the anti-Fourier transform of Eq. (9), the potential
for displacement vector in real space can be written as

VD(r) = −1

2

[
A

a2

r
+ Br

]
cos θ. (10)

The constitutive equation in Eq. (4) has an alternative
expression as VD(k) = ε(k,ω)V (k) in k space, and one could
yield the electric potential inside the nonlocal shell as

V (r) = −
[
Aa

∫
J1(ka)J1(kr)

kε(k,ω)
dk

+Bb

∫
J1(kb)J1(kr)

kε(k,ω)
dk

]
cos θ. (11)

Therefore, electric potentials Vq (q = c,s,h denote the core,
the shell, and the host medium) and displacement potentials
VDq throughout the whole space have the following general
expressions,

Vc(r) = −E0Cr cos θ (r < a)

Vs(r) = −E0

[
Aa

∫
J1(ka)J1(kr)

kε(k,ω)
dk + Bb

∫
J1(kr)J1(kb)

kε(k,ω)
dk

]
cos θ (a < r < b)

Vh(r) = −E0(r − D/r) cos θ (r > b),

(12)

and

VDs(r) = −1

2
E0

[
A

a2

r
+ Br

]
cos θ, (13)
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where A, B, C, and D are the coefficients to be determined. We impose the boundary conditions [41] as follows

Vc|r=a = Vs|r=a

Vs|r=b = Vh|r=b

(14)
εc · ∂rVc|r=a = ∂rVDs|r=a

∂rVDs|r=b = εh · ∂rVh|r=b,

and the corresponding matrix equation for the four unknown coefficients is⎛
⎜⎜⎜⎝

a/[2f (a,a)] a/[2f (a,b)] −a 0

a2/[2bf (a,b)] b/[2f (b,b)] 0 1/b

1/2 −1/2 εc 0

a2/(2b2) −1/2 0 εh/b
2

⎞
⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎝

A

B

C

D

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

b

0

−εh

⎞
⎟⎟⎟⎠, (15)

where

f (x,y) =
[

2
y

x

∫
J1(kx)J1(ky)

kε(k,ω)
dk

]−1

, (x < y). (16)

Solving the above equations, we have

A = 4f (a,a)f (a,b)f (b,b)εh[f (a,b) − εc]

−(a/b)2f (a,a)f (b,b)[f (a,b) − εc][f (a,b) − εh] + f (a,b)2[f (a,a) + εc][f (b,b) + εh]

B = 4f (a,b)2f (b,b)εh[f (a,a) + εc]

−(a/b)2f (a,a)f (b,b)[f (a,b) − εc][f (a,b) − εh] + f (a,b)2[f (a,a) + εc][f (b,b) + εh]
(17)

C = 2f (a,b)f (b,b)εh[f (a,a) + f (a,b)]

−(a/b)2f (a,a)f (b,b)[f (a,b) − εc][f (a,b) − εh] + f (a,b)2[f (a,a) + εc][f (b,b) + εh]

D = b2 f (a,b)2[f (a,a) + εc][f (b,b) − εh] − (a/b)2f (a,a)f (b,b)[f (a,b) − εc][f (a,b) + εh]

−(a/b)2f (a,a)f (b,b)[f (a,b) − εc][f (a,b) − εh] + f (a,b)2[f (a,a) + εc][f (b,b) + εh]
.

We consider the scattering cross section efficiency per unit
length of the core-shell cylinder. The effective dipole moment
of per unit length of the cylinder P = εhαE0, and the polariz-
ability of the core-shell cylinder has the following expression,

α = 2πε0

(
D

b2

)
b2. (18)

Similar to the case of finite particles, the scattering cross
section σsca is defined for an incident beam of unit intensity
scattered by a unit length of cylinder; therefore, we will have
the scattering cross section from the polarizability by scattering
theory within quasistatic approximation [42],

σsca = k3

8ε2
0

|α|2, (19)

and this leads to the following efficiency for scattering per unit
cross section area of the incident filed as,

Qsca = σsca

2b
= 2π5ε

3/2
h b3

λ3

∣∣∣∣Db2

∣∣∣∣
2

. (20)

To include the nonlinear effects, we assume the dielectric
core as a Kerr-type medium, which has a field-dependent
permittivity,

εc = ε(0)
c + χ (3)|Ec|2, (21)

where ε(0)
c is the linear part and χ (3) is the third-order nonlinear

coefficient.

In the composite system, for the electric field inside the
core region Ec and outside field Eh in host medium, there is a
relation,

Ec = C〈Eh〉. (22)

According to the 2D Clausius-Mossotti approximation, we
have

〈Eh〉 = E0 + π〈P〉, (23)

where 〈P〉 = ND〈Eh〉. Here, N is the number of cylinders
per unit volume. Considering the volume fraction of cylinder
f = πNb2 in 2D, one yields

Ec = C

(1 − f · D/b2)
· E0. (24)

Taking the square of modulus of Eq. (24), we have

|E0|2 = |Ec|2 ·
∣∣∣∣1 − f · D/b2

C

∣∣∣∣
2

. (25)

Note that coefficients C and D are field dependent if we
introduce the nonlinear Kerr type core, as shown in Eq. (21).
Therefore, Eq. (25) indicates the nonlinear relation between
external field and local field inside the core region, resulting
in the potential optical bistability in near field of the core-
shell cylindrical composite. Besides that, scattering efficiency
defined in Eq. (20) also shows a nonlinear spectrum if we
detect the scattering signal in the far field. In what follows, we
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will give some numerical calculations and discussions mainly
based on these two equations.

III. NUMERICAL RESULTS AND DISCUSSION

We are now in a position to give some numerical results. For
numerical calculations, we introduce the hydrodynamic model
[25,43] to describe the nonlocal shell: εs = εg − ω2

p/[ω(ω +
i�) − β2k2], where εg = 5 is the background permittivity of
the metal relating to the interband transition, ωp = 1.367 ×
1016 s−1 and � = 2.733 × 1013 s−1 are the plasma frequency
and the damping constant, respectively. β indicates the
pressure term of electron gas, which is proportional to the
Fermi velocity. Similar to the work in Ref. [35], we introduce
decay length of longitudinal plasmons into metal δ = (β/c)λp

(where λp = c/ωp) as degree of nonlocality. The aspect ratio is
defined as η = a/b, and the outer radius is fixed at b = 20 nm
in order to make the quasistatic approximation valid. Other
parameters are ε(0)

c = 2.2, χ (3) = 4.4 × 10−20 m2/V2, and
εh = 1. To begin, we first investigate the scattering property
from a linear core-nonlocal shell cylinder. Figures 1(a) and
1(d) show its scattering efficiency spectra under nonlocal and
local descriptions respectively. Within the interested spectrum
regime, there are two resonant modes and one cloaking mode.
The resonant modes correspond to the hybridizations of the
surface plasmon resonances at two interfaces of core-shell
cylinder [44], and the cloaking mode shows very small
scattering efficiency value. When the aspect ratio decreases,
the cloaking mode and one of resonant modes begin to
degenerate at one wavelength, leading to a narrowband Fano-
like curve [21,45,46]. This closely spaced interaction of the
cloaking dip and the resonant peak act as coupled dark and
bright scattering states [see insert of Fig. 2(b)]. Compared
with the local case, nonlocality will result in the wavelengths
of both resonant and cloaking modes blueshifted especially

FIG. 2. log10(Qsca) as function of incident wavelength and aspect
ratio for core-shell cylinder [(a) and (b)] and core-shell sphere [(c) and
(d)]. (a), (c) under the nonlocal descriptions; (b), (d) corresponding
local cases. White and black lines in each panel show the minimal and
maximal values, respectively, denoting different modes. The inserts
in (b) and (d) show the results with η = 0.05.

for very small η, which is shown in Fig. 2(a). According
to hybridization theory, with present parameters, antibonding
dipole mode (λ1−) is more dominated by cylindrical sphere
mode (λs), and the bonding dipole mode (λ1+) is close to
cylindrical cavity mode (λc). Therefore, decreasing the inner
radius will promote the nonlocal effects on the surface plasmon
at the inner interface, which associates with the cavity mode.
This will lead to a dramatic blueshift of bonding dipole mode
(λ1+). As to the antibonding dipole mode (λ1+), however, the
blueshift is not as obvious as that of the bonding one because
the nonlocal effect is not dominated on the surface plasmon at
outer interface with larger radius.

The previous paper [45] indicated two different Fano-shape
(S shape and Z shape) curves in the scattering spectra of core-
shell type cylinder and sphere, respectively, in the local cases
[see Figs. 2(b) and 2(d)]. However, this paper did not tell why
that would happen. To illustrate the physics behind this, we plot
the scattering spectra of the spherical case as well in both local
and nonlocal descriptions in Figs. 2(c) and 2(d). In the η → 0
limit and under local description, the cavity and cloaking
modes have the same condition, i.e., εc + εs = 0 for the
core-shell cylinder and εc + 2εs = 0 for the core-shell sphere.
That means these Fano curves always go with cavity modes.
Unlike the cylinder, the antibonding mode in the spherical
core-shell case is dominated by cavity mode. Consequently, the
Fano curve appears at the wavelength of antibonding mode on
the left side and has a different Z-shape profile compared with
cylinder [see Fig. 2(d)]. Moreover, the blueshift of resonant
wavelength is more obvious on the antibonding mode. In
fact, by choosing appropriate host and core media, the Fano
shapes in both cylindrical and spherical core-shell cases are
tunable. For simplicity, we clarify this in the local case and
under the nondissipation limit. The Drude model for the shell
is simplified as εs = εg − ω2

p/ω
2. Equations εs + εh = 0 and

εs + 2εh = 0 determine the sphere modes of cylindrical and
spherical cases, respectively. Therefore, the resonant frequen-
cies of sphere and cavity modes for each case can be written as

ω2
c = ω2

p

εc + εg
, ω2

s = ω2
p

εh + εg
(for cylinder) (26)

ω2
c = ω2

p

εc/2 + εg
, ω2

s = ω2
p

2εh + εg
(for sphere). (27)

Thus, one gains the following relations,

ωc > ωs (λc < λs) (εc < εh)
ωc < ωs (λc > λs) (εc > εh) (for cylinder) (28)

and

ωc > ωs (λc < λs) (εc < 4εh)
ωc < ωs (λc > λs) (εc > 4εh) (for sphere). (29)

The inequalities above indicate the positions of cavity and
sphere modes on spectra under different conditions. In the
calculations, we employ εc = 2.2 and εh = 1 for core and host
media. Consequently, there is λc > λs in scattering spectra of
the core-shell cylinder and λc < λs in that of the spherical
case. This result demonstrates the different Fano-shape curves
in Fig. 2. In the meantime, Eqs. (28) and (29) show that it
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FIG. 3. Scattering efficiency spectra with different degrees of
nonlocality.

is possible to rebuild the Fano shapes by choosing different
physical parameters for core and host media.

From the discussion above, we could conclude that on one
hand Fano resonance is determined by the cavity mode of the
core-shell structure and on the other hand due to the nonlocal
nature of the surface plasmon at the inner interface with very
small radius, cavity mode is more sensitive to nonlocal effects.
Therefore, it is possible to achieve tunable Fano resonances
based on nonlocality. With different degrees of nonlocality, we
plot the scattering efficiency spectra at a fixed aspect ratio η =
0.05 in Fig. 3. It shows that Fano curves vary dramatically with
the degree of nonlocality. Increasing the degree of nonlocality
will give more obvious blueshifted Fano resonances (see the
Fano dips in Fig. 3). In addition, it is found that if δ reaches
6 × 10−3λp, the Fano curve will change from an S shape into a
Z shape. Different from the method of choosing different core
and host media in the previous part, this kind of Fano-shape
changing depends on the nonlocality of the metallic shell.
Note that the Fano resonance would slightly vary with the
aspect ratio in the local case; however, it could not achieve
the transformation from S-shape Fano curve to a Z-shape one.
Therefore, besides the variation of aspect ratio or dielectric
materials, nonlocality would give a new freedom to adjust the
Fano resonance in the core-shell type nanocylinder.

To one’s interest, we use δ = 4.52 × 10−3λp as degree
of nonlocality, in which case the cloaking dip lays in the
right middle of two resonant peaks shown in Fig. 4(a).
Unlike the conventional Fano resonance, which arises from the
interference between a broadband background (nonresonant)
scattering process and a sharp resonant state [see the local
case in Fig. 4(a)], this non-Fano profile results more from the
direct destruction of two resonant scattering states from the
same scattering channel and forms a so-called scattering dark
state [47]. Note that it still includes the background state here;
therefore, the dip of the scattering dark state is not completely
zero. Nevertheless, this curve profile is essentially different
from the Fano resonance. We find that although the scattering
efficiencies at position (I) and (III) are the same, their near-field
distributions are dramatically different, as shown in Fig. 4.

FIG. 4. (a) Scattering efficiency spectra with δ = 4.52 × 10−3λp

and δ = 0. I–III illustrate near-field |E| at corresponding points in (a).

In details, near-field enhancement at inner interface in (III)
is much larger than that in (I) due to the fact that resonant
peak (III) is associated with the cavity mode. Besides that, the
polarization direction of induced dipole fields are opposite in
these two cases. As to (II), it is more like a monopole type
for which the near field is uniformly distributed around the
inner surface. Moreover, (III) reveals very high electric field
intensity in the core region compared with others, which can
be further employed to enhance the nonlinear optical response
when using nonlinear core materials.

In what follows, we consider the nonlinear case in which
Kerr-type nonlinear medium is used as core material whose
permittivity has a field-intensity dependent dielectric function
shown in Eq. (21). As mentioned before, near-field intensity
in core medium is higher at bonding mode than others thus
can promote the nonlinear response. On the other hand, to
achieve optical bistability, physical parameters have to satisfy
some specific conditions [16,48]. Within our parameter space,
it is found that only the bonding mode has the possibility
of showing optical bistability here. Figure 5(a) illustrates
bistable Ec as the function of incident wavelength at different
incident field intensities E0 for bonding resonant peak by
solving the nonlinear Eq. (25). It is shown that the bistability
of near field gets broader for increased input field intensity.
Therefore, the proposed core-shell cylinder can realize a
nonlinear nanoswitch device, whose switching wavelength is
tunable with realistic incident field intensity. In addition, field
intensity inside the nonlinear core can reach up to 1000 times
the large value than the incident field intensity E0. Compared to
the local case in Fig. 5(b), it has broader bistability region and
lower switching wavelength at a same incident field intensity.
Besides that, induced near-field intensity inside the core Ec is
higher under the nonlocal description. That means nonlocality
could further enhance the nonlinear response in the bonding
modes. It is well known that nonlocality was generally found
to reduce the near-field enhancement and far-field scattering
of the nanostructures. In the present model, only the resonant

235439-5



YANG HUANG AND LEI GAO PHYSICAL REVIEW B 93, 235439 (2016)

FIG. 5. Dependence of the electric field intensity Ec inside the
core region on the incident wavelength at different E0 in nonlocal
(a) and local (b) cases: E0 = 20 × 106 V m−1 (red), E0 = 10 ×
106 V m−1 (blue), and E0 = 5 × 106 V m−1 (black). (c), (d) Scattering
response versus wavelength at different E0 in nonlocal and local cases,
respectively.

peak of antibonding mode is reduced by nonlocality, and the
bonding mode is, however, boosted by nonlocality. Nonlocality
in the noble materials such as gold or silver is essentially a
surface effect [43], which can modify the dielectric response at
the surface, hence leading to the resonant wavelength shifted.
Note that scattering spectra peak in Fig. 4(a) III is the result
of constrictive interference of resonant bonding mode and
off-resonant broadband antibonding mode. Once the resonant
wavelength moves close to the high value antibonding resonant
peak, the increased part from the broadband off-resonant
antibonding mode will contribute to the rapid increased
bonding mode peak III. Therefore, strong Fano coupling
between these two resonant modes, as well as nonlocality
together contribute to the prompted resonant peak III. For
the antibonding peak I, nonlocal effects merely result in the
conventional reduced resonant peak compared to the local
case.

Next, the dependence of the far-field scattering property
of this nonlocal core-shell cylinder is investigated as well.
By substituting Eq. (25) into the field intensity dependent
scattering efficiency in Eq. (20), one yields the nonlinear
scattering spectra in Figs. 5(c) and 5(d). It should be noted
that, although the nonlinear equation between Ec and E0 is
derived in the composite system, the assumed volume ratio
is quite small; therefore, the obtained scattering spectra are
valid for a single core-shell cylinder in the host medium.
Unlike the bistable near-field spectra, the scattering efficiency
shows hysteresis loops in its spectra, which implies that
multiple states do exist for the nonlinear core-shell cylinder,
corresponding to different incident wavelengths. The nonlinear
process in far-field spectra shows a more complicated variation
in scattering signal than that in near-field spectra. As a matter
of fact, these diffident states indicate quite different physical
properties that the nanocylinder possesses. In view of possible
technological applications, this finding is expected to be very

FIG. 6. Dependence of the electric field intensity Ec on external
incident field E0 at (a) λ = 343.1 nm and (b) λ = 373.8 nm, respec-
tively, which is denoted with A and B in Fig. 4(a).

useful. In addition, Fig. 5(c) reveals that maxima of scattering
efficiency is decreased with the increase of incident field
intensity, which shows opposite behavior compared to the
near-field intensity in core region. This indicates different
energy storage states inside the core-shell cylinder when the
incident power is increasing. Similarly, once we neglect the
nonlocality, the scattering efficiency will decrease, and the
nonlinear property becomes weaker.

In the end, Figs. 6(a) and 6(b) show the hysteresis response
of the proposed nonlinear core-shell cylinder as a function
of the incident field intensity under nonlocal and local
descriptions, respectively. Note that optical bistability occurs
when the physical parameters satisfy some specific conditions
[16,48]. As a matter of fact, we could not achieve optical
bistability within present parameters when λ < ∼341 nm in
the nonlocal case (or λ < ∼372 nm in the local case), as shown
in Fig. 4(a). These critical points lay just near the maximal peak
of the bonding resonance; therefore, the blueshifted bonding
resonance arising from the nonlocality will lead to much
border parameter space in spectra for achieving the optical
bistability. Moreover, nonlocality will enhance the bonding
resonant mode, hence contributing to its nonlinear response so
that one might achieve a lower switching threshold intensity
in the optical bistability of the near field. Figure 6 shows that
the nonlocal switching threshold intensity is about one order
of magnitude lower than that in the local case. Besides that,
both cases could realize high intensity Ec inside the core region
with lower incident field intensity E0 associated with nonlinear
bistability.

IV. CONCLUSION

To conclude, we establish the nonlocal scattering theory
for the nonlinear core-nonlocal shell cylinder and derive the
nonlinear equations of near field and far field for the composite
consisting of these cylinders in the quasistatic limit. Compared
to the 3D spherical case, different types of Fano resonant
shape exist in the scattering spectra of the core-shell cylinder
when the aspect ratio is small. We demonstrate that Fano
resonance always goes with the dominated cavity mode in the
surface plasmon hybridization, and by appropriately choosing
the core and host dielectric materials, it is possible to achieve
different types of Fano curves artificially. In addition, nonlocal
effects that could lead to the blueshift of the Fano peak will
become more and more obvious when the inner radius of
the core-shell structure decreases. This shifted Fano peak
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is very sensitive to the degree of nonlocality, allowing the
nonlocality-based tunable Fano curve. Increasing the degree of
nonlocality would promote the maximal value of Fano resonant
peak, which shows unconventional nonlocal effects. This Fano
dip could reach to the scattering dark state once nonlocality
reaches to a specific level. We found that nonlocality could
enhance the nonlinear response of the core-shell structure
not only in the near field but also in the far field at the
Fano peak position because near field and scattering signal
are both boosted by nonlocality. With the increasing power
of the incident field, near-field intensity is enhanced in the
spectra; however, far-field scattering efficiency shows opposite
behavior. Finally, we study the optical bistability of the near
field in the composite system, and again nonlocality is found
to reduce the switching threshold of bistable curve, which
suggests a nonlocality-enhanced optical bistability device.

It should be remarked that, quasistatic approximation used
in theoretical part limits its extension in the case with large

size. In this connection, we should introduce the self-consistent
mean-field approximation in the framework of full wave Mie
scattering theory [49,50] to deal with the electric field inside
the Kerr medium. For a large size system, we will incorporate
a full wave self-consistent mean-field approximation with
extended nonlocal electromagnetic theory [30,43] to study
the optical bistability beyond quasistatic approximation and
analyze the contribution of high order scattering terms. Work
along this line is in progress, and we shall report it elsewhere.
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