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Laser-driven parametric instability and generation of entangled photon-plasmon states in graphene
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We show that a strong infrared laser beam obliquely incident on graphene can experience a parametric instability
with respect to decay into lower-frequency (idler) photons and THz surface plasmons. The instability is due to
a strong in-plane second-order nonlinear response of graphene which originates from its spatial dispersion. The
parametric decay leads to efficient generation of THz plasmons and gives rise to quantum entanglement of idler
photons and surface plasmon states.
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I. INTRODUCTION

Nonlinear parametric decay of a pump laser photon into two
lower-frequency photons (usually called “signal” and “idler”)
in a nonlinear crystal possessing a second-order nonlinearity
is the most popular method of generating entangled photon
states [1]. At higher pump intensities the parametric process
can experience gain which leads to the instability and exponen-
tial amplification of coupled signal and idler fields. Stimulated
parametric decay enables optical parametric amplifiers and
oscillators as popular tunable sources of long-wavelength
radiation from near to far infrared [2]. They typically employ
bulk transparent crystals under phase-matching conditions for
frequencies and wave vectors of the fields participating in a
three-wave mixing interaction:

ωs = ωp − ωi, ks = kp − ki , (1)

where the subscripts s, p, and i represent signal, pump,
and idler, respectively. In view of these requirements, the
very idea of parametric amplification supported by just a
monolayer of material seems unrealistic. Surprisingly, we find
that stimulated parametric decay of laser photons is feasible in
2D systems of massless Dirac electrons.

Any surface has anisotropy between in-plane and out-of-
plane excitations, and graphene is no exception. However, the
second-order susceptibility χ

(2)
ijk associated with this surface

anisotropy is very small in graphene [3] and we don’t even
consider it below. A much stronger nonlinear response is
expected when all fields and electron excitations lie in-plane.
This is obvious already in the classical free-carrier limit
because of an extreme band nonparabolicity [4]. However,
graphene is a centrosymmetric system for low-energy in-plane
excitations, which should prohibit any second-order response.
Nevertheless, a nonzero χ (2) appears beyond the electric dipole
approximation when one includes the dependence of χ (2) on
the in-plane photon wave vectors, i.e., the spatial dispersion.
In this case the isotropy of graphene is effectively broken
by the wave vector direction. The spatial dispersion effects
turn out to be quite large because of a large magnitude
of the electron velocity vF , similarly to spatial dispersion
in a hot plasma. Further enhancement of χ (2) occurs at
resonance between the pump frequency and twice the Fermi
energy: ωp = 2εF /�. Finally, the efficiency of parametric

down-conversion is enhanced when one of the generated fields
is not a photon but a surface plasmon mode supported by a
massless 2D electron layer. A nonzero value of the nonlocal
in-plane χ (2) and plasmon enhancement of the nonlinear signal
were pointed out before for second-harmonic generation [5,6]
(which only included intraband transitions in a free-carrier
model) and for difference-frequency generation [7]. Here we
develop the first theory of the parametric decay in graphene,
which includes fully quantum description of the nonlinear
response and quantization of all fields. The same formalism
can be applied to other systems of massless Dirac fermions,
for example, surface states in 3D topological insulators such
as Bi2Se3.

The schematic of the nonlinear process is shown in Fig. 1.
An obliquely incident pump photon decays into an idler
photon and a signal plasmon of a much lower frequency
ωs = ωp − ωi � ωp,i but a comparable wave vector qs ∼ qp.
The second of phase matching conditions in Eqs. (1) is replaced
by its in-plane projection qs = qp − qi . In addition, the signal
frequency should match the real part of surface plasmon
dispersion ω(q) shown in the inset to Fig. 1: ωs = ω(qs). Note
that both positive and negative projections of the idler wave
vector qi are possible, where the positive direction is assumed
to the right. In particular, negative values of qi give access to
larger plasmon wave vectors qs = qp − qi = |qp| + |qi | and
frequencies.

II. QUANTIZED SURFACE PLASMON
FIELD IN GRAPHENE

Consider a geometry of Fig. 1, i.e., a 2D layer of massless
Dirac electrons in z = 0 plane between two media with
dielectric constants ε1 and ε2. The plasmon frequency ωs and
in-plane wave vector qs are related through the dispersion
relation for a TM-polarized surface mode [7]:

4πχs + ε1

p1
+ ε2

p2
= 0, (2)

where p1,2 =
√

q2
s − ε1,2

ω2
s

c2 . At the THz frequencies smaller
than twice the Fermi energy 2εF /� one needs only to
take into account the intraband contributions to the linear
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FIG. 1. Schematic of the parametric decay of the pump photon
into an idler photon and a surface plasmon, which satisfies conser-
vation of energy and in-plane component of momentum. Inset shows
matching of the signal frequency to the real part of surface plasmon
frequency obtained by solving Eq. (2).

2D susceptibility χs(ωs,qs), which in the limit of strong
degeneracy is given by [7]

χs(ωs,qs) = 2e2EF

π�2ωs

(ωs + iγ )

(vF qs)2

×
[

1− ωs + iγs

ωs + iγ +vF qs

√
1+ 2vF qs

ωs +iγ − vF qs

]
,

(3)

where EF is the Fermi energy and γ is the decay rate of the
fermion momentum at the surface plasmon frequency.

The z distribution of the field Es(z) is [7]

Es(z) =
(

x0 ± z0
iqs

p1,2

)
Es0e

∓p1,2z, (4)

where the upper and lower signs correspond to z > 0,z < 0,
respectively.

The quantization for the plasmon field in the limit of
weak dissipation ωs � γ consists of two steps. First, a
standard quantization procedure is applied neglecting any
dissipation [8–11]. Second, Heisenberg equations of motion
for the field operators are formulated which include interaction
with a dissipative reservoir and the effect of external and
nonlinear currents. The first step leads to

Ê =
∑

qs

Es(z)âse
iqs r‖−iωs t + H.c., (5)

where r‖ = (x,y) and âs ,â
†
s are annihilation and creation

operators of surface plasmon modes. Similar to the case of
propagating fields [8,12], the energy of the plasmon field inside
a volume V can be written as

Ĥ = 1

8π

∑
s

(â†
s âs + âs â

†
s )

∫
V

(
E∗

s

∂(ωε̃)

∂ω
Es + Bs B∗

s

)
d3r,

where ε̃ is the dielectric permittivity tensor.

The normalization constant Es0 can be chosen so that the
Hamiltonian for the plasmon field takes the standard form:
Ĥs = ∑

qs
�ωs(qs)(â

†
s âs + 1/2). This is achieved if we request

the following normalization condition, similar to the case of a
photon field [12,13]:

Ĥs =
∫

V

(
E∗

s

∂(ωε̃)

∂ω
Es + Bs B∗

s

)
d3r = 4π�ωs. (6)

This volume integral is calculated in the Appendices. The
result for the normalization constant Es0 (in quasielectrostatic
approximation) is

|Es0|2 = �(Re(∂χs/∂ω))−1. (7)

The effect of dissipation of a plasmon field (within ωs �
γs) and its nonlinear interaction with other fields can be taken
into account within the Heisenberg-Langevin approach [8]. For
quasimonochromatic wave fields, it is convenient to consider
a wave packet of surface plasmon modes with frequencies
and wave vectors concentrated in a narrow spectral range
�ω � ωs,�q � qs near a central component ∝eiqs r‖−iωs t

[9–11,14]. Within this approach we introduce the annihilation
and creation operators âs(r‖,t) and â

†
s (r‖,t) that are slowly

varying in time and space relative to ωs and qs . Their
commutator is equal to the number of quantized modes per unit
area Lx × Ly = 1 within the spectral interval �ω: [âs ,â

†
s ] =

�ω
2πLyvs

, where vs is the group velocity of a surface plasmon
which determines its spectral density of states and Ly is the
aperture size of the beam. The commutation relations for the
Fourier components of the creation and annihilation operators
of the plasmon field envelope âs = ∫

dω âsωe−i(ω−ωs )t and

â
†
s = ∫

dω â
†
sωei(ω−ωs )t have the form

[âsω,â
†
sω

′ ] = δ(ω − ω
′
)

2πLyvs

. (8)

Equation (5) for the field operator remains valid for a wave
packet after we replace constant operators âs and â

†
s with

slowly varying operator amplitudes and remove the summation
over wave vectors.

Equations for a slowly varying field amplitude of a surface
plasmon wave packet can be obtained in the same way as for
the propagating optical fields; see, e.g., [9–11]:

∂âs

∂t
+ vs

∂âs

∂x
+ γsâs = i

�
P̂ (2)

s E∗
s0 + F̂s, (9)

where γs = �
−1(Im[χs])|E2

s0|, F̂s(t) is the operator of the

Langevin noise, and P̂
(2)
s = x0P̂

(2)
s eiqsx−iωs t + H.c. is the

second-order nonlinear component of the polarization
operator.

The Langevin noise source ensures a correct expression
for the commutator of the plasmon field in the presence of
its interaction with a dissipative reservoir. It is convenient to
define the properties of the noise source in terms of its spectral
components F̂s = ∫

F̂sωe−iωt dω and F̂
†
sω = F̂s;−ω. Assuming

a dissipative reservoir in thermal equilibrium and adjusting for
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the 2D geometry, we can write [8,11]

〈F̂ †
ω

′ (x ′)F̂ω(x)〉 = γsNT (ωs)

πLy

δ(ω − ω′)δ(x − x ′),

〈F̂ω(x)F̂ †
ω

′ (x ′)〉 = γs(NT (ωs) + 1)

πLy

δ(ω − ω′)δ(x − x ′),

(10)

where 〈· · · 〉 means averaging over both an initial quantum state
in the Heisenberg picture and the statistics of the dissipative
reservoir, NT (ωs) = (e�ωs/(kBT ) − 1)

−1
. In the absence of the

nonlinear polarization, the solution of Eqs. (9) and (10) in the
limit γsx/vs → ∞ corresponds to thermal equilibrium:

〈â†
s âs〉 → 〈â†

s âs〉T = NT (ωs)�ω

2πLyvs

. (11)

Equation (11) satisfies a general property of the thermal
emission: its power ≈Lyvs�ωs〈â†

s âs〉T received by a matched
antenna does not depend on the size and shape of the
aperture [15].

III. PARAMETRIC INSTABILITY IN GRAPHENE

A. Nonlinear generation of the plasmon field

Generation of surface plasmons in graphene is possible with
both P-polarized (see [7]) and S-polarized optical pumping.
The theory is developed in the same way for both polarizations.
The difference is that in the case of P-polarized photons
only the χ (2)

xxx component of the second-order susceptibility is
involved, whereas for S-polarized pumping both xyy and yyx

components contribute to the parametric process. S-polarized
radiation maximizes the in-plane projection of the electric
field. In addition, theory predicts a larger magnitude of the xyy

component as compared to the xxx component. Therefore, we
will consider only the case of S-polarization, assuming an
S-polarized bichromatic pump+idler field incident from the
z > 0 half-space:

Ê =
∑
j=p,i

Êj , Êj = y0Ej0ĉj e
−ikj z+iqj x−iωj t + H.c.,

where the normalization fields |Ej0|2 = 2π�ωj/n2
1 are defined

for a unit quantization volume; ĉj are Heisenberg operators of
slowly varying amplitudes corresponding to a finite spectral
width �ω [9–11,13]. The nonlinear 2D polarization at fre-
quencies ωp,i,s generated in the graphene plane z = 0 is given
by

P̂
(2)
s = x0χ

(s,2)
xyy Ê †

i Êp + H.c.,

P̂
(2)
i = y0χ

(i,2)
yyx E∗

s0â
†
s Êpe−iqsx+iωs t + H.c.,

P̂
(2)
p = y0χ

(p,2)
yyx Es0âs Êie

iqsx−iωs t + H.c., (12)

where Êp,i are the ∝exp(−iωt) parts of the electric field op-
erators at the pump and idler frequencies ωp,i in the graphene
plane. The second-order susceptibilities at correspond-
ing frequencies are χ (s,2)

xyy = χ (2)
xyy(ωs = ωp − ωi), χ (i,2)

yyx =
χ (2)

yyx(ωi = ωp − ωs), χ
(p,2)
yyx = χ (2)

yyx(ωp = ωi + ωs). Index α

in χ
(2)
αβγ (ω = ω′ ∓ ω′′) corresponds to the polarization of the

field at the mixing frequency ω, and the index β corresponds to
the polarization of the field at the larger of the two frequencies
ω′,ω′′.

Now we invoke the boundary conditions connecting the
fields on both sides of the graphene layer. Besides the
continuity of the electric field, we will use the relationships
for magnetic field components:

B̂(i,p)
z (z = +0) = B̂(i,p)

z (z = −0),

B̂(i,p)
x (z = +0) − B̂(i,p)

x (z = −0) = −4π
iωi,pP̂

(2)
i,p

c
,

where B̂(i,p)
z,x are operators of the magnetic field components

that are related to the electric field operators by standard
Maxwell’s equations.

Using the nonlinear polarizations and boundary conditions
for the fields, Eq. (9) becomes

∂âs

∂t
+ vs

∂âs

∂x
+ (γs − Ĝ) · âs = Ĵ + F̂s, (13)

where

Ĵ = �χ (s,2)
xyy ĉ

†
i ĉp, � = i

2π
√

ωiωp

n2
1

TiTpE∗
s0,

Ĝ = |�|2 n1

c

(
χ (s,2)

xyy χ (i,2)∗
yyx ĉ

†
pĉp

Ti cos θ1i

− χ (s,2)
xyy χ

(p,2)
yyx ĉ

†
i ĉi

Tp cos θ1p

)
.

Here Tp,i = 2n1 cos θ1p,i/(n1 cos θ1p,i + n2 cos θ2p,i) are Fres-
nel transmission coefficients for S-polarized pump and idler
fields with incidence angles θ1p,i and refraction angles θ2p,i .
Equation (13) was derived neglecting the terms of the order
α|χ (2)|2 and |χ (2)|3 where α = e2/�c.

The terms Ĵ and Ĝ in Eq. (13) include all possible
three-wave mixing processes. The term Ĵ describes difference
frequency generation of surface plasmons in graphene by a
bichromatic quantum field. For classical fields this process
has been predicted in [7] and observed in [16]. The operator
Ĝ describes the creation of plasmons by a parametric decay of
the pump photons.

When solving operator-valued equations, in addition to the
fields incident from z > 0 one also needs to specify operators
of noise fields incident from z < 0 [13]. This allows one to
take into account current fluctuations in a graphene layer
caused by zero-point and thermal fluctuations of the field
in the region z < 0. It is easy to show that in this case
one should replace ĉp,i → ĉp,i + ĉ

(−)
p,i ,ĉ

†
p,i → ĉ

†
p,i + ĉ

†(−)
p,i in

Eq. (13), where creation and annihilation operators ĉ
(−)
p,i and

ĉ
†(−)
p,i correspond to the waves incident on a graphene layer

from z < 0 at angles θ2(p,i). The corresponding terms can be
treated as modification of the Langevin source term in Eq. (13).
However, under the condition �ωs � kBT � �ωp the effect
of this modification on the plasmon field correlator 〈â†

s âs〉
is negligible as compared to standard Langevin fluctuations
given by Eq. (10).

235422-3



TOKMAN, WANG, OLADYSHKIN, KUTAYIAH, AND BELYANIN PHYSICAL REVIEW B 93, 235422 (2016)

The operator-valued Eq. (13) has a stationary solution given
by

âs = exp

(
Ĝ − γs

vs

x

)

×
⎧⎨
⎩âs(0) +

∫ x

0

[
exp

(
Ĝ − γs

vs

x ′
)]−1

(Ĵ + F̂s)
dx ′

vs

⎫⎬
⎭,

(14)

where âs(0) is the corresponding boundary condition;

[exp ( Ĝ−γs

vs
x)]

−1
is the operator inverse to exp ( Ĝ−γs

vs
x).

Below we will assume that the pump field at frequency
ωp is a coherent classical field, whereas the field at the idler
frequency ωi is present only as a quantum and/or thermal
noise.

Whenever the contribution of electromagnetic noise inci-
dent from the half-space z < 0 can be neglected, one can also
neglect the term Ĵ as compared to the Langevin noise term.
For a coherent pumping, the operator Ĝ can be replaced by a
c number:

G ≈ |�|2 n1

c

χ (s,2)
xyy χ (i,2)∗

yyx 〈ĉ†pĉp〉
Ti cos θ1i

. (15)

Taking the thermal noise as a boundary condition and taking
into account Eqs. (10) and (14) one can get

â†
s âs = exp

[
2

Re[G] − γs

vs

x

]
(â†

s âs)T

×
[

1+ γs

Re[G]−γs

(
1− exp

[
−2

Re[G]−γs

vs

x

])]
,

(16)

where the operator (â†
s âs)T corresponds to the thermal field

and has an average value given by Eq. (11). Note that there is a
1/vs dependence in the gain factor in Eq. (16) which describes
the enhancement in the gain for slowly moving plasmons as
compared to photons.

From Eq. (16) one can obtain an important result, namely
the criterion for parametric instability:

Re
(
χ (s,2)

xyy χ (i,2)∗
yyx

)
> 0, (17)

Re[G] ≈ |�|2 Re
[
χ (s,2)

xyy χ (i,2)∗
yyx

]
Ip

c2�ωp

n2
1

Ti cos θ1i

> γs, (18)

where Ip is the incident pump intensity.

B. Coupled oscillators model for the parametric gain

The instability condition Eqs. (17) and (18) can be easily
interpreted and understood within the classical model of two
parametrically coupled oscillators. Consider a classical pump
beam of amplitude Ep and ωp incident on a nonlinear 2D layer
in vacuum. The pump field decays into a surface plasmon field
within a unit area As = 1 and an idler photon field at frequency
ωi within a volume of a cylinder of length l oriented at an angle
θi with respect to the normal to area As . In this mean-field
zero-dimensional (0D) model one can derive the following

coupled differential equations for the complex amplitudes of
the plasmon and idler fields:

∂Es

∂t
+ γsEs = iζsEpE∗

i , (19)

∂E∗
i

∂t
+ γiE

∗
i = −iζ ∗

i E∗
pEs, (20)

where

ζs = 1

2
χ (s,2)

xyy

[
Re

(
∂χs

∂ω

)]−1

, ζi = π

l cos θi

ωiχ
(i,2)∗
yyx ,

γi = c/l is the effective decay rate of the idler field in the
0D model. Equations (19) and (20) have an exponentially
growing solution for both parametrically coupled waves [2] if
Re(ζsζ

∗
i )|Ep|2 > γsγi , which coincides with Eqs. (17) and (18)

if we assume n2 = n1 = 1.

C. Spectrum and magnitude of the parametric gain

To calculate the magnitude of the parametric gain we need
to substitute the components of the second-order susceptibility
tensor. Their derivation is straightforward but cumbersome,
so we keep it in the Appendices. Their salient feature is the
presence of resonances when one of the three frequencies
involved in three-wave mixing is close to 2εF = 2�vF kF . This
is a weaker resonance than the one that exists in coupled
quantum wells [17] where χ (2) would scale as a product of
two Lorentzians. Still, it enhances the value of χ (2) by a factor
of ω/γ where γ is the decay rate of the optical polarization. A
similar resonance exists in the third-order nonlinear response
of graphene [18].

Far from resonance, when |ωp − 2vF kF | � γ , one can
neglect dissipation. In this case all components of the nonlinear
susceptibility tensor satisfy symmetry properties

χ (s,2)
xyy = χ (i,2)

yyx = χ (p,2)∗
yyx , (21)

which ensure Manley-Rowe relationships [19,20].
Close to resonance one has to include the imaginary part

of the frequency which describes the decay rate of the optical
or plasmon polarization. If dissipation is included, Eqs. (21)
can be violated. In this case one has to use a more general
procedure outlined in the Appendices. From the derivation in
the Appendices one can obtain that if the resonance condition
is satisfied for the idler photon frequency, |ωi − 2vF kF | < γ ,
then χ (s,2)

xyy = −χ (i,2)∗
yyx . In this case inequality (17) is violated,

i.e., the parametric instability is impossible. At the same
time, when the resonance exists for the pump frequency,
|ωp − 2vF kF | < γ , we obtain

χ (s,2)
xyy = χ (i,2)∗

yyx ≈ 3e3v2
F

8π�2

qp

ωiω2
s γ

, (22)

which satisfies Eq. (17). Therefore, we will assume that
the frequency of the pump field is close to 2vF kF . We
independently evaluated the χ (2)

xxx component of the nonlinear
susceptibility tensor (see Appendix B) and found that its value
is three times lower at resonance as compared to Eq. (22).
This translates into a more than an order of magnitude
lower parametric gain for a P-polarized pump as compared

235422-4



LASER-DRIVEN PARAMETRIC INSTABILITY AND . . . PHYSICAL REVIEW B 93, 235422 (2016)

−50 0 50 100

0

0.5

1

1.5

θ1i (degree)

ga
in

(1
01

1
s−

1 )

0

5

10

15

ω
s
(1

01
2
s−

1 )

FIG. 2. Gain Re[G] (solid blue line) and the plasmon frequency
corresponding to phase matching conditions (green dashed line) as
a function of the angle θ1i between the direction of the idler wave
vector in medium 1 and the normal.

to an S-polarized pump, if one takes into account a smaller
in-plane projection of the electric field and the |χ (2)|2 scaling
of the gain. Furthermore, we assume ωp,i � ωs � γs and
consider strongly degenerate graphene. In addition to resonant
enhancement of the nonlinearity, this eliminates interband
absorption losses for the plasmons and reduces electron
scattering.

Figure 2 shows the gain [left-hand side of Eq. (18)]
and the plasmon frequency corresponding to phase matching
conditions as a function of the emission angle of the idler
field θ1i . Negative angles correspond to negative projections
of qi . For the plot we took n1 = 1 and n2 = 2, γp,i = 1012 s−1,
the pump beam at a 10-μm wavelength, and incidence angle
of π/4. The pumping intensity was assumed to be Ip =
100 MW/cm2, which is 10 times lower than the intensities
in the experiment [16]. The gain is only weakly dependent
on the idler emission angle except for a narrow range around
θ1i = π/4, where qp � qi and therefore qs,ωs → 0. In this
range the gain becomes negative; however, the approximation
ωs � γs becomes invalid, so this case requires a separate
investigation.

In Fig. 3 we show the pumping intensity Ip needed to reach
the parametric instability threshold, Re[G] = γs , as a function
of plasmon decay rate γs , for the same numerical parameters
as in Fig. 2 and for the idler emitted at θ1i = 20◦. In this case
the phase matching condition is satisfied when the plasmon
frequency ωs/2π is equal to 1 THz (see Fig. 2).

The magnitude of the gain can be further increased by
non-Bernal stacking of multiple graphene layers, which will
reduce the threshold intensity.

Low-energy surface states of a 3D topological insulator
Bi2Se3 are massless 2D Dirac fermions described by the
effective Hamiltonian H = vF (�σ × �p)z [21], where vF is two
times smaller than in graphene. The states have different
chirality as compared to those in graphene but the same matrix
elements of the interaction Hamiltonian and the same structure
of the optical response. Repeating the same derivation, one
can show that the parametric gain for a Bi2Se3 film (i.e., two
uncoupled surfaces) will have a magnitude lower by a factor

10
10

10
11

10
1210
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2

10
3

γs(s−1)

I p
,t
h
(M

W
/
cm

2 )

FIG. 3. Pumping intensity Ip needed to reach the parametric
instability threshold, Re[G] = γs in Eq. (18), as a function of the
plasmon decay rate γs .

of ∼26 due to a two times lower vF and two times lower
degeneracy.

IV. GENERATED IDLER FIELD FLUX

The outgoing flux of idler photons generated as a result
of parametric decay of the pump carries information on the
intensity of generated surface plasmon field, the surface non-
linearity, and even the quantum state of plasmons. Therefore,
the detection of idler photons is a valuable diagnostic tool,
especially in the experiments where the direct detection of
surface plasmons is problematic. To calculate the operator of

the idler field generated by the nonlinear current ∂
∂t

P̂
(2)
i , we use

Eqs. (12) and standard boundary conditions from the previous
section, arriving at

δ Êi = y0Ei0ĉ
(2)
i eikiz+iqix−iωi t + H.c., ĉ

(2)
i = n1�χ (i,2)

yyx

c cos θ1i

â†
s ĉp.

If one only needs to know the average flux of the idler photons
on the detector of transverse area AD,〈�̂(2)

i 〉 = 〈 cAD

n1
ĉ
†
i ĉi〉, it is

enough to calculate the average value of the plasmon quanta
〈â†

s âs〉 generated from length Lx . Using Eq. (16) we obtain

〈â†
s âs〉 = 1

Lx

∫ x

0
〈â†

s âs〉dx ≈ 〈â†
s âs〉T e� − 1

�
,

� = 2
Re[G] − γs

vs

Lx. (23)

The resulting average flux of the idler photons on the detector
is given by

〈
�̂

(2)
i

〉 = n2
1|�|2∣∣χ (i,2)

yyx

∣∣2
IpLx�ω

2πc2vs�ωp cos θ1i

(
e� − 1

�
NT (ωs) + 1

)
.

Close to the parametric instability threshold, when e�−1
�

∼
1, the idler photon flux is

〈
�̂

(2)
i

〉 ∼ �ωγsLx

2πvs

NT (ωs), (24)
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i.e., it is of the order of the thermal flux at a much lower surface
plasmon frequency, NT (ωs) � NT (ωp), collected from the
length equal to the plasmon decay length, Lx ∼ vs/γs . Far
above threshold, both idler and surface plasmon fluxes increase
exponentially, ∝e�.

V. PLASMON-PHOTON ENTANGLEMENT

The total idler field propagating away from the graphene
layer to the detector consists of the reflected and transmitted
noise field and the generated parametric field calculated above:

ĉr ≈ Riĉi +
√

1 − R2
i ĉ

(−)
i + n1�χ (i,2)

yyx

c cos θ1i

â†
s ĉp, (25)

where Ri = n1 cos θ1i−n2 cos θ2i

n1 cos θ1i+n2 cos θ2i
is the Fresnel reflection

coefficient for the S-polarized field. Here we neglected
absorption in monolayer graphene ∼πα. It could be easily
included by redefining Ri . Calculating quantum-mechanical
averages of the quantities quadratic with respect to the reflected
field, it is easy to see that Eq. (25) corresponds to an entangled
plasmon-photon state (see also [11]).

In general, the calculations of quantum-mechanical aver-
ages of any physical quantities are much easier to perform
in the Heisenberg picture using Eq. (25) for Heisenberg
operators, without converting to the Schrödinger picture. In
particular, it is obvious from Eq. (25) that for a given spectrum
of the pump field any physical observable for a surface plasmon
field can be related to a corresponding observable for the
idler field at frequency ωi . For example, if the pump field
spectrum is much narrower than the spectrum of the plasmon
fluctuations, then the spectrum of surface plasmons is related
to the spectrum of idler photons. However, to demonstrate how
the entangled state is formed, we will discuss the Schrödinger
picture as well, with certain simplifications. Namely, consider
the equation of motion Eq. (9) for the plasmon field in the
particular case of single-mode fields, classical pumping, and
neglecting dissipation. This means that we take Ep to be a c

number, ∂/∂x → 0,γ,F̂s → 0, and χ (s,2)
xyy = χ (i,2)

yyx = χ (2). We
will also assume for simplicity that the media on both sides of
the graphene sheet have dielectric constants equal to 1. In this
case Eqs. (9) and (12) yield

˙̂as = i

�
χ (2)EpE∗

s0E
∗
i0ĉ

†
i , (26)

and the Hermitian-conjugate equation

˙̂a†
s = i

�
χ (2)E∗

pEs0Ei0ĉi . (27)

Since for single-mode fields the normalizations we chose
correspond to [âs ,â

†
s ] = [ĉs ,ĉ

†
s ] = 1, Eqs. (26) and (27) can

be interpreted as Heisenberg equations in the interaction
representation:

˙̂as = i

�
[V̂ ,âs], ˙̂a†

s = i

�
[V̂ ,â†

s ]. (28)

Here the interaction Hamiltonian is

V̂ = −ξ â†
s ĉ

†
i − ξ ∗âs ĉi , (29)

where ξ = χ (2)EpE∗
s0E

∗
i0.

Now let’s solve the Schrödinger equation, also in the
interaction representation:

i��̇ = V̂ �. (30)

Starting for simplicity with the initial condition in the form
�(t = 0) = |0〉s |0〉i , the solution to Eq. (30) can be written as

� =
∞∑

n=0

Cn|n〉s |n〉i , (31)

where the coefficients Cn can be found from equations

Ċ0 + i

�
ξ ∗C1 = 0,

Ċn�=0 − i

�
ξnCn−1 + i

�
ξ ∗(n + 1)Cn+1 = 0, (32)

with initial conditions C0(t = 0) = 1, Cn�=0 = 0. It is clear
that at t > 0 the solution (31) is entangled, i.e., it cannot be
factorized as � = (

∑∞
n=0 An|n〉s)(

∑∞
n=0 Bn|n〉i). In particular,

within the perturbation theory, the solution can be expressed
via Bell states �± = (1/

√
2)(|0〉s |0〉i ± |1〉s |1〉i):

� ≈ |0〉s |0〉i + C̃|1〉s |1〉i√
1 + |C̃|2

= 1 + C̃√
1 + |C̃|2

�+√
2

+ 1 − C̃√
1 + |C̃|2

�−√
2
, (33)

where C̃ = i
�
ξ t � 1.

In conclusion, we showed the feasibility of observing both
spontaneous and stimulated parametric decay of photons of
a strong laser pump obliquely incident on graphene. We
calculated the flux of surface plasmons and idler photons
generated by parametric decay of the pump, and demonstrated
their entanglement. A rigorous quantum theory of the process
including quantization of all fields and fluctuations has been
developed.
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APPENDIX A: NORMALIZATION OF THE SURFACE
PLASMON FIELD

The normalization constant Es0 in Eq. (7) can be obtained
by evaluating the normalization integral (6):∫

V

(
E∗

s

∂(ωε̃)

∂ω
Es + Bs B∗

s

)
d3r = 4π�ωs. (A1)

Here ε̃ is the dielectric permittivity tensor; the volume V is
formed by a closed cylindrical surface that crosses the (x,y)
plane along the boundary of the area A = 1.

One can show that when the flux of the complex vector
Es × B∗

s through the surface of the quantized volume is
equal to zero (which is the case, for example, for periodic
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boundary conditions or in a resonator), then
∫
V

d3r Bs B∗
s =∫

V
d3r Es ε̃ E∗

s . This condition allows one to transform the
volume integral in Eq. (A1) in the following way:∫

V

(
E∗

s

∂(ωε̃)

∂ω
Es + Bs B∗

s

)
d3r

=
∫

V

E∗
s

∂(ω2ε̃)

ω∂ω
Esd

3r =
∫ +∞

−∞
E∗

s

∂(ω2ε̃)

ω∂ω
Esdz. (A2)

Next, we substitute into Eq. (A2) the z dependence of the
dielectric permittivity which follows from the geometry of the
system:

εxy = εyx = εxz = εzx = εyz = εzy = 0,

εxx = εyy =
⎧⎨
⎩

ε1 for z > 0,

1 + 4πχsδ(z) for z = 0,

ε2 for z < 0,

εzz =
⎧⎨
⎩

ε1 for z > 0,

1 for z = 0,

ε2 for z < 0,

and use Eqs. (A1) and (A2) with Eq. (4) to arrive at

|Es0|2
[(

q2
s

p2
1

− 1

)
ε1

p1
+

(
q2

s

p2
2

− 1

)
ε2

p2
+ 4πωsRe

(
∂χs

∂ω

)]
= 4π�ωs. (A3)

In the quasielectrostatic approximation p2
1,2 → q2

s and we
obtain Eq. (7), where χs is given by Eq. (3).

APPENDIX B: SECOND-ORDER NONLINEAR
SUSCEPTIBILITY IN GRAPHENE

Here we provide the general expressions for the components
of the second-order susceptibility tensor that are relevant for
the parametric three-wave mixing in graphene.

The Hamiltonian of graphene near the Dirac point K is

H = vF σ · p̂ = vF

(
0 p̂x − ip̂y

p̂x + ip̂y 0

)
, (B1)

where p̂ is the momentum operator relative to K and σ is a
2D vector of Pauli matrices. The eigenenergies are ε±(k) =
±�vF k, and eigenstates are

〈r‖|s,k〉 = 1√
2A

exp(ik · r‖)

(
s

eiφ(k)

)
, (B2)

where s = 1 for conduction band, s = −1 for valence band,
A is the area of graphene, and φ(k) is the angle of the wave
vector k with the x axis.

The interaction Hamiltonian between graphene and the
optical field which has an in-plane component of the electric
field can be written as

Ĥ
op

int = vF

e

c
σ · A = e

c
v̂ · A, (B3)

where v̂ = vF σ is the velocity operator, and A is the vector
potential of the optical field, which is related to the electric field
by E = (−1/c)∂ A/∂t . Using this Hamiltonian, the evolution
equation for the density matrix is given by

i�
∂

∂t
ρmn = (εm − εn)ρmn + e

c
(v̂ · A)mn(ρnn − ρmm)

+ e

c

∑
l �=m,n

((v̂ · A)mlρln − ρml(v · A)ln), (B4)

where both linear and nonlinear effects are included. We
calculate the field-induced current in second order with
respect to the optical field, as a quantum-mechanical av-
erage of the current operator ĵ = −evF σ with the density
matrix.

We will seek the response at the sum frequency ω1 + ω2

to the bichromatic optical field with in-plane electric fields at
frequencies ω1,2 directed along unit vectors η1,2 :

A = η1A(ω1)ei(q1·r‖−ω1t) + η2A(ω2)ei(q2·r‖−ω2t) + c.c. (B5)

The result will be applicable to the difference frequency
process by choosing either positive or negative frequencies,
with the corresponding change in q for a given ω. The
second-order density matrix elements at the sum frequency
ω1 + ω2 are evaluated to be

ρ(2)
mn(ω1 + ω2) =

(e

c

)2 A(ω1)A(ω2)

�(ω1 + ω2) − (εm − εn)

×
∑

l �=m,n

((v̂ · η1)eiq1·r‖)ml((v̂ · η2)eiq2·r‖)ln

×
[

(ρnn − ρll)

�ω2 − (εl − εn)
− (ρll − ρmm)

�ω1 − (εm − εl)

]
+{1 ↔ 2}. (B6)

The matrix elements entering the above expression are
given by

((v̂ · η)eiq·r‖ )mn = 1
2vF [(ηx − iηy)smeiφn

+ (ηx + iηy)sne
−iφm ]δkm,kn+q . (B7)

The average of the corresponding Fourier harmonic
of the induced current with the density matrix can be
calculated as

J (2)(ω1 + ω2) = −e
∑
mn

(v̂e−i(q1+q2)·r‖)nmρ(2)
mn(ω1 + ω2).

(B8)

Next, we transform from summation to integration over
k states, introduce the corresponding occupation numbers
f (s,k) of the momentum states in each band, apply the
momentum conservation in a three-wave mixing process, and
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take into account spin and valley degeneracy. The result is

J (2)(ω1 + ω2) = − e3v2
F

8π2c2�2
A(ω1)A(ω2)

∑
sm,sn,sl

∫
d2k

1

(ω1 + ω2) − vF (sm|k + q1| − sn|k − q2|)

×
[

f (sn,|k − q2|) − f (sl,|k|)
ω2 − vF (sl|k| − sn|k − q2|) − f (sl,|k|) − f (sm,|k + q1|)

ω1 − vF (sm|k + q1| − sl|k|)
]

× [(η1x − iη1y)smeiφ(k) + (η1x + iη1y)sle
−iφ(k+q1)][(η2x − iη2y)sle

iφ(k−q2) + (η2x + iη2y)sne
−iφ(k)]

× [(x̂ + iŷ)sme−iφ(k−q2) + (x̂ − iŷ)sne
iφ(k+q1)] + {1 ↔ 2}. (B9)

This equation can be integrated numerically for any given geometry of incident fields and electron distribution. We consider the
limit of the Fermi distribution with a strong degeneracy, direct all in-plane photon wave vectors along x axis, and expand the
integrand in Eq. (B9) in powers of q1,q2. The integral over the term of zeroth order in q vanishes, as expected from symmetry.
We will keep the terms linear in q. Also we have to evaluate separately the intraband contribution sl = sm = sn and all types of
mixed interband-intraband contributions: sm = sn = −sl, sm = sl = −sn, and sn = sl = −sm. Here we give only the component
of the second-order nonlinear conductivity tensor which gives the main contribution to the signal for an S-polarized pump:

σ (2)
xyy(ω1 + ω2; ω1,ω2) = −s(εF )

e3v2
F

π�2

1

ω2
1ω

2
2(ω1 + ω2)

(
ω2

1 − 4v2
F k2

F

)(
ω2

2 − 4v2
F k2

F

)(
(ω1 + ω2)2 − 4v2

F k2
F

)
× [

4(vF kF )2ω1ω2(ω1 + ω2)2
(
q1ω

2
2 + q2ω

2
1

)
+ 4(vF kF )4

(
q1ω

4
2 − (6q1 + 4q2)ω1ω

3
2 − 8(q1 + q2)ω2

1ω
2
2 − (4q1 + 6q2)ω3

1ω2 + q2ω
4
1

)
− 16(vF kF )6(q1ω2(ω2 − 2ω1) + q2ω1(ω1 − 2ω2))

]
. (B10)

Here s(εF ) = ±1 depending on whether the Fermi level is in the conduction or valence band.
For completeness, we also give the xxx component of the nonlinear conductivity which determines the second-order response

to a P-polarized pump:

σ (2)
xxx(ω1 + ω2; ω1,ω2) = s(εF )

e3v2
F

4π�2ω1ω2

(
q1 + q2

ω1 + ω2
+ q1

ω1
+ q2

ω2

)

− s(εF )
e3v2

F

4π�2

1

ω2
1ω

2
2(ω1 + ω2)

(
ω2

1 − 4v2
F k2

F

)(
ω2

2 − 4v2
F k2

F

)(
(ω1 + ω2)2 − 4v2

F k2
F

)
× [

ω2
1ω

2
2(ω1 + ω2)2(q1ω2(2ω1 + ω2) + q2ω1(ω1 + 2ω2))

− 4v2
F k2

F

(
ω2

1 + ω1ω2 + ω2
2

)2
(q1ω2(2ω1 + ω2) + q2ω1(ω1 + 2ω2))

+ 16v4
F k4

F

(
q2ω

4
1 + 2(q1 + q2)ω1ω2

(
2ω2

1 + 3ω1ω2 + 2ω2
2

) + q1ω
4
2

)]
. (B11)

The result for the difference frequency can be obtained from Eqs. (B10) and (B11) by flipping the sign of ω2 and q2. After
converting the nonlinear conductivity to the nonlinear susceptibility according to

χ
(2)
ijk(ω1 + ω2; ω1,ω2) = iσ

(2)
ijk (ω1 + ω2; ω1,ω2)

ω1 + ω2
,

one can verify that in the absence of dissipation all components of the nonlinear susceptibility tensor that we calculated satisfy
permutation relations originated from symmetry properties; see, e.g., Chap. 2.9 in [19]:

χ
(2)
ijk(ω3 = ω1 + ω2) = χ

(2)
jik(−ω1 = −ω3 + ω2) = χ

(2)
kji(−ω2 = −ω3 + ω1), (B12)

where in-plane wave vectors have to be permuted together with frequencies.
The second-order response goes to zero when the Fermi energy εF goes to zero, and is maximized when one of the three

frequencies involved in three-wave mixing is close to 2εF /� = 2vF kF . Close to resonance with 2εF /� one has to include the
imaginary part of the frequency which comes from the omitted relaxation term −γρmn in the density-matrix equations. This
amounts to substituting ω1 → ω1 + iγ1,ω2 → ω2 + iγ2,ω1 + ω2 → ω1 + ω2 + iγ3. Note that if we flip the sign of ω2 the sign
of +iγ2 remains the same. Even if dissipation is included we can still use Eqs. (B12) to derive the components of the nonlinear
susceptibility tensor from other components. In order to do that, one needs to use Eqs. (B12) in the absence of dissipation and
then add imaginary parts of frequencies. Of course the resulting expressions after adding dissipation won’t satisfy Eqs. (B12).
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