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Screening and many-body effects in two-dimensional crystals: Monolayer MoS2
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We present a systematic study of the variables affecting the electronic and optical properties of two-dimensional
(2D) crystals within ab initio GW and GW plus Bethe-Salpeter equation (GW -BSE) calculations. As a
prototypical 2D transition metal dichalcogenide material, we focus our study on monolayer MoS2. We find
that the reported variations in GW -BSE results in the literature for monolayer MoS2 and related systems arise
from different treatments of the long-range Coulomb interaction in supercell calculations and convergence of
k-grid sampling and cutoffs for various quantities such as the dielectric screening. In particular, the quasi-2D
nature of the system gives rise to fast spatial variations in the screening environment, which are computationally
challenging to resolve. We also show that common numerical treatments to remove the divergence in the Coulomb
interaction can shift the exciton continuum leading to false convergence with respect to k-point sampling. Our
findings apply to GW -BSE calculations on any low-dimensional semiconductors.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDs) are layered,
weakly-coupled materials that can exist in few- and monolayer
forms. Recently, this class of materials has attracted intense
study due to the remarkable electronic and optical properties
it exhibits, such as valley-selective circular dichroism, as well
as coupling of spin and valley quantum numbers [1–3] and
the formation of strongly bound excitons and trions [4–12].
Molybdenum disulfide (MoS2) is a prototypical TMD. In its
most common semiconducting form (2H), monolayer MoS2

consists of a layer of Mo atoms sandwiched between two layers
of S atoms in a trigonal prismatic arrangement. In bulk and
few-layer form, MoS2 is an indirect gap semiconductor, but
in monolayer form, it becomes a direct gap semiconductor,
with a gap located at the K and K ′ points in the Brillouin
zone [13,14].

The optical spectrum of MoS2 has been extensively studied
experimentally. It has an optical gap of 1.9 eV at room
temperature [13,14], which blueshifts by as much as 0.1 eV
at low temperatures between 5 and 100 K [15,16]. The first
peak in the optical spectrum is split by spin-orbit coupling
by 0.15 eV into two peaks commonly referred to as “A” and
“B” [13]. The electronic quasiparticle band gap is much harder
to determine experimentally, but various experiments suggest
that the band gaps of monolayer MoS2 and several other TMDs
with the same structure lies between 0.2 and 0.7 eV above
the optical gap [7–12,17], indicating a large exciton binding
energy.

There have also been numerous theoretical studies of
the electronic and optical properties of monolayer MoS2

with widely differing results. The many-body perturbation
theory-based ab initio GW approximation [18] plus Bethe-
Salpeter equation (GW -BSE) approach [19,20] is one the
most common and accurate methods for computing quasi-
particle (QP) band structures and optical response including
electron-electron and electron-hole interactions. However,
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even within the general GW -BSE approach, there is a great
deal of disagreement in the literature over everything from
the magnitude and location of the QP band gap to the exciton
binding and excitation energies [4,5,16,21–27]. In this paper,
we address the source of these inconsistencies and make note
of computational issues in GW -BSE calculations that arise for
quasi-two-dimensional (quasi-2D) semiconductors and other
reduced dimensional systems.

The main results of the paper are the following:
(1) The major computational challenges when dealing with

mono- and few-layer TMDs arise from the finite extent of
atomic scale in one of the spatial directions. This introduces
rapid variations in the screening, which leads to complications
in the computation of the quasiparticle and excitonic proper-
ties [5,25].

(2) The convergence of quasiparticle gaps with respect to
the k-point sampling, dielectric cutoff and number of bands
included in the self-energy operator is much slower than what
is reported in earlier work and is closely tied to the supercell
size used and the treatment of the quasi-2D behavior of the
Coulomb interaction. The lack of convergence is sufficient
to explain the varying results in the literature for GW -BSE
calculations on monolayer MoS2 and other TMDs.

(3) We show that different numerical treatments of the
divergence in the Coulomb interaction shifts the exciton
continuum and can lead to false convergence of the binding
energy with respect to k-point sampling. In particular, we
find that it is possible to obtain an apparent agreement of
the calculated optical gap with experiment, even though the
exciton binding energy and the higher exctionic states are not
computed correctly.

This paper is organized as follows. In Sec. II, we discuss the
dielectric screening in quasi-2D semiconductors and review
the effect of the truncation of the Coulomb potential. In Sec. III,
we discuss the QP band structure, the convergence of the self-
energy, including special considerations for quasi-2D systems,
the effect of updating the Green’s function G in the GW0

approach and the frequency dependence of the screening. In
Sec. IV, we discuss the effect of screening on the optical
response of MoS2, characterize the excitons and their wave
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functions, discuss how they converge in our calculations, and
discuss the effects of quasiparticle lifetimes. We conclude in
Sec. V by summarizing our results.

II. ELECTRON-ELECTRON AND ELECTRON-HOLE
INTERACTIONS AND SCREENING IN 2D

A. Coulomb truncation and convergence

First-principles calculations using plane-wave basis sets
require periodic boundary conditions. This means that for 2D
systems, such as monolayer MoS2, it is necessary to increase
the dimension Lz of the unit cell in the aperiodic direction
to avoid interactions between repeated monolayers [28]. With
conventional DFT functionals, such as LDA or GGA, there are
no long-range interactions for a neutral system, so a vacuum
of ∼5 Å (Lz ∼ 10 Å) is sufficient to converge the relative
eigenvalues (other values, such as the work function and
ionization energies, require a larger vacuum to prevent interac-
tions between periodic images). However, when we compute
the polarizability and related quantities in the GW approach,
we end up calculating a response function that is long ranged,
and it becomes computationally unfeasible to include enough
vacuum to prevent periodic images from interacting.

One effective solution for this problem is to explicitly trun-
cate the Coulomb interaction in real space along the aperiodic
direction. This is implemented in the BerkeleyGW package [29]
following Ismail-Beigi’s scheme [30]. The truncated Coulomb
potential has a closed form in reciprocal space,

vtrunc(q) = 4π

q2

[
1 − e− qxyLz

2 cos

(
qzLz

2

)]
, (1)

where qxy = (q2
x + q2

y )1/2. This allows us to directly compute
the static RPA inverse dielectric matrix without spurious
interactions between the repeated monolayers in our supercell
geometry as

ε−1
GG′(q) = δGG′ + vtrunc(q + G)χGG′(q), (2)

where χGG′(q) is the static noninteracting RPA polarizability.
We now examine how the features of the dielectric matrix

evolve with supercell size with and without Coulomb trun-
cation. In isotropic bulk systems, the screening is dominated
by the “head” element G = G′ = 0 [18,31–33]. In quasi-2D
systems, however, the Gz’s (the reciprocal lattice vectors along
the aperiodic direction) are almost continuous, so it is no longer
reasonable to look at the single element Gz = 0. In Fig. 1, we
plot ε−1

GG′(q) for elements where Gx = G′
x = Gy = G′

y = 0
and Gz = G′

z for several different values of Gz. When the
truncated Coulomb interaction is used, the behavior of ε−1

GG′(q)
changes depending on whether Gz is odd or even. ε−1(q) goes
smoothly to a value less than 1 as q goes to 0, when Gz is odd,
and sharply returns to 1 as q goes to 0, when Gz is even. This
behavior arises from the cos term in the truncated Coulomb
interaction, and contrasts with the untruncated case, where
ε−1(q) goes to a number less than 1 as q goes to 0 for all Gz’s,
with most of the screening coming from Gz = 0.

The screening behavior with and without Coulomb trunca-
tion also depends, unsurprisingly, on the amount of vacuum
Lz. In both cases, consecutive Gz’s for Gz > 0 become more
similar as Lz increases, since the separation between Gz’s is

FIG. 1. Evolution of the first few diagonal elements of the inverse
dielectric matrix, ε−1(q), for Gx = Gy = G′

x = G′
y = 0 and Gz =

G′
z with (left) and without (right) Coulomb truncation for Lz = 15

[(a) and (b)], 20 [(c) and (d)], and 25 Å [(e) and (f)] supercell sizes. A
cutoff of 35 Ry and 6000 bands was used for calculating all ε−1

G,G′ (q)
in this figure. The value of Gz is given in units of 2π

Lz
.

2π
Lz

. Consequently, the number of Gz’s required to capture the
screening behavior increases proportionally with Lz.

There is also a direct correlation between the q-dependence
of the dielectric matrix with Lz when we employ the truncated
Coulomb interaction. As shown in the left panels in Fig. 1, the
“dip” feature for even Gz’s becomes sharper as Lz increases,
so the k-point sampling must be fine enough to resolve
the features in ε−1

00 (q). An important consequence is that
convergence of k-point sampling is tied to the size of the
supercell. Figure 2 shows the convergence of the QP gap with
respect to k-point sampling and the size of the vacuum. When
Coulomb truncation is used [Fig. 2(b)], the QP gap converges
more slowly for larger Lz’s, reflecting the need to resolve
sharper features in ε−1

00 (q). However, the QP gap converges to
the same value regardless of the supercell size when Coulomb
truncation is used.

The picture is different and shows a significantly slower
k-point convergence when we do not employ Coulomb
truncation. As shown in Fig. 2(a), the QP gap still displays
a very strong dependence on k-point sampling at the densest
grid size of 36 × 36. There are two important differences here
with respect to the case with truncated Coulomb potential:
(1) these calculations converge to a smaller incorrect QP gap
and (2) the convergence with respect to k-point sampling is
not monotonic but changes direction as the k-grid sampling
becomes finer. Both these facts are understood from the long-
wavelength behavior of the screening. Whenever q � 1/Lz,
the calculation without a truncated Coulomb potential includes
a spurious polarization due to the repeated monolayers in
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FIG. 2. Convergence of the error in the QP gap with k-point
sampling (a) without Coulomb truncation and (b) with Coulomb
truncation, for supercell sizes Lz = 15 (black squares), 20 (blue
circles), and 25 Å (red triangles). Zero is set to the QP gap with
Coulomb truncation extrapolated to infinite k-point sampling for
Lz = ∞.

the aperiodic direction. This spurious term screens out the
Coulomb interaction and decreases the QP gap.

Finally, it is important to mention the dependence of the
number of bands needed for the various quantities in the GW

calculation on Lz. The number of empty states included in
our calculation is well approximated by the number of plane
waves |G〉 with kinetic energy less than the dielectric cutoff
E = |G|2/2, so it is proportional to the supercell volume. If
the number of bands is kept constant while Lz is increased, the
screening will not be captured properly in the GW calculation,
and the QP gaps will be overestimated. We attribute the reason
why some studies found that the QP gaps increase much more
when the vacuum is increased to this false convergence [22,25].

B. Effective 2D dielectric function

For simplicity, we discuss here the static dielectric function.
The same discussion caries over for the dynamic case. In
general, the dielectric function of a material is defined as the
following relation between the bare Coulomb potential v and
the effective screened Coulomb interaction W :

W (r1,r2) ≡
∫

d3r3 ε−1(r1,r3)v(|r3 − r2|). (3)

Our goal now is to define an effective 2D dielectric
function between two electrons in a monolayer material. Due
to confinement, the modulus squared of the wave function
(in a tight-binding framework) associated to either electron,
l = 1,2, can be written as ρi(r − sl), where i = 1,2 labels
different orbitals and sl is a coordinate in the xy plane around
which the orbital is centered. In analogy to Eq. (3), we
define the effective 2D inverse dielectric function in terms of

the strength of the electronic interaction integration between
orbitals i and j as

Wij (s1,s2) ≡
∫

d3r1 d3r2 ρi(r1 − s1)W (r1,r2)ρj (r2 − s2)

≡
∫

d2s3
(
ε−1

2D

)
ij

(s1,s3)v(|s3 − s2|). (4)

In order to gain further insight on the form of the response
function, we assume that both W and ε−1

2D are isotropic and
depend only on s ≡ |s2 − s1|. Such a simplification allows us
to write the strength of the electronic interaction between the
two orbitals in real space as

Wij (s) = 1

2πLz

F0

⎡
⎣∑

GzG′
z

ρ∗
i (q + Gz)WGzG′

z
(q)ρj (q + G′

z)

⎤
⎦(s),

(5)

where ρ(q + Gz) ≡ ∫
d3rei(q+Gz)·rρ(r) and F0[f ](s) ≡

2π
∫ ∞

0 dq q f (q) J0(qs) is the Hankel transform of f .
In reciprocal space, the effective 2D inverse dielectric

function is simply the ratio between the 2D screened Coulomb
interaction [2D Fourier transform of Eq. (5)] and the truly two-
dimensional bare Coulomb potential, v2D(q) = 2πe2/q. The
simplest choice of orbitals is a delta function at r = (s,z = 0),
which yields the effective 2D screening

ε−1
2D (q) = q

2πe2Lz

∑
GzG′

z

WGzG′
z
(q). (6)

Equation (6) defines an effective 2D dielectric for a quasi-
2D material, where the complicated details of the screening
in the out-of-plane direction z have been integrated out. We
note that our expression for ε−1

2D (q) differs from that defined in
Refs. [25,34], who define it by the field in a region in the slab
induced by a plane-wave external potential. In contrast, Eq. (6)
measures how much the bare 2D Coulomb potential v2D(q) =
2πe2/q between two point charges in the middle of the MoS2

plane gets screened due to electronic screening. This is the
relevant quantity to derive low-energy Hamiltonians to model
electron-electron and electron-hole interactions in quasi-2D
systems, including excitonic states and electron scattering.

In Figs. 3(c)–3(f), we show the reciprocal-space effective
2D dielectric function ε2D(q). The corresponding real-space
curves are obtained by taking the Hankel transform of Eq. (6)
and are shown in Figs. 3(a) and 3(b). There is a very sharp
peak in ε2D(s) at s = 1.5 Å, which corresponds to roughly
half the thickness of the slab. This peak can be understood
if we consider the Coulomb interaction between two point
charges embedded in a quasi-2D semiconductor: as in 2D
semiconductors, if two charges are very close together, there
is not enough space for the electronic cloud to polarize, so
ε2D(s→0) = 1. At the same time, if the two charges are very
far away, the field lines connecting the charges travel mainly
through the vacuum, so they are not much affected by the
intrinsic dielectric environment of the quasi-2D semiconductor
and ε2D(s→∞) = 1. Therefore there is a finite distance smax

where ε2D(smax) must exhibit its maximum. The value of the
peak of ε2D(smax) depends on the polarizability and thickness
of the material. We note that Lz should have no effect on the
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FIG. 3. Effective 2D screening between two point charges in
the Mo plane with Coulomb truncation (left) and without Coulomb
truncation (right). (a) and (b) compare the effective screening in real
space when Lz = 15 (solid blue) and 25 Å (dotted red) with a 35-Ry
cutoff. (c) and (d) are the corresponding reciprocal space plots of
(a) and (b). (e) and (f) compare effective screening in reciprocal
space when the cutoff is 35 (dashed red) and 8 Ry (solid green) with
Lz = 25 Å.

effective 2D screening as long as it is large enough to contain
the charge density within the truncated Coulomb interaction
approach. This is not true for the untruncated case.

For very short distances (s < 1 Å), the effective 2D di-
electric screening with and without truncation are similar, but
at larger distances, polarizability of the replica slab together
with the long-range interaction results in drastic overscreening.
Instead of approaching 1, ε2D(s) approaches a larger finite
constant, which is the macroscopic dielectric constant of a
bulk system consisting of layers of MoS2 separated by layers of
vacuum. While this constant indeed approaches 1 as Lz → ∞,
it does so very slowly. Thus it is very important to truncate the
Coulomb interaction to include correctly the effects of the
dielectric response of quasi-2D systems.

Similar features are seen in the effective 2D dielectric
function for the converged results in reciprocal space, as shown
in Figs. 3(c) and 3(d). Specifically, (1) there is a peak in ε2D(q);
(2) when the Coulomb interaction is truncated, ε2D(q) does not
depend on Lz; and (3) while ε2D(q→0) = 1 when we truncate
the Coulomb potential, it incorrectly approaches a different
and larger value when we don’t truncate the potential.

We also show the effective screening for different energy
cutoffs for the dielectric matrix, in Figs. 3(e) and 3(f). The
effect of changing the dielectric cutoff is similar for both
the truncated and untruncated Coulomb interactions. For very
small q’s, before the peak, screening does not depend strongly
on the cutoff. For larger q’s, decreasing the cutoff results
in overscreening. Therefore depending on the property one

is interested in (quasiparticle or excitonic levels), different
convergence parameters may have to be used. In particular,
the convergence of quasiparticle states, as computed within
the GW approximation, converges very slowly because the
self-energy depends on ε at both short and long distances.

Finally, we compare the effective 2D screening ob-
tained from our ab initio calculations with the screening
model developed by Keldysh [35], which is frequently used
to describe screening of excitons in quasi-2D materials
[7,34,36–39]. In the Keldysh model, which is based on a slab
of constant dielectric value, the potential between two charges
in a slab of thickness d has the form

V2D(s) = πe2

2ρ0

[
H0

(
s

ρ0

)
− Y0

(
s

ρ0

)]
, (7)

where H0 and Y0 are, respectively, the Struve and Bessel
functions of the second kind and ρ0 is a screening length, which
is ρ0 = dε

2 [35], where ε is the in-plane dielectric constant of
the bulk material. If the slab is taken to be strictly 2D, it has
been shown [36] that the screening length is proportional to
the 2D polarizability of the layer, and taking the 2D Fourier
transform of Eq. (7) results in a dielectric function of the form

ε2D(q) = 1 + ρ0q, (8)

where ρ0 = 2πα2D. Here, α2D is the 2D polarizability and
can be related to the polarizability of the actual quasi-2D
slab by fitting to the long wavelength limit of the ab initio
polarizability. We fit the Keldysh model to our ab intio effective
dielectric function at small q, as defined in Eq. (6), and obtain
an effective screening length of ρ0 = 35 Å or an effective slab
thickness of d = 6 Å, which is about twice the thickness of
monolayer MoS2 measured from the center of the sulfur atoms.
A comparison of our ab intio effective dielectric function with
the best fit to the Keldysh model is shown in Fig. 4. We see that

FIG. 4. Comparison of the effective 2D screening as defined by
Eq. (6) (red lines) with the Keldysh model (black lines) in real space
(a) and reciprocal space (b). The Keldysh model uses an effective
slab thickness of d = 6 Å to obtain the best fit to the ab initio results.
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the Keldysh model can be adjusted to give a good description
of the form of the screening in the long-wavelength limit and
thus can describe the screening seen by excitons as long as the
exciton radius is on the order of or larger than the screening
length ρ0, which is unknown without an ab initio calculation.
Moreover, for phenomena that depend on short-range or
varying length scale screening, the Keldysh model would
drastically overestimate the screening in quasi-2D systems.

III. QUASIPARTICLE BAND STRUCTURE

In this section, we discuss the computational details and
results of our GW calculation of the QP band structure.

A. Computational details and convergence

We use density functional theory (DFT) [40,41], as im-
plemented in QUANTUM ESPRESSO [42], in the local density
approximation (LDA) to obtain a mean-field starting point
for our GW calculation [18]. Different choices of the DFT
functional and a relaxed versus experimental crystal structure
can result in about 0.1 eV difference in the QP gap of MoS2.
We find that relaxing the structure with an LDA functional in-
creases the gap at K by 0.04 eV compared to the experimental
structure. Given identical structures, using a GGA functional
decreases the gap by 0.03 eV compared to LDA.

We use norm-conserving pseudopotentials and include the
Mo 4s and 4p semicore states and the 4d valence state. Includ-
ing the semicore 4s and 4p states is necessary to accurately
capture the exchange contribution to the self-energy. However,
these deep 4s and 4p states are not included in the charge
density used in the Hybertsen-Louie generalized plasmon pole
(HL-GPP) model [18] to calculate the self-energy, since they
are more than 35 eV below the Fermi energy and, thus, do
not contribute to low-energy screening. We use a supercell
with 25 Å of vacuum in the aperiodic direction, and we relax
the supercell using a wave function cutoff of 350 Ry and a
24 × 24 × 1 k-grid, resulting in an in-plane lattice constant of
3.15 Å, which deviates less than 1% from the experimental
lattice constant of few-layer MoS2 [43]. Then, we generate
wave functions used in the GW -BSE calculation using a wave
function[18] cutoff of 125 Ry, which is sufficient to converge
the bare exchange contribution to the QP gap to within 0.01 eV.

Our GW calculation is performed with the BerkeleyGW

package [29] using supercomputers at NERSC and XSEDE
[44]. We calculate the dielectric matrix using the truncated
Coulomb interaction discussed in Sec. II and using a 24×24×1
k-point sampling to converge the QP gap to within 0.05 eV
(see Fig. 2). We take into account dynamical screening effects
in the self-energy through the HL-GPP model. We also use
the static remainder technique [45] to reduce the number of
necessary unoccupied states.

As discussed in our previous work [5], GW calculations
on MoS2 and TMDs in general converge very slowly with
respect to the energy cutoff (ES) of the dielectric matrix
and the number of bands (Nb) included in the polarizability
and Coulomb-hole summations of the self-energy. The slow
convergence of ES arises from the presence of localized d

orbitals near the Fermi energy and the different character of
the valence and conduction bands. The slow convergence of
Nb arises due to the large number of G vectors in the dielectric

FIG. 5. Convergence of the QP gap at the M point with respect to
the number of bands included in the partial sum for the Coulomb-hole
contribution to the self-energy, for dielectric cutoffs of 15 (blue),
25 (red), 35 (green), and 45 (magenta) Ry. The static remainder
correction is included. The dashed lines indicate the value of the QP
gap extrapolated to infinite bands.

matrix and the supercell size, as discussed in Sec. II A. Our
calculation required Nb = 6000 bands and a dielectric cutoff of
ES = 35 Ry to converge the QP gaps to better than 0.05 eV, for
a total error bar of ∼0.1 eV when combined with the error bar
due to k-point sampling. To test the convergence of the number
of bands, we calculated QP gaps with a dielectric cutoff of up
to ES = 45 Ry and up to Nb = 12 000 bands (Fig. 5).

As Shih et al. [46] have noted, the dielectric cutoff
and bands are interdependent parameters and attempting to
converge the number of bands using a dielectric cutoff that
is too small or converge the dielectric cutoff using too few
bands will result in false convergence. The static remainder
technique speeds up convergence considerably when only a
few bands are included, but for a precision of greater than
0.1 eV, the convergence with respect to bands for a fixed ES is
about the same with and without static remainder. The static
remainder is still helpful, however, because when using static
remainder, convergence with respect to bands is in the opposite
direction as convergence with respect to ES , resulting in some
cancellation of error.

We also self-consistently update the eigenvalues of the
Green’s function, G, when building the self-energy operator
�. We find that going to G1W0 increases the QP gap at K by
0.08 eV compared to G0W0. Further updating G increases the
QP gap at K by only 0.02 eV, so we stop at the G1W0 level.
The band gap is 2.59 eV at the G0W0 level and 2.67 eV at the
G1W0 level, with spin-orbit interactions included.

We also compare results obtained using the HL-GPP model
with the full-frequency dielectric matrix calculated using the
contour-deformation approach [47,48]. At the G0W0 level, the
full-frequency band gap is 2.45 eV and increases to 2.54 eV
after self-consistently updating the eigenvalues in G. Thus
inclusion of the explicit dynamical effects decreases the gap
by 0.13 eV compared with the HL-GPP.

We include spin-orbit as a perturbation, and find that the
valence band at K is split by 0.15 eV. The details of the
implementation are discussed in Sec. IV A 3.

B. Results

The band structure of monolayer MoS2 at the LDA and
G1W0 levels are shown in Fig. 6. We find that monolayer
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FIG. 6. LDA (dashed blue curve) and G1W0 (solid red curve)
band structure of monolayer MoS2.

MoS2 is a direct band-gap material at all levels of theory. The
direct gap at the K point increases from 1.71 eV at the LDA
level to 2.59 eV at the G0W0 level to 2.67 eV at the G1W0 level.
The spin-orbit splitting of the valence band at K is 0.15 eV.

The GW correction varies by k point. The largest correction
to the gap is 1.2 eV at the M point, and the smallest is 0.96 eV
at the K point. The GW correction also changes the effective

masses, making the electron mass smaller than the hole mass.
At the LDA level, the electron and hole effective masses at
the K point are 0.5m0 and 0.6m0, respectively. At the G1W0

level, the electron and hole effective masses are 0.4m0 and
0.2m0, respectively.

1. Comparison with other calculations

There is significant disagreement on the electronic structure
of monolayer MoS2, including whether it has a direct or
indirect gap, at various levels of theory, though it is well-known
that the experimental gap is direct [13]. We compare our results
with previous GW calculations on monolayer MoS2 in Table I.
Several calculations [24,25] find an indirect gap from 	 to K at
the G0W0 level and Shi et al. [24] argue that self-consistently
updating G makes the gap direct. We find a direct gap at the K

point at all levels of theory regardless of k-point sampling and
the truncation of the Coulomb interaction. Different k points
converge with respect to Nb and ES at different rates, and the
	 point converges much more quickly than the K point, so the
indirect gap seen in some calculations is likely an artifact of a
too small dielectric cutoff. Because the self-energy correction
is larger at 	 than at K , self-consistently updating G may
fortuitously restore the direct gap in those calculations.

Besides convergence, the largest source of differences
across previous GW calculations on monolayer MoS2 is
the use of a truncated Coulomb interaction. As discussed in
Sec. II A and also seen in Refs. [22,25], not using Coulomb
truncation in a calculation with periodic boundary conditions
results in over screening and decreases the QP gap by
100–300 meV depending on the supercell size used.

TABLE I. Comparison of smallest quasiparticle band gap (EGW
gap,min) and the QP gap at the K point (EGW

gap,K ) from a selection of different
GW calculations on monolayer MoS2. The calculations differ by the use of the truncated Coulomb interaction, the level of self-consistency, the
method for including dynamical effects in the polarizability and the mean-field starting point, including the DFT functional and the in-plane
lattice constant (a), as well as convergence parameters. The compared convergence parameters are: use of Coulomb truncation, supercell
size along the aperiodic direction (Lz), k-grid size, the energy cutoff for the dielectric matrix (ES), and the number of bands included in
the summation in the polarizability and the Coulomb-hole term in the self-energy (Nb). The methods for describing dynamical effects in
the polarizability (Freq. Dep.) are the Hybertsen-Louie generalized plasmon pole (HL) model [18], the Godby-Needs plasmon pole model
(GN) [49], or explicit calculation of the full frequency dielectric matrix (FF).

Convergence parameters QP gaps

Coulomb Lz ES Freq. Starting mean field
EGW

gap,K EGW
gap,min Direct

Trunc. (Å) k grid (Ry) Nb Dep. DFT a (Å) (eV) (eV) Gap

Present Y 25 24 × 24×1 35 6000 HL LDA 3.15 2.67 2.67 Y
Work (G1W0) Y 25 24 × 24×1 35 6000 FF LDA 3.15 2.54 2.54 Y

G1W0 [5] Y 25 24 × 24×1 35 6000 HL LDA 3.15 2.7 2.7 Y
G1W0 [5] Y 25 12 × 12×1 35 6000 HL LDA 3.15 2.84 2.84 Y
G0W0 [16] Y 25 24 × 24×1 35 6000 HL PBE 3.18 2.63 2.63 Y
G0W0 [25] Y 23 45 × 45×1 3.7 200 GN LDA 3.16 2.77 2.58 Na

G0W0 [23] N 24 18 × 18×1 2b 200 GN LDA 3.15 2.41 2.41 Y
G0W0 [22] N 20 12 × 12×1 15 120c FF PBE 3.18 2.60 2.60 Y
G0W0 [24] N 19 12 × 12×1 22 197 FF PBE 3.16 2.60 2.49 N
sc-GW 0 [24] N 19 12 × 12×1 22 197 FF PBE 3.16 2.80 2.80 Y
G0W0 [4] N 15 6 × 6×1 20 96 FF HSE 3.18 2.82 2.82 Y
sc-GW 0 [50] N 9 – 7 – FF PBE 3.19 2.40 2.40 Y
QSGW [21] N 19 8 × 8×2 – – FF LDA – 2.76 2.76 Y

aGap from 	 → K.
bES estimated from supercell size and number of reported G vectors in dielectric matrix (50).
cNumber of bands estimated from supercell size and reported energy of highest band.
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FIG. 7. (a) Convergence with respect to k-point sampling of the
exciton continuum (dashed lines) and the first (1s) excitation energy
(solid lines) for the A series of excitons when setting W (q → 0) = 0
(red) or using W avg(q → 0) (black). (b) Convergence of the binding
energy, defined as the difference between the continuum onset and
the excitation energy of the first exciton in the A series when setting
W (q → 0) = 0 (red) or using W avg(q → 0) (black).

IV. OPTICAL PROPERTIES

A. Computational details and convergence

1. False convergence and shift of the electron-hole continuum

As several works have noted, the optical properties of mono-
layer MoS2, as calculated using the Bethe-Salpeter equation
(BSE) formalism, converge very slowly with respect to k-
point sampling [5,22,25]. In reduced-dimensional systems, the
screening varies rapidly as q approaches the long wavelength
limit (see Sec. II). Excitons at the K point in MoS2 are highly
localized in momentum space, which means they are extended
in real space, so most of the screening comes from the rapidly
varying portion of ε2D(q). Hence convergence with respect to
k-point sampling is slow because it is necessary to resolve the
fast changes in spatial dependence in screening. The extent of
the exciton wave function in k space is discussed in greater
detail in Sec. IV B 2. We find that a 300 × 300 × 1 k grid
is required to converge the exciton binding energy to within
0.1 eV (Fig. 7) for the lowest energy state. It is even more
demanding for the excited exciton states.

The convergence of the excitation energies with k-point
sampling varies depending on the treatment of the divergent
term W (q = 0). For semiconductors, the screened Coulomb
interaction W (q) diverges at q = 0, and it is common to
avoid this divergence by replacing the screened interaction,
W (q = 0), with an average over a small region of the Brillouin
zone [25,29] near q = 0. We compare two different methods
of treating the q = 0 term. In the first, we average the screened
Coulomb interaction over a small volume in reciprocal
space around q = 0. That is, we replace the divergent term,

W00(q→0), with

W
avg
00 (q) = NqV

(2π )2Lz

∫
cell

W00(q)d2q, (9)

where “cell” indicates an integral over the volume of the
Voronoi cell around q = 0,Nq is the total number of q points,
V is the volume of the unit cell in real space, and W00 refers
to the divergent “head” element, G = G′ = 0.

This averaging treatment results in faster convergence of the
excitation energies with k-point sampling, but the convergence
is nonvariational, i.e., the excitation energy initially increases
with k-point sampling [Fig. 7(a)]. The nonvariational conver-
gence occurs because replacing W (q = 0) with its average
means that a k-point-dependent value is being added to the
diagonal of the BSE matrix, which is equivalent to shifting the
exciton continuum by W avg(q = 0).

We emphasize that, while the widely-used averaging
scheme is useful for improving the convergence of the
excitation energies, it may lead to misleading binding energies,
defined as the difference between the optical gap and the
continuum of optical transitions. From Fig. 7, the excitation
energy from a relatively coarse 24 × 24 × 1 k-grid appears to
agree better with experiment than finer k grids, but if the shift to
the continuum energy is taken into account, the binding energy
is only 0.2 eV. As k-grid sampling increases, the continuum
energy increases linearly with 1/

√
Nk. Even more surprisingly,

the excitation energy varies in a nonuniform way, and increases
until we hit a k grid finer than about 90 × 90. For k grids finer
than this, we start to sample q vectors before the peak in the
quasi-2D dielectric screening. Because the excitons are fairly
spread out in real space, it is necessary to sample very small
wave vectors to capture the small screenings associated with
these length scales.

In an alternative treatment of q = 0, we fix the exciton
continuum at the QP gap (Ec − Ev) by setting W00(q = 0) =
0, which is the value of W avg in the limit of infinite k points.
In this scheme, the excitation energies converge slower with
respect to k-point sampling, but the continuum does not move
and the convergence is variational. There is again a kink in
the convergence of the excitation energy around 90 × 90,
which comes from increased sampling in the small q region.
If we define the binding energy as the difference between the
excitation energy and the onset of the electron-hole or exciton
continuum, the binding energy converges at roughly the same
rate regardless of the treatment of W (q = 0).

Therefore, even though the commonly-used averaging
scheme of the screened Coulomb interaction typically con-
verges the optical excitation faster, it does so by moving the
continuum of optical excitations and introduces errors in both
the excitonic wave functions and the energies of higher excited
exciton states. This is particularly important if one is interested
in properties such as the radius of the excitonic wave function
or the energies and characters of excited excitonic states.

As a final remark, we note that the fact that the exciton is
tightly localized in k space reduces the dielectric cutoff, ES ,
needed to capture the screening for exciton calculations as
opposed to those for those for QP energies. As seen in Fig. 3,

for q < 0.1 Å
−1

, the screening is the same for ES = 8 and 35
Ry. Indeed, when we reduce the cutoff from 35 to 8 Ry the
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binding energies of the first 40 excitonic states change by less
than 10 meV.

2. Computational details

In this section, we describe the techniques that allows us
to solve the BSE with a very dense k-point sampling and
include spin-orbit effects. In Fig. 7, we explicitly solve the
BSE on k grids with up to 600 × 600 × 1 k points in the
full Brillouin zone. However, to save computational cost, we

only included k points within 0.2 Å
−1

of the K point. This
is reasonable for testing convergence, since more than 99%
of states contributing to the lowest energy exciton fall within

0.1 Å
−1

of the K point. To obtain the entire optical spectrum,
however, it is necessary to consider the entire Brillouin zone
using a k-point sampling of at least 300 × 300 × 1, which is
very computationally demanding.

Rohlfing and Louie [19] originally proposed an interpola-
tion scheme to eliminate this computational bottleneck using
two distinct k grids, a coarse one where the matrix elements for
the BSE are calculated, and a fine one onto which the matrix
elements are interpolated and on which the BSE Hamiltonian is
diagonalized. However, this interpolation scheme is no longer
accurate for quasi-2D materials since the dielectric matrix has
a lot of structure for small q’s, contrary to the case for bulk
systems.

Here, we modify this interpolation scheme to fully capture
these fast variations in ε−1

00 (q) for small q’s. As in the
original scheme, we use two k grids: a fine 300 × 300 × 1
k grid and a coarse 24 × 24 × 1 k grid where we explicitly
calculate the BSE matrix elements between all coarse k points
kco. However, in addition to these matrix elements, we also
calculate transitions from each coarse k point to a number of
fine k points that form a cluster around each coarse k point.
We call this second set of matrix elements that capture small
q’s the cluster matrix elements.

When we perform the interpolation of the matrix elements
from the coarse to the fine k-grid, we use the original scheme
from Rohlfing and Louie [19] if a particular transition has a
wave vector q = kfi − k′

fi larger than a given threshold. Oth-
erwise, we use the cluster matrix element. This interpolation
scheme explicitly captures the fast variation in screening at
small q’s, and the resulting excitation energies of the first 20
exciton states are within 20 meV of excitation energies found
by explicitly calculating the BSE matrix on a 300 × 300 × 1
k grid.

In addition to k-point sampling, it is also important
to consider spin-orbit interactions in the optical absorption
spectrum. If one directly solves the BSE on a relativistic basis
set that includes spin-orbit interactions, the time to diagonalize
the BSE grows by a factor of 64 compared to the nonrelativistic
case and would not allow one to use such fine k-point sampling.
An alternative scheme to include spin-orbit interactions is
therefore desirable.

Our solution is to take advantage of the facts that (1) spin-
orbit splitting is smaller than the exciton binding energy and (2)
spin along the z axis is a good quantum number at the K and K ′
points for monolayer TMDs [2]. This allows us to efficiently
include spin-orbit effects as a perturbation. We perform both a
spin-unpolarized DFT calculation, which is used as the starting

wave functions for our GW calculation, and a noncollinear cal-
culation with spin-orbit interactions included. We approximate
the first-order spin-orbit correction to the GW quasiparticle
energies to be the difference between the two Kohn-Sham
eigenvalues. That is, we take 
εSO

GW (nkσ ) ≈ 
εSO
LDA(nkσ ) ≡

εnoncol(nkσ ) − εunpol(nk), where σ is the spinor index of the
states in the noncollinear calculation. This is a reasonable
approximation since the overlaps between the spinor wave
functions and the scalar wave functions are exactly 1 at K and
greater than 0.7 in other regions with spin-orbit splitting, in
our LDA calculation.

To obtain the absorbance with spin-orbit interaction, we
apply a first-order perturbation theory to the solution of
the Bethe-Salpeter equation, which is justifiable because the
quasiparticle gap (∼2.7 eV) is much larger than the spin-
orbit splitting (∼150 meV). Each excitonic state |S〉 can be
expanded as a linear combination of pairs of single-particle
valence and conduction band states as

|S〉 =
∑
vck

AS
vck |vck〉 . (10)

We want to calculate the spin-orbit corrected exciton
energies S

σ = S + 
S
σ , where S is the energy of the |S〉

state, neglecting spin orbit, and 
S
σ is the first-order energy

correction,


S
σ ≡ 〈S|H SO

σ |S〉
=

∑
vck

∑
v′c′k′

(
AS

v′c′k′
)∗

AS
vck 〈v′c′k′|H SO

σ |vck〉 , (11)

where the spin-orbit Hamiltonian H SO is block-diagonal in the
spin index σ and H SO

σ is a block of the spin-orbit Hamiltonian
for the spin σ .

We assume that H SO
σ is diagonal in the |vck〉 basis, which

is valid due to the large overlap between the spinor and scalar
wave functions. Then, the spin-orbit correction to the excited-
state energies becomes


S
σ =

∑
vck

∣∣AS
vck

∣∣2

εSO

vckσ , (12)

where 
εSO
vckσ are the spin-orbit corrected differences in energy

between the valence and conduction states


εSO
vckσ = (

εGW(ck) + 
εSO
GW(ckσ )

)
− (

εGW(vk) + 
εSO
GW(vkσ )

)
. (13)

Finally, the imaginary part of the dielectric function
with spin-orbit interactions is calculated using the spin-orbit
corrected exciton energies,

ε2(ω) = 16π2e2

ω2

∑
Sσ

|e · 〈0| v|Sσ 〉|2δ(ω − S
σ

)
, (14)

where e is the polarization of the incoming light, v is the
velocity operator, and |Sσ 〉 = |S〉.

B. Optical spectrum

The absorption spectrum of monolayer MoS2 with and
without electron-hole interactions is shown in Fig. 8. The
lowest-energy exciton, which forms peak A in the spectrum,
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(d) Interband transition energies:

4.2 eV

2.7 eV

FIG. 8. (a) Absorption spectra of MoS2 without (dashed red
curve) and with (solid green curve) electron-hole interactions using
a constant broadening of 25 meV. (b) Same calculated data as in
(a), but using an ab initio broadening based on the electron-phonon
interactions [51,52]. (c) Experimental absorbance [13]. (d) Direct
valence to conduction band transition energies in the first Brillouin
zone.

has a binding energy of 0.63 eV. Peaks A and B are spin-orbit
split states that arise from excitons forming from transitions
between the spin-orbit split valence band maximum and the
conduction band minimum at the K and K ′ points in the
Brillouin zone. Both A and B have bright excited states, which
we label A′, B′, etc. The peak A′′ overlaps with peak B′. We also
see a large peak, which we label peak C, near the continuum
onset at 2.7 eV.

The lowest interband transition energies, i.e., the energies
of direct transitions from the valence band to the conduction
band throughout the Brillouin zone, are shown in Fig. 8(d).
The deepest valleys are parabolic valleys at K and K ′ points,
which give rise to the A and B series of excitons. There is also
a shallower Mexican-hat shaped valley around the 	 point.
Transitions from this Mexican-hat valley give rise to peak C
and its excited states.

The fine features due to excited states of peaks A and B,
which appear in our calculated spectra, are broadened out in the
experimental spectra. This is a signature of lifetime effects due
to electron-phonon and other interactions. We account for the
electron-phonon lifetime effects in our calculation following

Marini [51], and the result is plotted in Fig. 8(b). We consider
both emission and absorption of phonons at T = 300 K, and we
extrapolate the scattering rate for quasiparticle energies larger
than those computed by Li et al. [52]. This leaves the A and B
peaks relatively sharp, while broadening out the intermediate
peaks between B and C, resulting in excellent agreement with
experiment for peak shape and position and the magnitude of
the absorbance.

1. Comparison with other calculations

As with the QP band gap, there is a wide range of
disagreement in the literature about the binding energy of the
exciton giving rise to peak A at the GW -BSE level, with values
ranging an order of magnitude from 0.1–1.1 eV. A comparison
of values obtained in different calculations is given in Table II.
There is, however, a smaller spread in the calculated values of
the excitation energy of peak A. This is largely because errors
which result in over screening or under screening tend to affect
the QP gap and binding energy in opposite ways, resulting in a
cancellation of error in the excitation energy. The main sources
of difference across various BSE calculations in the literature
are (1) the k-grid sampling, as mentioned in Sec. IV A 1 and (2)
the truncation of the Coulomb interaction. Coulomb truncation
is especially important to obtain the correct binding energy
because, as seen in Figs. 3(a) and 3(b), Coulomb truncation
mainly affects screening in the small-q region where the
exciton wave function is sensitive because of its localization in
k space. For instance, Refs. [25] and [23] have both noted that
very fine k-point sampling is required to converge the solution
of the BSE, yet obtain drastically different results (0.6 and
0.15 eV, respectively) for the binding energy.

C. Excitonic spectrum of series A and comparison with
Rydberg series

We can obtain further insight of the structure of the
excitonic states by comparing them to a 2D hydrogenic model.
In Fig. 9, we plot the energies of the excitons in the series A
obtained from our GW -BSE calculation with those from an
effective 2D hydrogenic model Hhydrog = − ∇2

2m∗ + e2

ε∗r . This
effective model is built by fitting the effective dielectric
constant ε∗ to reproduce the binding energy of peak A. Because
there is very little coupling between the K and K ′ valleys [55],
the A and B series of excitons are both doubly degenerate. We
focus here on the states in the A series coming from a single
valley.

As previously noted [5,7,10,11], the hydrogenic model
deviates from the ab initio results in two significant ways:
(1) first, the binding energies of excited states are much larger
than expected from a 2D hydrogenic model; and (2) states with
higher angular momentum have a larger binding energy than
states with lower angular momentum. Additionally, there is
also some splitting of states with the same angular momentum,
such as 2p and 3d, due to the trigonal warping of the MoS2

band structure at the K and K ′ valleys. The f states do not split
because they have the same three-fold symmetry as the band
structure. Although the excitation energies of the solutions of
the BSE deviate from the hydrogenic model, for simplicity, we
still label the states as 1s, 2s, 2p, etc., using the same notation
as a 2D hydrogenic model, based on the number of radial and
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TABLE II. Comparison of a selection of GW -BSE calculations for monolayer MoS2, including the excitation energy () of peaks A, B,
A′, B′, and C, and the binding energy (Eb) of peak A, which is taken to be the difference between the QP gap and the excitation energy. If
spin-orbit was not included in the calculation the excitation energy of peak B (B′) is reported as the same as peak A (A′). Parameters affecting
the calculation are k-grid sampling, the use of a truncated Coulomb interaction, and the number of valence (Nv) and conduction (Nc) states.

Convergence parameters Peak A Peak B Peak A′ Peak B′ Peak C

Coulomb trunc. k grid (Nv , Nc)  (eV) Eb (eV)  (eV)  (eV)  (eV)  (eV)

Present work Y 300 × 300 (4, 4) 2.04 0.63 2.17 2.32 2.45 2.7
Ref. [5] Y 300 × 300 (4, 4) 2.04 0.63 2.17 2.32 2.45 2.73
Ref. [5] Y 72 × 72a (7, 8) 1.88 0.96 2.02 2.20 2.32 2.54
Ref. [16] Y 60 × 60a (4, 4) 1.94 0.62 2.08 2.4 – 2.7
Ref. [25] Y 45 × 45 (1, 1) 2.2 0.6 2.2 – – –
Ref. [22] Nb 12 × 12 (–,–) 1.9 1.1 1.9 – – –
Ref. [23] N 51 × 51 (–,–) ∼2.2 0.15 ∼2.3 – – 3.0
Ref. [54] N 30 × 30 (2, 4) 2.0 ∼0.7 2.15 – – ∼2.95
Ref. [27] N 27 × 27 (6, 6) 2.03 – 2.14 – – >2.6
Ref. [26] N 16 × 16 (6, 8) 2.11 – 2.25 – – 2.55
Ref. [24] N 15 × 15 (6, 8) 2.22 0.54 2.22 2.5 2.5 3.0
Ref. [4] N 6 × 6 (4, 8) 1.78 1.04 1.96 – – 3.0
Ref. [50] N – (6, 8) 1.86 0.56 – – – –

ak grid interpolated following Rohlfing and Louie [53].
bEb and QP gap are extrapolated to Lz = ∞.

azimuthal nodes in the envelope function of the exciton wave
function.

To understand the physical reasons for these differences
between the hydrogenic model and the ab initio calculation, we
will first analyze the character of the excitonic wave functions
and see how the actual ab initio and q-dependent screening
differs from the hydrogenic model. Each excitonic state |S〉
can be expressed as a linear combination of the electron-hole
transitions |vck〉,

|S〉 =
∑
vck

AS
vck |vck〉 . (15)

FIG. 9. Comparison of the exciton state energy levels for the A
series obtained from ab initio GW -BSE calculation (left) with an
effective 2D hydrogenic model (right). Bright (dark) exciton states
are represented by opaque red (translucent blue) lines.

The coefficients AS
vck describe the envelope function or

electron-hole pair amplitude of the exciton wave function in
reciprocal space. The envelopes of the wave functions of the
first few states in the A series of excitons are plotted in Fig. 10.
The plots are centered around the K point in the Brillouin zone.
The nodal structure of the envelope function of the states is

FIG. 10. Electron-hole pair amplitudes of lowest energy exciton
wave functions in reciprocal space for states (a) 1s, (b) 2p, (c) 2s, (d)
3d , (e) 3p, (f) 4f , (g) 3d , (h) 4d , and (i) 4p. Each plot is centered
around the K point in the Brillouin zone.
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FIG. 11. (a) Modulus squared of the exciton wave function in real
space for the states 1s (solid blue line), 2s (red line with dash and
dot), 2p (green dashed line), and 3d (cyan line with dash and two
dots). (b) The effective 2D dielectric function over the same range in
real space.

apparent from this plot. The plots also show that the excitonic
wave functions are highly localized in k space, with most

transitions falling within 0.1 Å
−1

or about 5% of the Brillouin
zone. In fact, this is well within the region of fast variation in
screening seen in Fig. 3 and explains for the most part why
convergence with respect to k-point sampling is so slow, since
the k-point sampling must be fine enough to resolve both the
region before the peak in the dielectric screening and the nodal
structure of the exciton wave functions.

The deviations of the results of the ab initio calculation from
those of the hydrogenic model may now be understood. If we
compare the real-space screening ε(s) with the envelope of
the exciton wave functions in real space, as shown in Fig. 11,
it is clear that the varying distribution of the wave function
in real-space results in different states experiencing differ-
ent screening and therefore different effective electron-hole
interaction. In general, states with larger principal quantum
number n have a larger binding energy than expected from
the hydrogenic model because they have a larger radius
and are thus less screened than states with smaller radii.
Similarly, states with larger angular momentum quantum
number are more strongly bound than in the model because
there is a node in the wave function where screening is
strongest.

Therefore this effective state-dependent screening explains
why (1) excited excitonic states, such as 2s and 3s, appear
lower in energy than what is predicted by a 2D hydrogenic
model (which assumes a constant dielectric constant) and (2)
degenerate states with the same principal quantum number n

split, and the excitation energy for states with higher angular
momentum is lower.

V. CONCLUSION

In summary, we find that many-body effects, namely, the
electron-electron and electron-hole interactions for quasipar-
ticle and optical excitations, in MoS2 are well-described by
the GW -BSE method, which gives results in good agreement
with experimental optical spectra and conclusions about the
bandgap. We find that, for MoS2, G0W0 results do not differ
qualitatively from sc-GW 0, as has been previously claimed.
Instead, variations in GW -BSE results in the literature arise
largely from different treatments of the long-range Coulomb
interaction in periodic supercell calculations and convergence
of k-grid sampling and cutoffs for the dielectric screening.
We find that truncating the Coulomb interaction to prevent
artificial over screening from periodic images is essential to
obtain accurate results. The 2D nature of the system also gives
rise to strong spatial variations in screening, which must be
captured by very fine k-point sampling. The sharpest variation
in screening is at small q vectors (q � π/d, where d is the
layer thickness), where the screening rapidly vanishes as the
wave vector q approaches zero. Even finer k-point sampling
is required to converge the BSE, as the exciton electron-hole
amplitude functions in MoS2 are tightly localized in k space.
Finally, a large energy cutoff for the dielectric matrix is
required to capture the spatial variation associated with the
different characters of the VBM and CBM of MoS2, and a
correspondingly large number of empty states is required to
avoid artificially truncating the dielectric matrix and capture
the nearly continuous states arising from using a large vacuum.
These are general conclusions that can be applied to GW -BSE
calculations on any semiconductor in low dimensions.
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