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Length divergence of the lattice thermal conductivity in suspended graphene nanoribbons
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Thermal properties of graphene have attracted much attention, culminating in a recent measurement of its
length dependence in ribbons up to 9 μm long. In this paper, we use the improved Callaway model to solve the
phonon Boltzmann transport equation while capturing both the resistive (umklapp, isotope, and edge roughness)
and nonresistive (normal) contributions. We show that for lengths smaller than 100 μm, scaling the ribbon
length while keeping the width constant leads to a logarithmic divergence of thermal conductivity. The length
dependence is driven primarily by a ballistic-to-diffusive transition in the in-plane (LA and TA) branches, while
in the hydrodynamic regime when 10 μm < L < 100 μm, the contribution from the in-plane branches saturates
and the out-of-plane (ZA) branch shows a clear logarithmic trend, driven by the nonresistive normal contribution.
We find that thermal conductivity converges beyond L > 100 μm due to the coupling between in-plane and
flexural modes. This coupling leads to renormalization of ZA phonon dispersion in the long-wavelength range,
preventing further divergence of thermal conductivity. We also uncover a strong dependence on sample width,
which we attribute to the interplay between nonresistive normal and diffusive edge scattering in the Poisseuille
flow regime. We conclude that normal processes play a crucial role in the length and width dependence of thermal
transport in graphene in the hydrodynamic regime and dictate the relative in-plane (LA+TA) to out-of-plane
(ZA) contribution to transport.
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I. INTRODUCTION

In recent years, two-dimensional materials have been the
subject of intense research because of their unique elec-
tronic and thermal transport behavior. Among such materials,
graphene has been studied the longest and has shown the
most promising properties, with the highest reported thermal
conductivity (ranging from 1800 to 5300 W m−1 K−1) [1–3]
and electron mobility (intrinsic limit in the order of
105 cm2/V s) [4]. Engineering graphene devices require a
firm understanding of the thermal transport mechanism, which
is mainly dominated by phonons [5,6] because of strong
covalent sp2 bonding, which efficiently transfers heat by lattice
vibrations. Despite enormous progress in understanding the
thermal transport in graphene, there are several questions
yet to be answered. In three-dimensional samples, thermal
conductivity converges to the bulk value of graphite when
the size exceeds the mean free path (mfp) of phonons and
transport becomes entirely diffusive in nature. Heat conduction
in such a case is mainly governed by resistive umklapp
phonon-phonon scattering rather than scattering from the
rough boundaries. In contrast, a length-dependent behavior
of thermal conductivity has been observed in one-dimensional
(1D) and two-dimensional (2D) materials even for samples
much bigger than the mean free path of phonons. There are
rigorous mathematical proofs for such diverging behavior
in momentum-conserving one-dimensional systems [7–10]
and it has also been experimentally demonstrated for carbon
nanotubes [11]. However, in 2D materials, the reason for this
length divergence is still much in debate.

Recently, Xu et al. [12] provided experimental evidence
of this length divergence for samples as long as 9 μm
(around ten times greater than the average mean free path
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of acoustic phonons in suspended graphene) and attributed the
reasons for length divergence to the reduced dimensionality
and displacement of in-plane phonon populations at stationary
nonequilibrium conditions. In addition, quasiballistic propa-
gation of extremely long-wavelength acoustic phonons has
been demonstrated by Mei et al. [13], where they have shown
that about 20% of phonons have mean free path greater than
100 μm, indicating a wide ballistic to diffusive crossover
regime and thermal conductivity ultimately converging to
5800 W m−1 K−1. Nika et al. [14] emphasized the importance
of low-frequency acoustic phonons, illustrating that with
the increase in the sample size, more such low-frequency
phonons can be excited, which in turn contributes to thermal
conduction, thereby leading to length-dependent behavior.
Lindsay et al. [15] explained the significance of low-frequency
ZA phonons towards thermal conductivity in graphene flakes,
which leads to length-dependent behavior.

In contrast to the aforementioned studies, Chen et al. [3]
reported thermal conductivity in graphene flakes without
any sample size dependence. This was attributed to large
uncertainty in the measurement of thermal conductivity due
to grain boundaries, wrinkles, defects, or polymeric residues
in the graphene sample. Park et al. [16] used molecular
dynamics simulations to demonstrate the length dependence
over a wide range and interestingly, showing a converging
behavior of thermal conductivity at 16 μm and finally reporting
a macroscopic limit of heat transport in graphene flakes as
3200 W m−1 K−1. Recently, Barbarino et al. [17] performed
a direct atomistic simulation called approach-to-equilibrium
molecular dynamics to capture thermal conductivity in large
samples. They found that intrinsic thermal conductivity in
monolayer graphene is upper limited. Thus, there has been both
theoretical and experimental evidence of length divergence of
thermal conductivity for large samples (up to a few microns),
but still there has been an active debate going on about the
divergence of thermal conductivity for flakes when L → ∞.
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In this paper, we study the length and width dependence
of the thermal conductivity of suspended graphene ribbons.
In Sec. II we present the details of the method used to
calculate thermal conductivity in graphene ribbons which
is based on the full phonon dispersion and the improved
Callaway model recently proposed by Allen [18]. In Sec. III
we discuss our results, showing two distinct regimes of
thermal transport as the length of the graphene ribbon is
increased: logarithmic divergence below 100 μm, driven by
the flexural branch, and convergence for lengths exceeding
100 μm caused by renormalization of the flexural branch
due to coupling between in-plane and cross-plane phonons
in the long-wavelength regime. We also show a strong width
dependence of thermal conductivity in graphene ribbons due
to the nonresistive normal contribution. Finally, in Sec. IV we
conclude and comment on the connection of our work to the
newly discovered hydrodynamic regime of thermal transport
in two-dimensional materials.

II. THERMAL CONDUCTIVITY CALCULATED
FROM IMPROVED CALLAWAY MODEL

A. Improved Callaway model

Several techniques have been employed to model thermal
transport in graphene such as nonequilibrium molecular dy-
namics (NEMD) [19,20], non-equilibrium Green’s functions
(NEGF) [21,22] and Boltzmann transport equation simula-
tions [23–25]. In our work, we have used the solution of a
full phonon Boltzmann transport equation (pBTE) in order
to calculate thermal conductivity in graphene nanoribbons
(GNRs) based on Allen’s improved Callaway model. The
steady state phonon BTE can be written as

�v(�q,b) · ∇�rN�q = −N�q − N0
�q

τC(�q,b)
− N�q − N∗

�q
τN (�q,b)

, (1)

where N�q is the number of phonons with wave vector �q,
N0

�q is equilibrium Bose-Einstein distribution, �v(�q,b) is the
group velocity, and τC(�q,b) is the effective relaxation time
due to all scattering mechanisms (which include phonon-
phonon scattering, isotope scattering, impurity scattering,
and edge roughness scattering). Anharmonic phonon-phonon
interactions can be categorized into umklapp (U ) and normal
(N ) processes. Umklapp processes (which destroy crystal
momentum) relax the nonequilibrium distribution to the final
zero-current equilibrium Bose-Einstein distribution and are
resistive in nature, whereas N processes conserve crystal
momentum and relax the perturbed distribution to a flowing
equilibrium (N∗

�q ). In materials like graphene, where the
Debye temperature is very high (about 2100 K) [26,27], these
momentum-conserving normal processes have been shown to
play a significant role in the context of heat conduction [15].

The N∗
�q term represents a flowing equilibrium to which

the distribution evolves under the influence of momentum-
conserving normal phonon-phonon processes. Flowing equi-
librium can be envisioned as a hydrodynamic compo-
nent [28]—while momentum-destroying resistive processes
such as umklapp scattering tend to relax the nonequilibrium
distribution back to its equilibrium Bose-Einstein form; the
nonresistive normal processes conserve crystal momentum and

hence cannot fully destroy the heat flux, but only redistribute
it among the phonon modes. Umklapp scattering, isotope
scattering, and edge roughness scattering all destroy crystal
momentum; thus all these resistive processes can be grouped
under τ−1

U (�q,b). The combined scattering rate is given as
the sum of resistive and nonresistive terms τC

−1(�q,b) =
τU

−1(�q,b) + τN
−1(�q,b), where τN

−1(�q,b) is the scattering rate
due to normal scattering. The thermal conductivity expression
includes an extra term over the Debye term and is called the
N -drift term, which accounts for additional conductivity from
the nonresistive normal processes so that Ktot = KC + KN .

Allen [18] improved the Callaway model [29] and proposed
a modified expression in order to correctly include the contri-
bution of resistive (processes which destroy crystal momen-
tum) and nonresistive (which conserves crystal momentum)
processes towards thermal conductivity and added a correction
term ( λ1λ2

λ3
), summed over all the branches b, to the Debye term

KC . The accuracy of the improved Callaway model (ICM)
was compared with the iterative solution of the BTE by Ma
et al. [30], to find that the trend of lattice thermal conductivity
against temperature obtained from the ICM compares more
favorably to the full iterative BTE solution than the relaxation
time approximation (RTA) or the original Callaway model,
especially in those cases where normal scattering is significant.

The modified ICM expressions are given as

Ktot = KC + KN = KC +
∑

b

λ1,bλ2,b

λ3,b

, (2)

where KC is the Debye term, arising from the RTA and
sometimes also called KRT A, and is given by

KC = 1

Aδ

∑
�q,b

�ω�q,bv
2
‖(�q,b)τC(�q,b)

∂N�q
∂T

, (3)

where A is the area of the GNR sheet, δ (=0.335 nm) is
the thickness of the graphene monolayer [31], and v‖ is the
velocity of phonons along the ribbon direction. The correction
terms can be expressed as

λ1,b = 1

Aδ

∑
�q

v‖(�q,b)q‖τC(�q,b)
∂N�q
∂T

, (4)

λ2,b = 1

Aδ

∑
�q

v‖(�q,b)q‖

[
τC(�q,b)

τN (�q,b)

]
∂N�q
∂T

, (5)

λ3,b = 1

Aδ

∑
�q

(
q2

‖
�ω�q,b

)[
τC(�q,b)

τU (�q,b)

]
∂N�q
∂T

, (6)

where q‖ is the component of the wave vector along the ribbon
parallel to the rough edges. The expressions for different types
of scattering rates included in this study are discussed in the
next section.

B. Instrinsic scattering rates and their expressions

The expression for the resistive umklapp scattering rate is
taken from the work of Morelli et al. [32] and is given as

τ−1
U (�q,b) = BUω

aU

�q,b
T bU e−θb/3T , where BU = �γ 2

b

Mθbv
2
b

. vb is the

velocity of sound for each branch b and is calculated by the
average slope of its dispersion curve near the 	 point [33],
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γb is the Gruneisen parameter, θb is the Debye temperature
of each phonon branch, and M is the average atomic mass of
carbon. Here aU and bU are equal to 2 and 1, respectively,
which have been used in innumerable studies conducted so far
and produced excellent results.

An empirical form for normal scattering has been adopted
from the paper by Morelli et al. [32]: τ−1

N (�q,b) = BNω
aN

�q,b
T bN ,

where

BN (aN,bN ) = (kB/�)bN
�γ 2

b v(aN +bN −2)/3

MvaN +bN

. (7)

This simple model allows us to efficiently study a broad
range of sizes and temperatures with good accuracy. Several
studies have been carried out to determine the best empirical
values for the constants aN and bN , which can accurately
describe the contribution from momentum-conserving normal
processes. For our study, we have used aN and bN to be 1
and 3, respectively, which has been used in several studies to
explain the contribution from normal processes in materials
such as diamond [34] and LiF [35] and fits experimental
as well as first-principles data in quite good agreement.
In particular, first-principles calculations predict a constant
(aN = 0) frequency dependence in pristine graphene; however,
the constant dependence of the anharmonic scattering rate on
phonon frequency was found to disappear in the presence
of strain [36]. Even infinitesimally small amounts of strain
were found to lead to a quadratic (aU = 2) dependence for
in-plane LA and TA branches and linear (aN = 1) for the
flexural ZA branch. This linear dependence can be also tied
to the maximum scattering rate in the long-wavelength limit.
In long-wavelength limit (ω → 0), the upper bound on the
phonon scattering rate (	max = 1/τmin) is dictated by the
Ioffe-Regel limit [37]; equivalently, it can be obtained from
Cahill’s minimum thermal conductivity model [38], according
to which ωτmin = π . In addition, as pointed out by Bonini
et al. [36], for the quasiparticle criterion (ωτ � 1) to hold, the
exponent aN in τ−1

N (�q,b) ∝ ω
aN

�q,b
has to be greater than or equal

to 1 in the long-wavelength limit.
Naturally occurring isotopes of carbon can result in

scattering due to the difference in their atomic masses.
Thus, isotope scattering is also included while calculating
the effective scattering rate and is given as [25] τ−1

Iso(ω) =
(	�0/12)ω2g(ω), where the effective density of states is
calculated by summing the density of states over all the
branches b; g(ω) = ∑

b gb(ω). The mass-difference constant
	 is given by 	 = ∑

i fi(1 − Mi/M)2 = c(1 − c)/(12 − c)2.
The natural abundances of C12 and C13 are 98.9% and 1.1%,
respectively, and thus, c = 0.011. The total intrinsic scattering
rates can thus be mathematically expressed as

1

τint(�q,b)
= 1

τU (�q,b)
+ 1

τN (�q,b)
+ 1

τIso(ω)
. (8)

C. Boundary scattering and contacts

In graphene nanoribbons, boundaries start playing a signifi-
cant role in scattering of the heat carriers. As the edges of GNRs
are not perfectly smooth, phonons tend to scatter from the
boundaries and this effect becomes prominent with an increase
in the rms value of edge roughness and decreased width of
nanoribbons. In this work, the scattering rate due to line edge

roughness (LER) is calculated in the same way as was done
by Aksamija and Knezevic [39]. A momentum-dependent
specularity parameter p(�q) = exp(−4q2�2sin2θE) has been
introduced in order to accurately treat phonon scattering from
edge roughness. It represents the ratio of specular reflections
to the total number of interactions with the boundary. �

represents the rms value of the line edge roughness and θE

represents the angle made by incident phonons (�q) with the
edge direction. The final expression for an effective LER
scattering rate is given by [39]

τ−1
LER(�q,b) = v⊥(�q,b)

W
Fp(�q)

/[
1 − ⊥

int(�q,b)

W
Fp(�q)

]
, (9)

where ⊥
int(�q,b) = v⊥(�q,b)τint(�q,b) is the phonon mean free

path due to all the intrinsic processes (anharmonic phonon-
phonon scattering and isotope scattering) across the ribbon
perpendicular to edges. v⊥(�q,b) is the velocity of phonons in
the direction perpendicular to the rough edges and τint.(�q,b)
represents the relaxation time of phonons due to all intrinsic
scattering processes. The complex interplay between line edge
roughness scattering and internal scattering mechanisms for
graphene ribbons is encapsulated in the parameter Fp(�q) called
the form factor:

Fp(�q) = [1 − p(�q)]{1 − exp[−W/⊥
int(�q)]}

1 − p(�q)exp[−W/⊥
int(�q)]

. (10)

Contacts are assumed to be ideal and in equilibrium, which
is captured by treating the interaction of phonons with the
contacts analogously to the interaction of phonons with
completely diffuse edges [p(�q) = 0] except having width (W )
replaced by length (L) and the component of the phonon
group velocity being taken along, rather than across, the
ribbon. Thus, a length-dependent scattering term is given as
τ−1

end(�q,b) = v‖(�q,b)/L{1 − exp[L/
‖
int(�q)]}, where v‖(�q,b) is

the velocity of phonons along the ribbon parallel to the rough
edges and 

‖
int(�q,b)[= v‖(�q,b)τint(�q,b)] represents the phonon

mean free path due to all intrinsic scattering processes along
the ribbon direction. The scattering rates (normal, umklapp,
isotope, and edge roughness) are added to get a total combined
rate in suspended graphene as

1

τC(�q,b)
= 1

τint(�q,b)
+ 1

τLER(�q,b)
+ 1

τend(�q,b)
(11)

and thus can be used to calculate the resistive Debye term
KC and the nonresistive normal contribution KN of thermal
conductivity in GNRs.

III. RESULTS AND DISCUSSION

To study length dependence of thermal conductivity at room
temperature, we scaled ribbon length while keeping the width
constant (W = 1.5 μm) in order to mimic the experimental
setup by Xu et al. [12]. In Fig. 1(a), thermal conductivity
of freestanding graphene has been plotted against length for
various discretization densities of the phonon dispersions.
The red curve in Fig. 1(a) shows a convergence in thermal
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FIG. 1. (a) Convergence of thermal conductivity (Ktot = KC + KN ) with length (L). Red and black solid lines (coincide for the most part)
represent Ktot for coarse (83 074 points) and denser (415 368 points) discretization grids, respectively, with quadratic ZA modes, while the blue
solid line in both (a) and (b) shows the convergence of thermal conductivity for the denser discretization grid with renormalized ZA dispersion.
Diamond (in cyan) and circular (in magenta) markers represent first-principles data from Lindsay et al. [15] and NEMD simulation data from
Park et al. [16], respectively. Inset: Comparison of our normalized thermal conductivity (blue solid line) with the normalized experimental
data (blue triangles) for zero contact resistance from Xu et al. [12]. (b) Cumulative Ktot vs phonon wavelength for different grid densities for a
finite graphene ribbon (L = 1000 μm, W = 1.5 μm, LER = 2 nm). Inset: Cumulative Ktot vs phonon wavelength for different grid densities
for infinite graphene (L = W = 1000 μm, LER = 0 nm). (c) Compares resistive thermal conductivity (KC represented by the black solid line)
from our BTE calculations with KC(L) (resistive thermal conductivity as a function of L represented by dash-dotted lines) calculated from
simple “gray” approximation [40] by fitting different Gballistic/A values. (d) Branchwise contribution of the correction factors in KN (

∑
b

λ1λ2
λ3

).
For (a)–(d) the width and rms value of edge roughness (LER) used are 1.5 μm and 2 nm, respectively, and temperature is 300 K.

conductivity for a coarse discretization of q points having
83 074 points in the first Brillouin zone. Previous studies
suggest that a major part of thermal conductivity comes from
the quadratic out-of-plane ZA modes and divergence is a
consequence of the long-wavelength problem. Klemens [41]
was among the first to propose a logarithmic divergence of
thermal conductivity in the two-dimensional phonon gas. In
his simplified umklapp-limited model, the spectral specific
heat [C(ω)] in two dimensions is proportional to ω, while the
intrinsic mean free path li(ω) ∝ ω−2 T assumes a quadratic
umklapp scattering rate and linear dispersion. Klemens then
attributed the logarithmic divergence to the problem of long
waves: in the limit q → 0, as the phonon wavelength gets
larger, the spectral phonon density [N (ω) = n0(ω)g(ω) ∝
1/ω] diverges, leading to a logarithmic divergence in the
resulting thermal conductivity integral [31].

A. Numerical convergence and renormalization of ZA modes

In order to treat the problem of long waves more accurately,
we repeated our calculation of thermal conductivity keeping
all parameters exactly the same, but employing a much
denser discretization grid of q points having 415 368 points
for the dispersion and numerical integration. We obtained a
similar converging behavior but with larger values of thermal
conductivity at L = 1000 μm, as shown by the black curve in
Fig. 1(a), than the one obtained from a coarser grid of 83 074
points (shown by the red curve in the same figure). This led us
to further investigate convergence in the long-wavelength limit
and consequently, we plotted cumulative thermal conductivity
as a function of phonon wavelength for different densities of
grid discretization as shown in Fig. 1(b). In Fig. 1(b), for all
discretization densities (without renormalization), steps can
be observed at the largest wavelength in the discretization,
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indicating an increase in thermal conductivity due to the
addition of more long-wavelength phonons. Despite adding
more discretization of q points around q → 0 by making
the dispersion grid denser, the results still do not converge
fully as shown by the dashed black line joining the total
cumulative thermal conductivity for different grid densities.
This behavior is even more prominent in the case of infinite
graphene (L = W = 1000 μm, LER = 0 nm) as shown by
the dashed black line in the inset of Fig. 1(b). So we conclude
that the convergence observed in Fig. 1(a) is not an actual
convergence but rather a numerical one, caused by the finite
number of discretization points. Thus our results show that
even for a ribbon with fixed width and diffuse edges, thermal
conductivity diverges with length as long as the dispersion of
the out-of-plane ZA modes is quadratic.

However, there are many studies in the literature showing
how strain due to various effects [e.g., temperature expansion
(crumpling), in-plane-to-cross-plane coupling, and several
others] affects the flexural modes in the long-wavelength
regime. Castro Neto et al. [42] and Xu et al. [43] show the
effect of thermal stress on flexural modes in freestanding
graphene, and long-wavelength ZA modes are reported to
be completely linearized (ω ∝ q). Several recent studies [44]
have shown that increasing the size of the free-standing
graphene will gradually cause a stiffening of the flexural
modes, arising out of the coupling between in-plane and
out-of-plane modes. This coupling has also been found to result
in renormalization of ZA modes; however, flexural phonon
modes are reported to be partially linearized (ω ∝ q1.5).
The blue curve in Figs. 1(a) and 1(b) represents thermal
conductivity with dense discretization grid and partially
linearized (renormalized) ZA dispersion, i.e., with ω ∝ q1.5

(renormalization will be further discussed in the next section).
This stiffening of ZA modes causes convergence of thermal
conductivity with length and leads to a finite value of thermal
conductivity, as evidenced by the smooth convergence and the
lack of large steps in the long-wavelength limit [Fig. 1(b), for
both finite and infinite graphene]. Good agreement between
our result (solid blue line) and previously reported first-
principles [15] [cyan-colored diamond markers in Fig. 1(a)]
and molecular dynamics [16] calculations [magenta-colored
circular markers in Fig. 1(a)] confirm that the improved
Callaway model can be used as an effective tool for the
treatment of momentum-conserving normal processes. Our
calculated thermal conductivity, when scaled with Kmax to
compensate for contact resistance in the experiments, follows
the same trend as that of the measured data [12], shown in the
inset of Fig. 1(a).

B. Analytical calculations

Here, the analysis of the divergence of thermal conductivity
with length is generalized to include the quadratic dispersion of
the ZA branch and the nonresistive normal contribution, both
of which were ignored in previous analyses. For a general
dispersion of the form ω ∝ qs , frequency dependence of the
group velocity [�v(�q) = ∇ω(�q)] is given as v ∝ ω(s−1)/s , while
the density of states D(ω) ∝ ω(2−s)/s . In the long-wavelength
limit (ω → 0) and for finite width, the resistive part of
thermal conductivity (KC) is mainly dominated by edge

roughness scattering which, according to Eq. (9), varies as
τ−1
LER(ω) ∝ v(ω). Thus the resistive part of thermal conduc-

tivity [KC(ω)] ∝ v2(ω)τLERD(ω) ∝ ω(1/s) indicating that KC

converges with length and reaches the diffusive regime as long
as we maintain finite width of the samples, irrespective of the
value of the exponent s, as our results in Fig. 1(c) indicate.

The length dependence of the resistive component of
thermal conductivity (KC) can be captured through a sim-
ple Landauer model [45,46], where the heat conduction is
described by constant thermal conductance (G) in the ballistic
regime. Then the length variation in KC is well described
by a transition from the ballistic to the diffusive regime as
K(L) = [A/(LGball) + 1/Kdiff]−1 [40]. Setting (Gball/A) =
2 × 109 W K−1 m−2 exactly fits the resistive part of thermal
conductivity as shown in Fig. 1(c). The mean free path (λ)
is calculated from this value by angle averaging in 2D as
Kdiff = (Gball/A)(π/2)λ. The mfp of phonons in suspended
graphene with rough boundaries and W = 1.5 μm is thus
calculated to be 358 nm, somewhat smaller than previously
reported values of around 800 nm for large square samples [47]
due to the presence of edge roughness of 2 nm in our case.
Hence we conclude that the resistive contribution to the ther-
mal conductivity is undergoing a simple ballistic-to-diffusive
transition as length is increased, saturating when L > 10 μm.

On the other hand, the length dependence of thermal
conductivity of long ribbons (L > 1 μm) is dominated by
the hydrodynamic contribution, represented by KN , and its
length dependence is different from what can be observed in
ballistic regime. The nonresistive normal contribution (KN )
is comprised of three factors: λ1, λ2, and λ3, where by
analysis analogous to that for KC , we find that λ2 ∝ ω(3−s)/s

and λ3 ∝ ω(5−2s)/s [based on Eqs. (5) and (6)]. Thus for
s � 2.5 both λ2 and λ3 will converge with increasing length.
However, λ1 ∝ ω(3−2s)/s and thus, for a purely quadratic
dispersion (s = 2) λ1 diverges and consequently, the total
thermal conductivity (Ktot) will not converge even in the
presence of edge roughness (λ1 would converge only when
s � 1.5). This is evident in Fig. 1(b) where red and black
curves show a continuing step behavior as length is increased;
we obtain a finite value only because our discretization is finite
and length eventually exceeds the largest phonon wavelength
captured in the long-wavelength limit.

As we noted earlier, Mariani and von Oppen [44] reported
that increasing the size of the graphene sheet leads to stiffening
of the flexural modes due to the coupling force between
bending and stretching degrees of freedom, thereby causing
renormalization of flexural modes as ωZA = βZA(q)q2 where
βZA(q) = αZA[1 + (qc/q)2]1/4, qc being the cut-off wave vec-
tor. The temperature-dependent transition point qc is calculated
to be 0.1 (in the units of 2π/lattice constant) [44]. When L →
∞ (q → 0), qc 
 q and ωZA becomes proportional to q3/2.
Renormalization of ZA modes and their partial linearization
in the long-wavelength regime (where s = 3/2) causes λ1 (∝
ω(3−2s)/s), λ2 (∝ω(3−s)/s), and λ3 (∝ω(5−2s)/s) all to converge
with length, as can be seen in Fig. 1(d). Therefore the
nonresistive normal contribution (KN ) eventually converges
to a finite value owing to the coupling between the in-plane
and out-of-plane degrees of freedom. The solid blue curve in
Figs. 1(a) and1(b) show convergence of thermal conductivity
with length to a bulk value of 3400 W m−1 K−1 for ribbon

235423-5



ARNAB K. MAJEE AND ZLATAN AKSAMIJA PHYSICAL REVIEW B 93, 235423 (2016)

0.01 0.1 1 10 100 1000
L (μm)

0

1000

2000

3000

4000
K

 (
W

m
-1

K
-1

)

K
tot

K
N

TA
N

ZA
N

LA
N

K
C

(a)

0 50 100 150 200 250 300
T (K)

0

500

1000

1500

2000

2500

3000

3500

K
 (

W
m

-1
K

-1
)

(b)

0.01 0.1 1 10 100 1000
Width (μm)

0

1000

2000

3000

4000

K
 (

W
m

-1
K

-1
)

(c)

0 0.1 1 3
LER (nm)

0

1000

2000

3000

4000

K
 (

W
m

-1
K

-1
)

(d)

FIG. 2. (a) Branchwise contribution of thermal conductivity against length (L) of GNRs. Black solid and dashed lines [in (a)–(d)] represent
total thermal conductivity (Ktot = KC + KN ) and nonresistive normal contribution (KN ), respectively, and black dotted lines [(in (a)–(d)]
represent resistive contribution (KC). Blue, green, and red curves [(in (a)–(d)] represent TA, LA, and ZA components of KN , respectively.
(b) Effect of temperature on the contribution of Ktot, KC , and KN . (c) shows the width dependence of Ktot, KC , and KN . (d) represents the
effect of edge roughness on Ktot, KC , and KN . Length of GNRs [in (b)–(d)] is 10 μm. Width [in (a), (b), and (d)] is 1.5 μm and temperature
[in (a), (c), and (d)] is 300 K.

width of 1.5 μm, in good agreement with both experimen-
tal measurements and first-principles calculations [48]. We
have also computed cumulative thermal conductivity against
phonon wavelength for different values of qc (0.01, 0.05, and
0.2 in the units of 2π/lattice constant) and found that the
convergence in the long-wavelength limit as shown in Fig. 1(b)
is independent of qc.

However, it should be noted that besides the strain induced
due to coupling between the in-plane and out-of-plane modes
as studied by Mariani and von Oppen [44], there are other stud-
ies in the literature reporting different kinds of renormalization.
Castro Neto et al. [42] and Xu et al. [43] gave an expression

of the form ωZA = q

√
κq2+S

ρ
, where κ is the bending rigidity

of graphene, ρ is the mass density, and S is the surface
tension. This expression can be rearranged to a form ωZA =
q2αZA[1 + (qc/q)2]1/2, where αZA = √

κ/ρ, and qc = √
S/κ .

In both of these cases [42,43], the dispersion of flexural modes
becomes linearized (ωZA ∝ q) in the long-wavelength limit
(q → 0) under tension. We show in our analytical calculations
that for any dispersion of the general form ω ∝ qs , all the
terms KC, λ1, λ2, and λ3 converge as long as s � 1.5. Thus we
conclude that, irrespective of whether the dispersion of ZA

modes gets partially linearized (ωZA ∝ q1.5) or completely
linearized (ωZA ∝ q) due to tension, Ktot converges to a finite
value.

Figure 2(a) shows branchwise components of thermal
conductivity and their length dependence. Earlier studies
have shown that length divergence in thermal conductivity
is due to quadratic dispersion of out-of-plane modes; however,
because of the coupling between the in-plane and flexural
modes renormalization of ZA dispersion takes place, which
leads to partial linearization of flexural modes and thereby
causes thermal conductivity to converge when L → ∞ in the
long-wavelength limit. We observe here that the divergence in
KN beyond 10 μm is driven by the out-of-plane ZA branch,
but renormalization of the ZA branch prevents λ1 [Eq. (4)]
from diverging (for s = 3/2, λ1 ∝ ω(3−2s)/s = const) and the
hydrodynamic component eventually reaches saturation for
L > 100 μm, indicating the onset of the Ziman regime where
extrinsic effects such as length no longer play a role.

C. Temperature, width, and LER dependence

We used a sample of 10 μm long and 1.5 μm wide
to study the effect of temperature and LER on thermal
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conductivity in graphene ribbons. In Fig. 2(b), thermal con-
ductivity (Ktot) along with its resistive (KC) and nonresistive
normal components (KN ) are plotted against temperature. At
low temperatures, thermal conductivity is mainly comprised of
resistive contribution, while at room temperature and above,
the resistive contribution is suppressed considerably due to
strong umklapp phonon-phonon scattering and nonresistive
normal contribution starts playing an important role. Thus in
graphene, KC fails to capture the contribution coming from
momentum-conserving normal processes and leads to under-
evaluation of thermal conductivity at and above room temper-
atures. It can also be seen that at low temperatures, the out-of
plane (ZA) modes coming from KC contribute significantly to
thermal conductivity, whereas at high temperatures, most of
the conductivity comes from the hydrodynamic contribution
(represented by KN ) of the in-plane branches (LA and TA).

Next we turn to the width dependence of thermal conduc-
tivity in suspended graphene ribbons at room temperature and
vary the width W while keeping L = 10 μm and a constant
edge roughness � = 2 nm, which puts the ribbons in the fully
diffusive edge scattering regime. It can be seen in Fig. 2(c)
that the resistive part of thermal conductivity (KC) shows a
gradual width dependence. It is because for ribbons narrower
than 200 nm, the ribbon is in the ballistic regime where both
KC is suppressed by LER scattering (τ−1

LER ∝ 1/W). In this
range, the contribution from nonresistive processes (KN ) is
also significantly reduced by the presence of resistive LER
scattering, whereas widths above 200 nm put the ribbon
in the Poiseuille regime [49]. In the Poiseuille flow range,
where 200 nm � W � 10 μm, the KN is affected by the
interplay of LER scattering and normal scattering, leading
to a pronounced width dependence exceeding that of the
resistive component. The contribution of the nonresistive
normal processes to width dependence has not been previously
reported and can be understood as a consequence of the
hydrodynamic phonon transport suggested by Lee et al. [49].
Beyond 10 μm, KN transitions into the Casimir regime where
normal processes dominate over resistive LER scattering and
the thermal conductivity again converges to a finite value.

Unlike their supported counterparts, LER scattering plays
a very crucial role in the thermal conductivity of suspended
graphene ribbons. Figure 2(d) shows a strong dependence
of thermal conductivity (Ktot) for edge roughness up to
0.5 nm (rms value). In this figure, it can be seen that Ktot

corresponding to zero edge roughness is the same as that of
Ktot for a 1000-μm-wide ribbon as can be seen in Fig. 2(c),
which again indicates that for such wide ribbons the effect of
edge roughness completely dies off. The effect of the edge
roughness and width of the ribbons cannot be completely
decoupled. As we keep on reducing, the width of the ribbon
from 1000 μm with fixed edge roughness is equivalent to
increasing the edge roughness for a given width of the ribbon.
KN shows a strong LER dependence up to 0.5 nm, whereas
KC shows weaker dependence on edge roughness as is the
case for width dependence of thermal conductivity.

IV. CONCLUSION

In conclusion, we have studied the length divergence of
suspended graphene ribbons, employing the newly developed
improved Callaway model to accurately capture the significant
contribution from the nonresistive normal processes in the
hydrodynamic regime. We have shown through both numerical
and analytical calculations that this nonresistive normal con-
tribution dominates the length dependence for lengths greater
than 1 μm and leads to a logarithmic divergence, even in
ribbons with fixed width and edge roughness. This divergence
is caused by the combination of the quadratic dispersion of the
out-of-plane ZA phonon branch in the long-wavelength limit.

However, for lengths exceeding 100 μm, we find that
thermal conductivity converges to a constant value. This
convergence is independent of width and not caused by edge
disorder; rather, it is due to linearization of the ZA branch
by coupling between the in-plane and out-of-plane degrees of
freedom. This coupling removes the quadratic dependence of
the ZA dispersion and limits the normal contribution of the ZA
branch to a finite value. We also uncover a prominent width
dependence arising from the nonresistive normal contribution
for widths exceeding 200 nm, which delineates the emergence
of Pouiselle hydrodynamic heat flow. Our study confirms the
role of nonresistive normal processes in the length and width
scaling of thermal conductivity and provides quantitative limits
to the hydrodynamic regime of heat flow in graphene ribbons.
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