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Anharmonic effects in the optical and acoustic bending modes of graphene
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The out-of-plane fluctuations of carbon atoms in a graphene sheet have been studied by means of classical
molecular dynamic simulations with an empirical force field as a function of temperature. The Fourier analysis
of the out-of-plane fluctuations often applied to characterize the acoustic bending mode of graphene is extended
to the optical branch, whose polarization vector is perpendicular to the graphene layer. This observable is
inaccessible in a continuous elastic model of graphene but it is readily obtained by the atomistic treatment. Our
results suggest that the long-wavelength limit of the acoustic out-of-plane fluctuations of a free layer without
stress is qualitatively similar to that predicted by a harmonic model under a tensile stress. This conclusion is a
consequence of the anharmonicity of both in-plane and out-of-plane vibrational modes of the lattice. The most
striking anharmonic effect is the presence of a linear term, ωA = vAk, in the dispersion relation of the acoustic
bending band of graphene at long wavelengths (k → 0). This term implies a strong reduction of the amplitude
of out-of-plane oscillations in comparison to a flexural mode with a k2 dependence in the long-wavelength limit.
Our simulations show an increase of the sound velocity associated to the bending mode, as well as an increase
of its bending constant, κ, as the temperature increases. Moreover, the frequency of the optical bending mode,
ωO (�), also increases with the temperature. Our results are in agreement with recent analytical studies of the
bending modes of graphene using either perturbation theory or an adiabatic approximation in the framework of
continuous layer models.
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I. INTRODUCTION

The crystalline order of a graphene layer has been the
focus of interesting experimental investigations. Diffraction
experiments by transmission electron microscopy (TEM)
reveal that suspended graphene sheets are not perfectly flat:
they exhibit intrinsic microscopic ripples. The TEM atomic-
resolution images display that the corrugations are static with
typical lengths in the range L = 20–200 Å and heights between
h = 2–20 Å [1]. The bending frequencies for wavelengths
on the order of 200 Å are estimated to be of order 1010 Hz
(0.3 cm−1). They are fast for the time scale of electron
diffraction experiments. Thus the origin of the out-of-plane
corrugation was suggested to be not of thermal nature, but
a consequence of adsorbed impurity atoms sitting on random
sites [2]. Nevertheless, the exact origin of the static corrugation
in graphene is still unclear and probably the stresses at the
boundary of graphene during the device fabrication play also
an important role [3]. The essential part of anharmonicity in
the corrugation behavior of graphene has been stressed in a
recent TEM study [4]. The root-mean-square fluctuation of
the graphene roughness was estimated as 1.7 Å at 300 K with
a lateral scale of about 100 Å. The most striking result of this
diffraction experiment, contrary to intuitive expectation, was
the increase in the average corrugation height with decreasing
temperature from 300 to 150 K [4].

Atomistic simulations of the intrinsic ripples in graphene
have predicted that anharmonic couplings between bending
and stretching modes significantly diminish the mean-square
height amplitude 〈h2〉 of the out-of-plane thermal fluctuations.
The relation of 〈h2〉 to the number of atoms in the layer N
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has been described as a power-law behavior N1−(η/2), where
η is the roughness exponent. The harmonic approximation for
a typical flexural mode with a quadratic dispersion relation
predicts a vanishing exponent (η = 0) [5]. Note that this
value represents a “catastrophic” divergence as the mean-
square height fluctuation grows as the area of the sheet,
〈h2〉 ∝ N . Consideration of anharmonic effects by Nelson
and Peliti results in a lower exponent η = 1, that diminishes
the height fluctuations with respect to the harmonic limit [6].
Interestingly, recent computer simulations report anomalous
exponents, η, that may vary depending on the employed
potential model and on the simulated ensemble (constant
stress or strain) in a range from η = 0.67 to η = 1.1 [5,7].
It is believed that such anomalous exponents should be
universal quantities, therefore the origin for the variability
in the roughness exponents reported in computer simulations
remains unexplained [3].

Analytical results from continuous models of graphene
provide a picture of the intrinsic surface corrugation that differs
in some aspects from the power-law behavior described by
an anomalous roughness exponent. The study of anharmonic
effects by first-order perturbation theory in Ref. [8] shows
that the dispersion relation for the acoustic out-of-plane mode
in graphene, ωA(k), is linear in the long-wavelength limit
(k → 0). The relation ωA = vAk, characteristic of sound waves
at small k, implies a roughness exponent η = 2. This behavior
is not related to an external tension, i.e., the linear term has
a finite value even if the stress of the layer vanishes. An
adiabatic approximation to the anharmonic coupling between
in-plane and out-of-plane acoustic modes in graphene provides
additional theoretical reasons to show that the dispersion rela-
tion of the bending mode, ωA(k), must be necessary linear at
small wave numbers [9]. It is remarkable that the perturbation
analysis of Amorim et al. [8] and the adiabatic approach of
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Adamayan et al. [9], even though they differ in the anharmonic
terms used to describe the phonon-phonon coupling, reach the
same conclusion. Namely, the existence of a linear dispersion
relation of the bending mode at small wave numbers. This
term excludes, distinctively, the appearance of power-law
divergences in the mean-square amplitude, 〈h2〉, of the out-
of-plane thermal fluctuations as the area of the layer increases.
The resulting amplitudes should then display a much slower
logarithmic grow as a function of the number of atoms N [5,9].

Here, a series of classical molecular dynamics (MD)
simulations of a free suspended graphene sheet are presented
using the empirical long-range carbon bond order potential
(LCBOPII) [10,11]. The focus lies on the characterization
of the average height fluctuations under conditions of zero
stress and temperatures up to 2000 K. Finite size effects have
been considered by simulation of cells containing between 103

and 3 × 104 atoms. The analysis of the simulations is based
upon an atomistic model, which has the distinct advantage
over continuous models of providing information on both the
acoustic and optical oscillations in the direction perpendicular
to the layer. Particular emphasis is set upon the characterization
of effects related to the anharmonicity of the employed
interatomic potential. In this respect, an advantage of the
numerical simulation over analytical approaches is that the full
anharmonicity of the potential model is taken into account.

The structure of this paper is as follows. In Sec. II,
we summarize the Fourier analysis of the symmetric and
antisymmetric out-of-plane fluctuations. Basic equations
are presented in Sec. II A, while a relation used to fit the k

dependence of the acoustic height fluctuations is presented in
Sec. II B. The analysis of the simulation results is given in Sec.
III. The temperature dependence of the mean-square height
fluctuations of the acoustic modes is studied in Sec. III A,
while the related acoustic dispersion relation is the topic of
Sec. III B. Anharmonic effects in the bending sound velocity,
bending rigidity and frequencies of optical out-of-plane modes
are studied in Sec. III C. The divergence of out-of-plane
amplitudes with the system size is analyzed at 300 K in
Sec. III D. A brief discussion of the results is presented in
Sec. IV. Finally, we summarize our conclusions in Sec. V.
Technical details concerning the MD simulations are given in
Appendix A.

II. FOURIER ANALYSIS OF OUT-OF-PLANE
FLUCTUATIONS

MD simulations were performed in both NV T and NPT

ensembles (N being the number of atoms, V is the area of the
simulation cell, P the trace of the 2D stress tensor divided by
2, and T the temperature). The simulation cell was defined by a
supercell generated with a two-dimensional (2D) rectangular
cell, (a,b). For technical details concerning the simulation
setup see Appendix A. Here we focus on the physics behind
the Fourier analysis of out-of-plane modes.

A. Basic equations

The position of the jth atom of the simulation cell is
represented by a vector

rj = (uj,zj ) , (1)

where uj is a 2D vector in the (a,b) plane. The height of the
atom is

hj = zj − z, (2)

with z = ∑N
j=1 zj /N being the average height of the layer. The

carbon atoms in graphene are divided into two sublattices, α

and β, as shown in Appendix A. The discrete Fourier transform
(dFT) of the heights of the carbon atoms in the sublattice α is

Hα,n = 2

N

N/2∑
j=1

hje
−iknuj . (3)

Here, the index j runs only over α atoms. The set of Nk vectors,
kn, whose wavelengths are commensurate with the simulation
cell, is defined in Appendix A. A similar expression defines
Hβ,n as the dFT of the heights of the β sublattice. One can
define the dFT of the symmetric and antisymmetric linear
combinations of heights of α and β atoms:

An = Hα,n + Hβ,n

2
, (4)

On = Hα,n − Hβ,n

2
. (5)

At the � point, i.e., when kn = 0 in Eq. (3), the phase difference
between two atoms (α and β) in a hexagonal unit cell is 0 (π )
for the symmetric (antisymmetric) combination. However, for
a generic kn point, the phase difference is modulated by the
value of the scalar product knuj, which differs for α and β

atoms. This phase modulation is similar to that encountered
for the acoustic and optical modes of a lattice with a base of two
atoms [12]. We will see later that, for the kn points within the
first hexagonal Brillouin zone (BZ), the module of the complex
coefficients, Ān and Ōn, are estimators for the amplitude of the
acoustic (ZA) and optical (ZO) vibrational modes of graphene
with polarization vector along the z direction.

The ensemble average height fluctuation

〈
h2

〉 = 1

N

〈
N∑

j=1

h2
j

〉
(6)

is related to the set of spectral amplitudes 〈Ā2
n〉 and 〈Ō2

n〉 by the
Parseval’s theorem of the dFT in Eq. (3). Taking into account
the definitions in Eqs. (4) and (5), one gets

〈
h2

〉 = 2

N

(
Nk∑
n=1

〈
Ā2

n

〉 + 〈
Ō2

n

〉)
. (7)

Then, within an atomistic description of graphene, the av-
erage height fluctuation is the sum of the symmetric and
antisymmetric contributions. We will quantify later the relative
contribution of both modes.

Another interest of the spectral amplitudes, 〈Ā2
n〉 or 〈Ō2

n〉,
is their relationship to the vibrational frequencies of the
corresponding vibrational modes. In the harmonic limit, one
has

ρω2
A,n = kBT

Va

〈
Ā2

n

〉 , (8)

where kB is the Boltzmann constant, ρ = m/Va is the atomic
density of the layer, m is the atomic carbon mass, and
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FIG. 1. (a) Log-log plot of the spectral amplitudes of the
symmetric (acoustic, ZA) and antisymmetric (optical, ZO) modes
of graphene derived from NPT simulations at 1 K. The kn points,
defined in Eq. (A5), correspond to a simulation cell with 960 atoms.
The symbols show the square of the amplitude times k2 as a function
of module of the wave vector k. The continuous line is the least
squares fit of the acoustic branch to Eq. (13). The largest displayed
k point corresponds to the point M at the boundary of the hexagonal

BZ (kM = 1.48 Å
−1

). (b) The dispersion relations of the ZA and ZO
bands of graphene, as derived by Eq. (8), are shown by circles. The
continuous lines are calculated by diagonalizing the dynamical matrix
of the LCBOPII model along the �M direction of the hexagonal BZ.

Va = V/N the area per atom in the x,y plane. Although this
relation between frequency and spatial amplitude is exact only
in the harmonic limit, it has been applied in the context of
anharmonic vibrations of molecules and solids as a reasonable
linear response (LR) approximation [13,14]. Anharmonic
shifts in the stretching frequency of hydrogen molecules
adsorbed as isolated impurities in graphite and silicon were
studied by this method [15,16]. Within this LR approximation
anharmonic vibrational frequencies are estimated with Eq. (8)
from anharmonic vibrational amplitudes that are obtained by
computer simulations.

As illustration of the physical information of the spectral
functions An and On, we have derived them in a classical
NPT simulation of graphene with N = 960 atoms at P = 0
and T = 1 K. This temperature is chosen deliberately low
with the purpose of having vibrational modes close to their
harmonic limit. The simulation data can be then checked
against analytical results.

In Fig. 1(a), the ensemble average of the dimensionless
quantities k2

n〈Ā2
n〉 and k2

n〈Ō2
n〉 is shown as a function of

the module of the wave vector, k = |k|. The graphical
representation as a function of k (instead of the vector k) is
justified by the in-plane isotropy of graphene. The isotropy is
particularly valid in the elastic long-wavelength limit (k → 0),
although less true when the vector k approaches the boundary
of the 2D hexagonal BZ [17]. As expected, the amplitudes
for the symmetric branch are always larger that those of
the asymmetric branch, and the difference increases in the
long-wavelength limit.

The mean-square height 〈h2〉 obtained in the NPT sim-

ulation at 1 K is 〈h2〉 = 5.9 × 10−4 Å
2
. The contribution

from the symmetric and antisymmetric modes derived by
Eq. (7) amounts to 89% and 11%, respectively. Note that
the contribution of the antisymmetric mode to the height
fluctuation 〈h2〉 is significant. However, to the best of our
knowledge this contribution has never been quantified in
previous simulations of graphene [5,7,18].

The wave numbers, ωA and ωO , derived by Eq. (8) from the
amplitudes of the ZA and ZO modes are displayed as circles
in Fig. 1(b). For comparison, the continuous lines show the
frequencies obtained by diagonalizing the dynamical matrix
of graphene along the �-M direction of the hexagonal BZ.
The dynamical matrix was calculated with the same potential
model (LCBOPII) as employed in the simulations. Vibrational
frequencies of both acoustic and optical branches are repro-
duced accurately by the analysis of spectral amplitudes. It
is remarkable that one gets realistic vibrational frequencies
even near the boundary of the first hexagonal BZ. This one-
to-one correspondence between symmetric (antisymmetric)
out-of-plane fluctuations and acoustic (optical) vibrational
amplitudes is somewhat lost when the vector kn lies outside
the first BZ. The spatial relation between the kn grid and the
hexagonal BZ is displayed in Fig. 8 in Appendix A. The relative
large contribution (11%) of the asymmetric band to 〈h2〉 is
caused by the increasing acoustic character of the asymmetric
out-of-plane fluctuations at k values larger than those shown
in Fig. 1.

The realistic prediction of the ZA and ZO vibrational bands
in Fig. 1(b) encourages us to apply this spectral analysis at
higher temperatures, where anharmonic effects are expected
to be relevant. However, an additional numerical tool would
be helpful for the study of the long-wavelength limit of the
acoustic modes. Namely, a realistic analytical function to fit
the k dependence of its spectral amplitude.

B. Atomistic model for the acoustic spectral amplitudes

The phenomenological dispersion relation for the acoustic
branch of a continuous membrane is

ρω2
A = σk2 + κk4 , (9)

where σ is the external stress, and κ is the bending rigidity.
This relation could be used, with the help of Eq. (8), to fit the
k dependence of the function k2

n〈Ā2
n〉 [see Fig. 1(a)]. However,

the interval [0,kA], where the phenomenological expression is
valid, is not clearly defined. Therefore it is convenient to work
with an improved dispersion relation for graphene based on an
atomistic model instead of a continuous limit as in Eq. (9).

The simplest atomic model that displays an acoustic flexural
mode is a one-dimensional chain of atoms with interactions up
to second nearest neighbors. The dispersion relation for this
model has the following analytical form (see Appendix B)

ρω2
A = D

[
sin2 (Lk/2) − C sin2 (Lk)

]
, (10)

where D, L, and C are treated here as adjustable parameters.
The Taylor expansion of this analytical function contains only
even powers of k. The first two coefficients, as defined in
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TABLE I. Parameters D,L, and C obtained from Eq. (13) by least
squares fits of the simulated values of k2

n〈Ā2
n〉 at several temperatures.

The fits were performed in the k interval defined by k < 1 Å
−1

.
Va is the area per atom. The last columns are the linear term of the
acoustic dispersion relation, σ , and the bending rigidity, κ . The results
correspond to a simulation cell with 960 atoms.

T D L C Va σ κ

(K) (eV Å
−4

) (Å) (Å
2
/atom) (eV Å

−2
) (eV)

1 4.716 1.491 0.2500 2.6189 0.000 1.49
50 3.320 1.645 0.2499 2.6185 0.001 1.52
300 2.904 1.727 0.2491 2.6173 0.008 1.61
1000 1.693 2.059 0.2480 2.6183 0.014 1.88
2000 1.292 2.280 0.2474 2.6279 0.018 2.15

Eq. (9), are

σ = DL2

(
1

4
− C

)
, (11)

κ = DL4

(
C

3
− 1

48

)
. (12)

Following Eqs. (8) and (10), the simulated results of k2
n〈Ā2

n〉
will be fitted by a least squares method to the function

f (k) = kBT

Va

k2

D
[
sin2 (Lk/2) − C sin2 (Lk)

] , (13)

that depends on the parameters D,, and C. All the fits in this

work were performed with k points satisfying k < 1 Å
−1

.
The continuous line in Fig. 1(a) shows the fit of k2

n〈Ā2
n〉 for

the simulation at 1 K. The fitted parameters are summarized
in the first line of Table I. The value of the parameter C = 1/4
implies that σ = 0 here. A value of κ = 1.49 eV is derived
from Eq. (12). We have checked that this value agrees, within
the statistical error, with the numerical second derivative of ωA:(

κ

ρ

)1/2

= 1

2

(
∂2ωA

∂k2

)
k=0

. (14)

Here, ωA was calculated by diagonalizing the dynamical
matrix of the employed LCBOPII model. This ωA band was
shown by a continuous line in Fig. 1(b). The numerical second
derivative at k = 0 gives the value κ = 1.48 eV.

III. SIMULATION RESULTS

NPT simulations of graphene were performed in the
classical limit at external stress P = 0. Two cell sizes were
employed to study temperatures in the range 50–2000 K.
Predictions based on simulations with N = 960 atoms were
checked against the results obtained with a larger cell with
8400 atoms.

A. Spectral amplitudes for ZA modes

The values of k2
n〈Ā2

n〉 for N = 960 are displayed as open
circles in Fig. 2. The studied temperatures are 50, 300, 1000,
and 2000 K. The size of the simulation cell implies that the
shortest wave vector for the out-of-plane oscillations has k =
0.12 Å

−1
. The largest displayed k corresponds to the point M

0.01 0.1 1
k (Å-1)

0.01

0.1

1

10

k2  <
A

2 >

50 K

2000 K
1000 K

300 K

FIG. 2. Log-log plot of the spectral amplitudes of the ZA modes
of graphene derived from NPT simulations at several temperatures.

Open circles are results with N = 960 atoms for k > 0.12 Å
−1

.

Closed squares correspond to N = 8400 for 0.04 < k < 0.12 Å
−1

.
The broken and dotted lines are least squares fits of the simulation
results to Eq. (13). Broken lines are for N = 960 atoms and dotted
ones for N = 8400. The broken and dotted lines at the same
temperature are almost indistinguishable except at 50 K in the region
of low k.

at the boundary of the hexagonal BZ. Least squares fits of the
simulation data by Eq. (13) are shown by broken lines. The
fitted coefficients D, L, and C are summarized in Table I. The
fitted functions follow accurately the simulation data in the
displayed k interval. Only at high temperature (T � 1000 K)
there appears a small deviation between the fitted function and

simulation data for k > 1 Å
−1

.
In the region with k < 0.12 Å

−1
, i.e., for long-wavelength

oscillations, the fitted functions represent obviously an ex-
trapolation of the simulation data. The extrapolation clearly
predicts a flattening of the function k2〈Ā2〉 at the four studied
temperatures. This flattening is absent in the harmonic limit
displayed in Fig. 1(a). Numerically, C is the parameter that
controls the behavior of the function k2〈Ā2〉 at low k. If the
coefficient C becomes smaller than 1/4 [see Eq. (11)], then
the dispersion relation of the ZA modes displays a linear
term, σ > 0. The fitted C coefficients in Table I decreases
as the temperature increases. The value σ > 0 predicted by
the simulations at zero stress is an anharmonic effect activated
by the temperature.

As a consistency check for the extrapolated behavior of
k2〈Ā2〉 at low k, the corresponding values for a larger cell with
8400 atoms are represented as closed squares in Fig. 2. To
avoid an overcrowding of points, only those wave vectors with

k < 0.12 Å
−1

are plotted. The displayed squares correspond to
oscillations with wavelengths (λ = 2π/k) that are inaccessible
to the simulations with 960 atoms. The new points in the

region 0.04 < k < 0.12 Å
−1

follow with reasonable accuracy
the functions fitted with the smaller cell. This is true for the four
studied temperatures. The simulation results of k2

n〈Ā2
n〉 with

8400 atoms have been also fitted with Eq. (13). The functions
are plotted as dotted lines in Fig. 2. The dotted lines are nearly
indistinguishable from the fits with the smaller cell (broken
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FIG. 3. Temperature dependence of the dispersion band of the
ZA modes in the long-wavelength region. The continuous line is the
classical T → 0 limit, derived by diagonalizing the dynamic matrix
along the �M direction. The broken lines correspond to Eq. (10) with
the parameters D, L, and C obtained from the fits of k2

n〈Ā2
n〉 with 960

atoms at 300 and 2000 K, respectively (see Tab I). The open circles
are the results derived from Eq. (8) with 960 atoms at 300 K. The
closed squares are the corresponding results for 8400 atoms at 300
K. The straight dotted line with positive slope (σ > 0) is the linear
term of the dispersion curve at 300 K. The slope is zero (σ = 0) for
the quadratic dispersion in the limit T → 0.

lines). A small difference at k < 0.04 Å
−1

appears only at 50
K. We consider this agreement as a strong evidence that the
dispersion relation in Eq. (10), which is the basic ingredient for
the fit of the spectral amplitudes k2

n〈Ā2
n〉, provides a physically

sound atomistic approximation for the out-of-plane acoustic
oscillations of graphene.

B. Dispersion relation of ZA modes

The fitted constants D, L and C in Table I allow us
to plot the acoustic dispersion relation, ωA(k), according to
Eq. (10). The curves at 300 and 2000 K are plotted as broken
lines in Fig. 3. The dispersion relations are shown up to

k = 0.25 Å
−1

. For reference, we also display the harmonic
T → 0 limit derived by diagonalization of the dynamical
matrix of the employed LCBOPII model, which was already
plotted in Fig. 1(b). This limit, shown by a full line, displays
a quadratic dispersion with vanishing linear term (σ = 0) as
k → 0. However, the dispersion curves at 300 and 2000 K
show finite linear terms (σ > 0) as k → 0. The dotted line
with a positive slope displays the linear term at 300 K.

In Fig. 3, we have also plotted the discrete frequencies,
ωA,n, derived from the spatial amplitudes 〈Ā2

n〉 by Eq. (8).
The open circles are frequencies obtained from the simulation
with 960 atoms. As expected, the open circles are in good
agreement with the broken curve at 300 K, because both data
were evaluated from the same set of 〈Ā2

n〉 values. However,
the set of discrete frequencies derived from the simulation
with 8400 atoms at 300 K provide an independent check of
the results obtained with 960 atoms. These frequencies are
plotted as closed squares in Fig. 3. The density of sampled k

points is much larger than for 960 atoms. The closed squares
are in reasonable agreement to the broken line predicted by

the smaller cell at 300 K. It is remarkable that the dispersion
relation, ωA(k), displays a very small size effect, in the sense
that a simulation with only 960 atoms seems to provide a
reasonably converged result for this function.

The deviation of the dispersion curve at finite temperature
from the harmonic T → 0 limit is an anharmonic effect
predicted by the simulation. Note that at the lowest k accessible

in our simulations (k = 0.04 Å
−1

, λ = 150 Å) the dispersion
curve is very close to the straight line that plots its linear term.
The estimated frequency for this k is only 1 cm−1 (3 × 1011

Hz) at 300 K, about two times larger than the harmonic T → 0
limit. This anharmonic shift of the ωA frequency is small in
absolute value, but has a large effect for the out-of-plane carbon
fluctuations. A related important anharmonic effect is that the
sound velocity of the ZA branch, defined as

vA =
(

∂ωA

∂k

)
k=0

=
(

σ

ρ

)1/2

, (15)

becomes finite. At 300 K the sound velocity amounts to
0.4 km/s, while at 2000 K increases to 0.6 km/s. Our results
are lower than the numerical estimations based on the adiabatic
model of Adamyan et al., which report a value of 1.1 km/s
at 2000 K [9]. In the following section, we quantify the
anharmonic effects of several important magnitudes related
to the out-of-plane carbon fluctuations.

C. Anharmonic effect in σ, κ , and ωO (�)

The linear coefficient σ of the dispersion relation for ZA
modes in graphene is displayed in Fig. 4(a). The results
were obtained from NPT simulations at zero stress and
temperatures between 1 and 2000 K. The coefficient σ

increases from a vanishing value in the low-temperature

(harmonic) limit to a value close to 0.02 eV Å
−2

at 2000 K.
The increase of σ seems to be linear at low temperatures.
Above circa 700 K, σ grows less rapidly than linearly. A linear

0

0.01

0.02

σ
 (e

V
Å

-2
)

0 500 1000 1500 2000
temperature (K)

1.5

1.8

2.1

κ 
(e

V
)

(a)

(b)

FIG. 4. (a) Temperature dependence of the linear coefficient, σ ,
of the dispersion relation of the ZA mode as derived from MD
simulations up to 2000 K. (b) Bending rigidity κ of graphene as
a function of temperature. Open circles were derived by a cell with
960 atoms, while filled squares correspond to a cell with 8400 atoms.
The lines are guides to the eye.
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dependence of σ with T was reported in a classical first-order
perturbation treatment of graphene as a result of including
anharmonic terms in the elastic model [8]. The adiabatic
treatment of anharmonic effects of graphene in Ref. [9] was
based on a quantum description of the out-of-plane vibrations.
At temperatures above 700 K, they find that the oscillations
behave classically and that σ should increase linearly with T ,
or even less than linearly when the temperature dependence
of the in-plane elastic constants is taken into account. Our
simulation results for σ are then in reasonable agreement to the
expectations obtained by analytical treatments of anharmonic
effects in the out-of-plane fluctuations of graphene [8,9].

The temperature dependence of the bending rigidity κ

is displayed in Fig. 4(b). The plotted values were derived
from the simulation results via Eq. (12). Starting from the
harmonic T → 0 limit of the employed LCBOPII model
with κ = 1.49 eV, we observe that κ increases linearly with
temperature. Above 700 K the increase becomes slightly
slower than linear. At 2000 K, we get a bending rigidity
κ ≈ 2.2 eV. Previous atomistic simulations of graphene report
contradicting results for the temperature dependence of the
bending rigidity. Increase of κ with temperature has been
reported in classical Monte Carlo simulations of graphene
[19,20]. However, MD simulations between 200 and 1600 K
were reported to present a decrease in κ from 1 eV to 0.4 eV
[21]. Even a temperature independent κ has been suggested
from MC simulations [22]. The determination of κ is usually
performed by a best fit of simulated results of 〈Ā2

n〉 in a k

region where the slope can be approximated by the harmonic
behavior of a continuous membrane [20,21]. However, the
atomic character of graphene introduces uncertainty about
the k region where the continuous membrane model is valid.
Different results of κ may in part be caused from differences
in the k range where the fit was performed.

The estimated temperature dependence of the ZO mode at
the center of the BZ, ωO(�), is displayed in Fig. 5. These
values were derived from plots of ωO as a function of k,
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FIG. 5. Temperature dependence of the optical ZO mode at the
center of the BZ. Open circles were derived from a cell with 960
atoms, while filled squares correspond to 8400 atoms. The line is a
guide to the eye.

similar to that presented in Fig. 1(b) at 1 K. To extrapolate
the frequency at �, i.e., at k = 0, we fitted a simple relation

ωO = A cos(Lk) to the simulation results for k < 0.6 Å
−1

.
The anharmonicity of the employed model causes an increase
of 4% in the frequency of the optical out-of-plane mode at �,
when the temperature grows up to 2000 K. The linear increase
at low temperatures slows down as the temperature increases,
similarly to the behavior seen before for σ and κ . This
dependence is a consequence of the increase of anharmonic
effects as temperature grows. It is interesting that the effect
of temperature in ωO(�) is to make the vibrational mode
harder. We are not aware of any previous prediction about the
temperature dependence of ωO(�) in graphene. This increase
in vibrational frequency for rising temperature is similar to that
found for acoustic modes with negative Grüneisen parameter
in some solids [23].

D. Logarithmic divergence of mean-square heights
with sample size

The mean-square height fluctuation 〈h2〉 of the carbon
atoms is the sum of the contributions of symmetric, 〈h2

A〉 and
antisymmetric modes 〈h2

O〉. From Eq. (7), one has

〈
h2

A

〉 = 2

N

Nk∑
n=1

〈
Ā2

n

〉
, (16)

and a similar relation for 〈h2
O〉. We will use an analytical

harmonic expression for 〈h2
A〉 and a simple estimation of 〈h2

O〉
to rationalize the size dependence of 〈h2〉 found in NPT

simulations at 300 K with cell sizes up to 33 600 atoms.
For the asymmetric mode, we make a rough estimate〈

h2
O

〉 ≈ 0.16
〈
h2

A

〉
. (17)

This relation is derived from our simulation results with 960
and 8400 atoms at 300 K. We find a ratio 〈h2

O〉 = 0.14〈h2
A〉

for N = 960 atoms, while the factor becomes 0.18 for N =
8400 atoms. For the sake of simplicity, we have approximated
〈h2

O〉 for N < 33 600 as the average of both results.
The analytical harmonic prediction for 〈h2

A〉 has been
derived in Ref. [5] under the assumption that the dispersion
relation for the acoustic mode, ωA, is given by Eq. (9). The
parameters σ and κ of the harmonic model will be taken from
our simulation results with 960 atoms (see Table I).

Firstly, let us consider the hypothetical case where ωA has
a vanishing linear term (i.e., σ = 0 and therefore ρω2

A = κk4).
The harmonic limit of the mean-square fluctuations is [5]

〈
h2

A1

〉 = kBT VaN

16π4κ

n∑
j,l=−n

′(
j 2 + l2)−2

. (18)

The sum is over a discrete k point mesh assuming a squared-
shaped membrane with periodic boundary conditions. n is
defined as the number of atoms along each direction of the
plane, i.e., n2 = N . The prime indicates that the term j = l =
0 is not included in the sum. 〈h2

A1〉 was calculated at 300 K as a
function of N with the data for Va and κ from Table I. The total
mean-square height is then approximated under consideration
of Eq. (17) as 〈

h2
1

〉 = 1.16
〈
h2

A1

〉
. (19)
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FIG. 6. Log-log plot of the mean-square fluctuation of out-of-
plane modes of graphene as a function of the number of atoms in the
simulation cell. Open symbols are results of NPT simulations at zero
stress and T = 300 K. The dashed line displays the harmonic results
for κ = 1.61 eV and σ = 0, while the continuous line represents

the harmonic limit when σ = 0.008 eV/Å
−1

. The curves include
contributions from both the symmetric and antisymmetric modes. The
dotted line is derived from the continuous one by subtraction of the
antisymmetric mode contribution. The dash-dotted line is a power-law
fit, 〈h2〉 = cN 1−(η/2), of the simulation results for N > 500.

The result as a function of N is displayed in Fig. 6 by a
dashed line. The expectation values, 〈h2〉, obtained from NPT

simulations using Eq. (6) for cell sizes up to 33 600 atoms
are given by symbols. We note that Eq. (19) overestimates the
out-of-plane height fluctuations by an unrealistic large amount.

Secondly, let us include the linear term of our simulations

(σ = 0.008 eV Å
−2

at 300 K) in the dispersion relation of Eq.
(9). In this case, the harmonic limit of the mean-square height
fluctuations becomes [5]

〈
h2

A2

〉 = kBT VaN

16π4κ

n∑
j,l=−n

′(
j 2 + l2)−2

×
(

1 + σVaN

4π2κ

(
j 2 + l2)−2

)−1

. (20)

The result for the total height fluctuation,〈
h2

2

〉 = 1.16
〈
h2

A2

〉
, (21)

is displayed in Fig. 6 by a full line. The harmonic model, with
the finite sound velocity corresponding to our value of σ at 300
K, gives now a realistic description of the simulation results.

The dotted line in Fig. 6 is the symmetric contribution
〈h2

A2〉 to the total mean-square fluctuation. Note that the
explicit consideration of the antisymmetric mode improves
the agreement between simulation results of 〈h2〉 and the
analytical model.

The harmonic approximations, 〈h2
A1〉 and 〈h2

A2〉, have
different asymptotic behavior in the limit of large sample size.
The summations in Eqs. (18) and (20) can be converted to
integrals in a continuum approximation. The details are given
elsewhere [5]. Here it suffices to quote that in a continuum

TABLE II. Dispersion relation for ZA modes used in the
interpretation of out-of-plane amplitudes of graphene. k interval gives
regions where the model was applied in simulations. The next column
summarizes the large size limit of the mean-square fluctuations.

ρω2
A k interval (Å

−1
) 〈h2

A〉 (N → ∞) References

κk4 [0.3,1] [7], [0.3,0.4] [34] N [7,21,34]
κrk

4−η [0,0.2] [7], [0.4,1] [22] N 1−(η/2) [5,7,22]
Eq. (10) [0,1] ln N This work

limit

〈
h2

A1

〉 ≈ kBT VaN

16π3κ
, (22)

〈
h2

A2

〉 ≈ kBT

4πσ
ln

(
1 + σVaN

4π2κ

)
. (23)

Thus a finite value of σ reduces the divergence of the harmonic
mean-square amplitude, which results in a proportionality
to N in 〈h2

A1〉, but diverges only logarithmically with N in
〈h2

A2〉. The results of Fig. 6 show that our NPT simulations
at zero stress are in reasonable agreement with a logarithmic
divergence in the long-wavelength behavior of 〈h2〉 with the
number of atoms N . The essential ingredient for this agreement
is the appearance of a linear term, vAk, in the dispersion
relation of ωA. This term implies a finite sound velocity for
the long-wavelength limit of the acoustic ZA modes.

IV. DISCUSSION

Best fits presented in the literature of simulated values of
mean-square fluctuations, 〈Ā2

n〉 or 〈h2〉, should be taken with
caution. There is no general agreement about the theoretically
best fitting model. Given that Eq. (8) defines a one-to-
one correspondence between the amplitudes 〈Ā2

n〉 and the
frequencies of ZA modes, one can distinguish the models just
by the underlying dispersion relation.

Different dispersion relations used for graphene are sum-
marized in Table II. Each model reproduces with reasonable
accuracy simulation results in certain k regions. We consider
that the apparent success of fitting simulation data to different
models is due to the fact that information derived from the
simulations is always partial. In particular, the long wavelength
limit (k → 0) is not easily accessible as the simulation time
grows prohibitively with the cell size (N → ∞) and also as
the statistics of very low frequency modes worsens because of
limited simulation time.

A further matter of concern is the function to be fitted.
Both the absolute value of the function and the density of
k points affect the result of the least squares method. In the
present work we fitted the function k2

n〈Ā2
n〉. The reason is that

for a flexural mode with a quadratic dispersion the value of
〈Ā2

n〉 decreases as k−4, while the density of sampled points
in k space increases as k2, i.e., as the area of circular sectors
of radius k. Thus for k2

n〈Ā2
n〉, the value of the fitted function

times the density of sampled points becomes approximately
independent of k. Evenly distributed weights in k space is a
convenient feature for the least squares method. Let us present
a specific example: if one performs the least squares fit with
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the reciprocal function (kn〈Ān
2〉)−1

, instead of k2
n〈Ā2

n〉, then
the kn points with a larger module will effectively have a
larger weight in the fit. The reason is that both the value of the
reciprocal function and the density of points increase now as
k2. As a consequence, the coefficient σ, derived from the best
fit of the reciprocal function, is about two times larger than
those presented in Table I.

One important physical difference between the three mod-
els in Table II is that a finite sound velocity for the acoustic
out-of-plane vibrations, vA, is predicted only by the model
used in the present work. The other two dispersion relations
in Table II imply that vA = 0 at all temperatures. In this
respect, our simulation results have received an independent
confirmation from a recent theoretical paper that predicts, in
terms of a clear physical picture, the acoustic-type dispersion
of the bending mode [9]. The origin of the bending sound
velocity is related to the anharmonic interaction between in-
plane and out-of-plane vibrations due to nonlinear components
in the strain tensor. The investigation by Adamyan et al. shows
that the dispersion of the bending mode must be necessarily
linear at small wave numbers [9]. We consider this behavior as
an important physical property of graphene that is confirmed
by our analysis of the NPT simulations.

Interestingly, a previous prediction of a linear component in
the dispersion of the ZA mode was presented by Kumar et al.
[24] based on electronic structure density functional theory
calculations. In this work, the origin of the rigidity was traced
to the coupling between vibrational and electronic degrees of
freedom, arising from a curvature induced overlap between π

orbitals in graphene [24]. The same result was suggested by
Falkovsky [25] by the study of the symmetry constraints of the
phonon dispersion curves of graphene. The bending velocity
could be zero only if a definite condition is fulfilled for the force
constants of the graphene lattice. The same fact was found for
a one-dimensional atomic chain (see Appendix B). Using the
value of force constants obtained by fitting experimental data
of graphite he concluded that graphene possesses a small but
finite bending stiffness [25].

Previous classical simulations of out-of-plane fluctuations
of graphene have been analyzed in terms of a power-law
behavior of 〈h2〉 with a roughness exponent close to one,
in agreement to the classical self-consistent calculation by
Nelson and Peliti [6]. One may wonder what makes our
classical simulations to deviate from this picture. In fact, by
fitting our simulated values of 〈h2〉 to a power law in Fig.
6, we get a roughness exponent η = 0.89 (dash-dotted line),
close to the values reported in the literature [5,7]. We note
that the set of cell sizes considered in our simulations is larger
than in previous studies, which used only between three and
six different cell sizes [5,7]. The whole range of studied cell
sizes shows that the analytical model for 〈h2〉 in Eq. (20)
represents an improved agreement to the simulation results, in
comparison to a power-law fit. We stress that the continuous
line in Fig. 6 is not a fit, but an analytical model defined with
plain physical quantities (σ and κ) derived from the symmetric
out-of-plane fluctuations of our simulations.

The appearance of a finite bending sound velocity, vA, trans-
lates into a roughness exponent η = 2. This is the roughness
exponent obtained by Amorim et al. [8] in a quantum self-
consistent perturbative calculation of anharmonic graphene.

It may appear surprising that here the result of our classical
simulations agrees with the roughness exponent of a quantum
calculation (η = 2) but disagrees with the self-consistent clas-
sical perturbative result (η = 1). However, one should consider
that the classical simulations include (numerically) the whole
anharmonicity of the employed model potential. Therefore the
disagreement of the classical simulation with the expectation
of a classical first-order perturbation theory must not be
necessarily considered as a kind of inconsistence. We expect
to clarify this issue in a future work by including quantum
effects in our simulations by the path integral formalism.

The analysis of the simulated trajectories of graphene, in
particular the study of the asymmetric out-of-plane modes,
allowed us the characterization of the optical bending branch of
graphene. This analysis offers additional physical information
that has not been previously considered in simulation studies
of graphene.

V. CONCLUSIONS

We have presented a series of NPT simulations of graphene
under zero stress conditions. The simulations included temper-
atures up to 2000 K and several cell sizes up to 33 600 atoms.
The simulations were performed in the classical limit using
the empirical LCBOPII model. The focus of this study has
been the characterization of anharmonic effects associated to
the out-of-plane oscillations of the layer. The symmetry of
the lattice, with two atoms as a basis, imposes the presence
of an acoustic and an optical branch for the out-of-plane
oscillations. We have focused on an atomistic description of
both out-of-plane modes. This description is more general
than a continuous limit of the solid membrane, where optical
out-of-plane modes are absent.

The mean-square out-of-plane fluctuations of carbon atoms
have been analyzed with a model for the dispersion relation
of the acoustic bending branch. The result of this analysis
is the characterization of several anharmonic effects as a
function of temperature. The most important finding is that the
mean-square out-of-plane fluctuation of carbon is compatible
with the presence of a linear dispersion term in the acoustic ZA
branch at low wave numbers. This effect is a consequence of
the anharmonicity of the interatomic potential and therefore in-
creases with temperature as the amplitude of atomic vibrations
increases. The bending sound velocity, derived from the linear
dispersion term of the ZA mode, increases from 0 to 0.6 km/s
when the temperature rises from the zero temperature limit to
2000 K. At the same time, the bending rigidity of graphene
is found to increase in this temperature window from 1.49 to
2.2 eV. The frequency of the optical ZO modes at the � point
of the Brillouin zone displays a shift of 4% as temperature
increases up to 2000 K. The hardening of these modes with
temperature is again a consequence of the anharmonicity of
the model.

The existence of a finite bending velocity in graphene im-
plies that the amplitude of the out-of-plane fluctuations, 〈h2〉, is
strongly reduced in the long-wavelength limit. If the dispersion
relation of the ZA branch were strictly quadratic, 〈h2〉 would
diverge proportional to the number of atoms N of the layer.
A finite sound velocity implies that the divergence in 〈h2〉
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is reduced becoming proportional to ln N . The results of our
simulations are consistent with recent analytical findings [8,9].
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APPENDIX A: COMPUTATIONAL CONDITIONS

The classical MD simulations of graphene were performed
on supercells generated with a two-dimensional (2D) rect-
angular cell. The relation of the rectangular axes (a,b) to
the standard hexagonal cell (ah,bh) is shown in Fig. 7. The
simulation cell is described by a 2 × 2 matrix G whose
columns are the Cartesian coordinates of the cell vectors

G = (Lxa,Lyb) , (A1)

where Lx and Ly are positive integers. The supercell (Lx,Ly)
is chosen to have similar linear dimension in the x and y

directions. We have performed simulation on supercells of
several sizes having between 960 and 33 600 atoms. Periodic
boundary conditions were applied to the 2D simulation cell.
The area of the simulation cell is V = |G|. It is important to
note that the graphene lattice is constructed with a base of two
atoms (α and β), which are distinguished in Fig. 7 as open and
closed circles, respectively. In the ideal lattice, each β atom is
related to an α atom by a fixed vector

uβ,j = uα,j + b
3

. (A2)

The potential energy U of graphene has been obtained
with the LCBOPII model [10,11]. A slight modification of
the original torsion parameters was made in order to increase
the bending constant of a flat layer in the zero temperature limit
from κ = 1.1 eV to κ = 1.48 eV [26]. The latter value is in
better agreement to ab initio electronic structure calculations

α

β a, ah

bh

b

FIG. 7. The rectangular cell (a,b) used in the simulations is
displayed together with the standard hexagonal cell (ah,bh) of the
graphene lattice. The atomic base of the lattice is made up of two
atoms, labeled as α (full circles) and β (open circles).

with values of κ in a range from 1.46 to 1.6 eV [27]. The
temperature was controlled by chains of four Nosé-Hoover
thermostats coupled to each of the Cartesian atomic coordi-
nates. In the case of the NPT ensemble, an additional chain of
four barostats was coupled to the volume [28]. To integrate the
equations of motion, a reversible reference system propagator
algorithm (RESPA) was employed [29]. For the evolution of
thermostats and barostats, a time step δt = �t/4 was used,
where �t is the time step associated to the calculation of
forces. A value of �t = 1 fs was found to provide adequate
convergence, although some check simulations at 1000 K were
performed with a smaller time step of 0.5 fs. Atomic forces
were derived analytically by the derivatives of the potential
energy U . The stress tensor estimator was similar to that used
in a previous work [30]:

σxy =
〈

1

V

(
N∑

i=1

mvixviy − ∂U

∂εxy

)〉
, (A3)

where vix is a velocity coordinate, εxy is a component of the
2D strain tensor, and the brackets 〈· · · 〉 indicates an ensemble
average. The derivative of U with respect the strain tensor was
performed analytically. Typical runs consisted of 5 × 105 MD
steps (MDS) for equilibration, followed by runs using between
2 × 106 and 8 × 106 MDS for calculation of equilibrium prop-
erties. Both isotropic and full cell fluctuations were programed
for the NPT ensemble. The structural analysis was performed
on subsets of 8 × 103 configurations stored at equidistant times
during the whole simulation run. Error bars were evaluated
by dividing the total simulation run into four blocks and by
calculating the standard deviation of the block averages.

The reciprocal lattice corresponding to the simulation cell
is defined by the matrix

Gr = 2π
(
G−1)T

. (A4)

The columns of this matrix (a∗,b∗) define the wave vectors kn

whose wavelengths are commensurate with the simulation cell

kn = nxa∗ + nyb∗ , (A5)

with nx = 0, . . . ,Lx − 1 and ny = 0, . . . ,Ly − 1. The total
number of kn points is Nk = LxLy. The kn grid used in the
Fourier transform of heights of the carbon atoms in a (20,12)
supercell is displayed in Fig. 8.

Γ K

KM

a*

b*
2

2

FIG. 8. Reciprocal cell (a∗,b∗) of the rectangular axes (a,b)
employed in the simulations. �,M, and K label the special positions
of the 2D hexagonal BZ. The filled dots represent the kn grid used
in the Fourier transform of atom heights for a (20,12) supercell with
960 atoms.
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APPENDIX B: DISPERSION RELATION
FOR A LINEAR CHAIN

The dispersion relation ω(k) for a linear chain of atoms with
elastic interactions up to second nearest neighbors is a a simple
extension of the textbook solution for a first nearest-neighbors
interaction [31]. The interest of this extension is that depending
on the relation between the two force constants (c1 and c2),
one finds three types of elastic behavior similar to those of a
graphene sheet in the harmonic limit [32,33].

Let us consider the atoms along the x axis at coordinates
xs = sL, with L being the interatomic distance, and s an
integer that enumerates the atoms. The height of the sth atom
with respect to the axis is hs and the k points are defined in
the interval [−π/L,π/L]. Considering the collective mode of
amplitude A

hs = Ae−ixske−iωt , (B1)

the equation of motion of for the s ′th atom with mass m is

m
∂2hs

∂t2
= c1(hs+1 − hs) + c1(hs−1 − hs)

+ c2(hs+2 − hs) + c2(hs−2 − hs) . (B2)

Performing the time derivative and taking into account that
hs+n = hse

−inLk , one gets after dividing by hs ,

−mω2 = c1(e−iLk + eiLk − 2) + c2(e−i2Lk + ei2Lk − 2) .

(B3)

The sum of the complex exponentials gives a cosine function
that is simplified by the trigonometric relation 1 − cos k =
2 sin2(k/2) with the result

ρω2 = D

[
sin2

(
Lk

2

)
− C sin2 (Lk)

]
, (B4)

with the constants D = 4c1/L and C = −c2/c1. The atomic
density is ρ = m/L. Depending on the value of C, there appear
three different elastic behaviors: (a) if C < 1/4, the dispersion
relation is linear in the long-wavelength limit, ρω2 = σk2 with
σ = L(c1 + 4c2); (b) if C = 1/4, the dispersion relation is
quadratic for long-wavelength oscillations, ρω2 = κk4, with
κ = c1L

3/4; (c) if C > 1/4, the linear system is unstable
(ω2 < 0) for k < (σ/κ)1/2.
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