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Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films
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Using the Kubo formalism we have calculated the local dynamic conductivity of a bulk, i.e., three-dimensional
(3D), Dirac semimetal (BDS). We obtain that at frequencies lower than Fermi energy the metallic response in
a BDS film manifests in the existence of surface-plasmon polaritons, but at higher frequencies the dielectric
response is dominated and it occurs that a BDS film behaves as a dielectric waveguide. At this dielectric regime
we predict the existence inside a BDS film of novel electromagnetic modes, a 3D analog of the transverse
electric waves in graphene. We also find that the dielectric response manifests as the wide-angle passband in the
mid-infrared (IR) transmission spectrum of light incident on a BDS film, which can be used for the interferenceless
omnidirectional mid-IR filtering. The tuning of the Fermi level of the system allows us to switch between the
metallic and the dielectric regimes and to change the frequency range of the predicted modes. This makes BDSs
promising materials for photonics and plasmonics.
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I. INTRODUCTION

A great attention has recently been attracted to Dirac
fermion systems by the discovery of graphene and topological
insulators (TIs). Graphene is known for its unique electronic
and optical properties caused by two-dimensional (2D) Dirac
fermions in its electronic structure [1,2]. The main feature
of strong three-dimensional (3D) TIs is the coexistence of the
bulk energy gap and the topologically protected gapless surface
states formed by an odd number of the 2D Dirac fermions with
the helical spin texture [3,4]. Furthermore, opening the gap in
the surface states by a time reversal or a gauge symmetry
breaking causes a remarkable magnetoelectric effect [5,6].
Recently, the accent in the Dirac systems research shifted to
the investigation of a novel state of quantum matter that can
be considered as “3D graphene”—3D Dirac semimetals, also
called bulk Dirac semimetals (BDSs). The 3D Dirac nature
of the quasiparticles was experimentally confirmed by the
angle-resolved photoemission spectroscopy investigation of
Na3Bi [7], Cd3As2 [8–10], and ZrTe5 [11] and the optical con-
ductivity measurements of Cd3As2 [12], ZrTe5 [13], AlCuFe,
and similar quasicrystals [14]. Though 3D Dirac states in BDSs
are not topologically protected as 2D Dirac states on the surface
of a TI, they still have crystalline symmetry protection against
gap formation [15–17]. This protection in some samples
results in ultrahigh mobility up to 9 × 106 cm2 V−1 s−1 at
5 K [18], which is much higher than in the best graphene (2 ×
105 cm2 V−1 s−1 at 5 K) [19]. Furthermore, theory predicts
that each doubly degenerate 3D Dirac point can split into
two topologically protected Weyl nodes that are separated in
momentum (if time-reversal symmetry is broken) or energy (if
space inversion symmetry is broken) spaces, thus realizing a
topological Weyl semimetal (WS) phase [20–23]. The families
of magnetic materials including pyrochlore iridates Y2IrO7

and Eu2IrO7 [15,24], ferromagnetic spinels HgCr2Se4 [25],
and nonmagnetic materials including TaAs, TaP, NbAs, and
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NbP [26–34] have been recently predicted and experimentally
realized to be natural WSs (the detailed WS classification can
be found in the reviews [35,36]). Moreover, exotic quadratic
double Weyl fermions and unusual equilibrium dissipationless
current induced by an external magnetic field were predicted
in SrSi2 [37]. Nontrivial topology of WSs manifests in
the unusual surface states with Fermi arcs [38–42] and in
the chiral anomaly [43–46], which gives rise to a number
of novel physical effects: negative magnetoresistance [47–
49], anomalous Hall effect [47,50], and chiral magnetic
effect [11,47,51,52]. The chiral anomaly also influences an
electromagnetic (EM) response [53,54] and plasmons in
WSs [55–66]. The manifestations of the chiral anomaly in
a density response of WSs in a magnetic field were studied
in Refs. [55,56] and in parallel electric and magnetic fields
in Ref. [57]. In Ref. [58] the BDS polarization function, the
Friedel oscillations specific for BDSs and the BDS plasmon
spectrum were calculated. The linear temperature-dependent
scaling behavior of the BDS conductivity [59] manifesting in
the plasmon dispersion for the both undoped and doped cases
was studied in Refs. [60,61] and observed in Refs. [13,24].
The existence of the chiral EM waves propagating at the
vicinity of the magnetic domain wall in WSs was predicted
in Ref. [62]. The existence of helicons in WSs (transverse EM
waves propagating in 3D electron systems in a static magnetic
field) was predicted in Ref. [63]. Also, the existence of the
unusual EM modes with a linear dispersion in a neutral (the
Fermi level lies at the Weyl nodes) WS was recently predicted
within nonlocal response calculations [64,65]. In Ref. [65] it
is explained that at low frequencies they propagate with the
same velocity as electrons, while at high frequencies they have
velocity similar to the speed of light in the material. Recently,
the observable signatures of the chiral anomaly in WSs
have been predicted in the behavior of the surface-plasmon
polaritons (SPPs) [66], the dispersion of which turned out to
be similar to magnetoplasmons in ordinary metals.

Here we study the behavior of SPP and EM waves in
BDSs (not the WS case) films with the Fermi level higher
than the Dirac point and the role of the dielectric response
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in BDSs. SPPs (see, e.g., Refs. [67–72]) are coupled EM
and charge density waves which can propagate along a metal
or semiconductor surface. Using the Kubo formalism in the
random-phase approximation (RPA) we have calculated the
BDS local dynamic conductivity and the dielectric function,
which being substituted in the solution of the electrodynamics
equations for a finite thickness layer yields the dispersion
laws of SPP and EM waves in BDS films. As a BDS is a
3D counterpart of graphene one can expect that BDS films
can support a 3D analog of the unusual evanescent EM waves
in graphene. Due to the gapless electron energy spectrum, in
BDSs the contribution of the interband electronic transitions
in the dynamic conductivity is significantly enhanced, which
in some frequency range causes the imaginary part of the
conductivity to become negative and the dielectric function
to exceed unity (the dielectric response). In graphene or
similar 2D Dirac systems the analogous effect leads to an
additional type of surface EM waves, the transverse electric
(TE) waves [73–75]. These waves are weakly bound to the
surface but exhibit very low propagation loss [73] and an
extreme sensibility to the optical contrast between dielectrics
sandwiching the graphene layer [76]. We obtain that in BDS
films this effect leads to the existence of the waveguide (WG)
EM modes inside the sample. Moreover, BDS films combine
metal and dielectric properties: at frequencies lower than Fermi
energy a metallic response in BDS manifests in the existence
of SPP, but at higher frequencies a dielectric response becomes
dominated and BDS behaves as a dielectric WG. Notice that
the frequency window where EM waves in BDSs or WSs are
allowed to propagate was mentioned in Ref. [62]. However, to
the best of our knowledge the detailed calculations of possible
EM solutions in BDS films have not been made yet. We also
calculated optical spectra of light incident on a BDS film. We
obtain that the dielectric response manifests as the wide-angle
passband in the mid-infrared (mid-IR) transmission spectrum
of a BDS film.

II. BDS LOCAL DYNAMIC CONDUCTIVITY

Using the Kubo formalism in RPA we have calculated
at the long-wavelength limit q � kF (the local response
approximation) the longitudinal dynamic conductivity of the
Dirac 3D electron gas (3DEG) in BDSs. In this work we
will not consider the case when BDSs become WSs with the
nonzero transverse conductivity and, hence, we will operate
only with the longitudinal one. In the case of electron-hole (e-
h) symmetry of the Dirac spectrum for the nonzero temperature
T we obtain (see Appendix A)
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where G(E) = n(−E) − n(E) with n(E) being the Fermi
distribution function, EF is the Fermi level, kF = EF /�vF

is the Fermi momentum, vF is the Fermi velocity, ε = E/EF ,

� = �ω/EF , εc = Ec/EF (Ec is the cutoff energy beyond
which the Dirac spectrum is no longer linear), and g is the de-
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Our result for the BDS dynamic conductivity coincides with
the expressions for the polarization function P (q,ω) calculated
in RPA [57,58] at q � kF , where σ (ω) = ie2ω

q2 P (q → 0,ω).
For further calculations we will take into account the
Drude damping in Eqs. (1)–(4) by using the substitution
� → � + i�τ−1/EF , where �τ−1 = vF /(kF μ) is the
scattering rate determined by the carrier mobility μ. The first
term in Eq. (4) arises from the intraband conductivity and
has the Drude-like form, while the second logarithmic term
as in graphene [73,77] is the negative contribution of the
interband transitions (the dielectric response). The real part
of the BDS conductivity (3) also arises from the interband
transitions and is responsible for the optical absorption.
Unlike graphene, where the absorption is constant, the BDS
has the absorption with the linear frequency behavior, as was
observed experimentally [12–14,24,34]. The imaginary part
of the BDS conductivity (4) differs from the graphene one by
the cutoff energy dependence of the logarithmic term and the
frequency factor before it. However, as in graphene, in BDSs
there is a frequency range where the dielectric response is
dominated. Using Eq. (4) we obtain that the imaginary part
of the BDS conductivity becomes negative at � > �0 = 1.23
for εc = 3 [78], while for the monolayer graphene it becomes
negative at � > 1.667 [73]. For the convenience of comparison
in Fig. 1 we plot together the 2D graphene conductivity and

FIG. 1. The real (dash) and the imaginary (solid) parts of the
dynamic conductivity for BDS [red (1)] (normalized to 1nm of
the thickness) and for graphene [blue (2)] at zero temperature in
units e2/� as a function of the normalized frequency �ω/EF . The
parameters of BDS and graphene are set as EF = EG

F = 0.15 eV,
g = 40, εc = 3, vF = vG

F = 106 m/s, μ = 3 × 104 cm2 V−1 s−1 (τ =
4.5 × 10−13 s), gG = 4, μG = 104 cm2 V−1 s−1 (τ = 1.5 × 10−13 s).
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the 3D BDS conductivity normalized to 1 nm of the thickness.
There the dashed lines show the real parts of BDS and
graphene conductivities, which at � > 2 have the linear and
the constant frequency behaviors, respectively. Notice that
for BDSs this frequency range depends on the cutoff energy
(e.g., for εc = 10 we obtain �0 = 0.91). Moreover, in BDSs
the dielectric response may manifest at frequencies below �0

due to the interband contributions from bands lower than the
valence one which are not included in Eqs. (3) and (4). Thus
to analyze the dielectric response more adequately one should
consider the dielectric function of BDSs in detail.

III. DIELECTRIC FUNCTION AND LIGHT IN THE BDS

For the one-band model the dielectric function in RPA
can be expressed through intraband polarization function
Pintra(q,ω) as ε(q,ω) = ε∞ − VqPintra(q,ω), where ε∞ is
the effective background dielectric constant taking into
account the interband electronic transitions (usually taken
from an experiment as a dielectric constant at infinite
frequency) and Vq = 4πe2/q2 is the Fourier transform of
the bare 3D Coulomb interaction. Alternatively, it can be
expressed through the dynamic conductivity: ε(q,ω) = ε∞ +
4πiσintra(q,ω)/ω. For the BDS case using the first term (the
intraband part) of Eq. (4) we obtain the same Drude-like result
as in Ref. [66]:

Re εD(�) = ε∞
(
1 − �2

p

/
�2

)
(5)

where �2
p = 2rsg/(3πε∞) is the bulk plasma frequency

constant with rs = e2/�vF being the effective fine-structure
constant of BDS. This one-band model seems to be enough for
considering the metallic response and the behavior of SPPs in
BDSs [66]. It also roughly characterizes the dielectric response
by means of the constant ε∞, but to describe it more accurately
one should use the two-band model taking into account the
interband electronic transitions (as was done for the dynamic
conductivity in Sec. II). In this model the dielectric function in
RPA will be expressed through total polarization function P =
Pintra + Pinter as ε(q,ω) = εb − VqP (q,ω), where εb is the
effective background dielectric constant taking into account
the interband electronic transitions from all bands below
the valence one. Through the total dynamic conductivity
σ = σintra + σinter this can be written as

ε(q,ω) = εb + 4πiσ (q,ω)/ω. (6)

At q � kF and T � EF using Eq. (4) we have
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Finding zeros of Eq. (7) we obtain the implicit expression
for the bulk plasma frequency �p in BDSs according to the
two-band model:
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which coincides with the results obtained in Ref. [58] (for
BDSs) and Ref. [57] (for WSs with g = 2gW , where gW is the
number of pairs of the Weyl nodes). In optical experiments

usually the data are fitted with the Drude model giving the
constant ε∞. As the plasma frequencies from the Drude
formula (5) and from the two-band model (8) should coincide,
we can express εb through ε∞: εb = ε∞ − rsg

6π
ln ( 4ε2

c

|�2
p−4| ).

Taking εc = 3 (Ref. [78]), ε∞ = 13 (Ref. [24]) for different
BDS realizations with various degeneracy factors we obtain
the following constants εb: εb = 1 for g = 40 (AlCuFe
quasicrystals [14]), εb = 6.2 for g = 24 (pyrochlore iridates,
e.g., Eu2IrO7 [24] or TaAs family [27]), εb = 12 for g = 4
(including spin degeneracy in Na3Bi [7] or Cd3As2 [8–10]). In
Fig. 2(a) for different degeneracy factors we compare the real
parts of the BDS dielectric functions according to the one-band
(Drude) model (5) and two-band model (7).

Here we would like to emphasize that the dielectric response
does not qualitatively change the plasmon dispersion defined
by the equation ε(q,ω) = 0, but influences only the value of
the plasma frequency constant �p ∼ 1/

√
ε∞ , whereas for

light in a medium one has another type of the governing
equation ε(q,ω) = (qc/ω)2, where c is the velocity of light
and q is the longitudinal wave vector. In this case the dielectric
response can play a crucial role. Indeed, when ε(q,ω) > 1,
there can exist the short-wavelength light with ω < qc like
in a dielectric. That is what leads to the existence of the EM
modes inside BDS films which will be considered in Sec. IV.
In Fig. 2(b) for the same g factors as in Fig. 2(a) using Eq. (7)
we plot the dispersion of light in BDS defined by the relation
�2εBDS(�) = (q/kF · c/vF )2. The dispersion curve of light
in BDSs starts from Re ε = 0 at � = �p and crosses the
dispersion line of light out of BDSs when Re ε = 1 at � = �1.
To the left from the light line ω > qc and ω > qc/

√
ε, hence

there can be only radiative modes propagating in all directions
with the transverse wave vectors kair =

√
(ω/c)2 − q2 and

kBDS =
√

ε(ω/c)2 − q2 in the media out of BDSs and in
BDSs, respectively. To the right from the dispersion curve
of light in BDS ω < qc and ω < qc/

√
ε, hence in both

media the transverse wave vectors become imaginary and
there will be modes evanescent in the transverse direction and
propagating in the longitudinal one. Nevertheless, between the
light line and the dispersion curve of light in BDSs ω < qc

but ω > qc/
√

ε, therefore only kair becomes imaginary, which
leads to the modes evanescent in the transverse direction
out of BDSs and propagating in all directions in BDSs.
That is, in this region [shaded by dark color (green online)
in Fig. 2(b)] the WG modes can exist. However, at � > 2
all modes damp due to the interband absorption defined by
Eq. (3), so this region corresponds to the interband single-
particle excitation (SPE) Landau damping regime. Thus at
the frequencies �1 < � < 2, where the dielectric response is
dominated, light can penetrate inside BDSs and it behaves as
a dielectric WG. Notice that the Drude model (5) also gives
the WG region [dashed curve in Fig. 2(b)], but at high g

factors it is significantly less than the region obtained from the
two-band model, when the logarithmic frequency dependence
in Eq. (7) becomes important. Also remark that for εb = 1
(at g = 40) as seen from Eq. (6) the dielectric response starts
from that frequency �1 [Re ε(�1) = 1] at which the imaginary
part of the conductivity becomes zero Im σ (�0) = 0, i.e.,
�1 = �0 = 1.23 (see Sec. II). For other εb the frequency �1

may sufficiently differ from �0 [see Fig. 2(b)]. Thus we obtain
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FIG. 2. The real parts of the BDS dielectric functions (a) and the dispersion of light in BDS (b) according to the one-band (Drude) εD

model (5) and two-band εBDS model (7) for different degeneracy factors g. The dielectric response region is above Re ε = 1 (dotted line). In
(b) the region between the line of light out of BDS and the dispersion curve of light in BDS, where WG modes can exist, is shaded by dark
color (green online), the region �ω/EF > 2 corresponds to the interband SPE Landau damping regime, and the dashed curve represents the
dispersion of light in BDS according to the Drude model (5). The dielectric functions are taken with ε∞ = 13, which for different g factors
gives various εb (see the text). Other parameters of BDS are the same as for Fig. 1.

that the the dielectric response allows light to penetrate inside
BDSs in some ranges of frequencies and wave vectors, but in
order to understand what particular WG modes can be excited
in BDS films one should analyze all possible solutions of
electrodynamics equations for the system.

IV. SPP AND EM WAVES IN BDS FILMS

Here we consider all possible solutions for the plane EM
waves propagating along a BDS film in the symmetric or
asymmetric environment. We calculate dispersion laws, waves
field confinement, and loss functions. We also take into account
the role of temperature and the influence of the electron-hole
asymmetry of the Dirac spectrum.

A. The symmetric environment

The solution of the electrodynamics equations for the
symmetric layer system [a film with the thickness d, the
dielectric function ε, and the transverse wave vector k2 =√

q2 − ε(ω/c)2 in the environment with εa = 1 and the trans-
verse wave vector k1 =

√
q2 − (ω/c)2] yields the following

EM waves dispersion relations [67]:

1

k1
+ ε

k2
tanh (k2d/2) = 0 (p−), (9)

1

k1
+ ε

k2
coth (k2d/2) = 0 (p+) (10)

for the TM (p)-polarized low-frequency mode with the
symmetric electric-field profile (9) and the high-frequency
mode with the antisymmetric electric-field profile (10). For
the TE (s) polarization we have

k1 + k2 tanh (k2d/2) = 0 (s+), (11)

k1 + k2 coth (k2d/2) = 0 (s−) (12)

where (s+) is the high-frequency mode with the antisymmetric
electric-field profile (11) and (s−) is the low-frequency mode
with the symmetric electric-field profile (12). Notice that the
dispersion relations (9) and (10) for the TM waves (also
called SPPs) in the unretarded limit q � √

ε ω/c reduced to
the in-phase and out-of-phase plasmon dispersion relations,
respectively. For thin films at k2d � 1 using Eq. (6) we obtain
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that the dispersion of p+ and s− (“coth modes”) degenerates
(p+ reduces to ω = ωp and s− do not exist) and the dispersion
of p− and s+ (“tanh modes”) in thin films with the 3D dynamic
conductivity σ3D will be the following:

1/k1 ≈ −2πiσ3Dd/ω (p−), (13)

k1 ≈ 2πiσ3Ddω/c2 (s+) (14)

for the symmetric TM (p−) (13) and the antisymmetric
TE (s+) (14) waves. This corresponds to the EM waves
dispersion relations in the 2D electron gas (2DEG) systems
(e.g., graphene) (see Refs. [79,80]) with the 2D dynamic
conductivity σ2D = σ3Dd. As was mentioned above, graphene
possesses both the TM waves (at low frequencies when
Im σ > 0) and the TE waves (at frequencies when Im σ < 0).
Hence, due to the similar behavior of the BDS conductivity
(see Sec. II), BDS films can support not only SPPs (the TM
waves) but also the TE waves inside the film, a 3D analog of
the TE waves in graphene. These waves are the WG modes, the
manifestation of the dielectric response in BDSs (see Sec. III).

Substituting Eq. (7) in Eqs. (9)–(12) we obtain the disper-
sion laws (Fig. 3) and the loss functions (Fig. 4) of the TM
and TE waves in BDS films with the different thicknesses d.
The loss function of EM waves with the dispersion equation
f (q,ω) = 0 determines the measure of the wave damping and
can be defined by −Im [f (q,ω)−1]. The undamped waves (the
solution for both Re f and Im f becomes zero) displayed in
the loss function as a well defined δ-function peak. Thus the
measure of the wave damping is expressed by the broadening

FIG. 3. The dispersion of the TM and TE waves in BDS films with
different thickness d = 0.5 μm (a), d = 0.1 μm (c), and d = 1 μm
(d). (b) The same as in (a) considering the e-h asymmetry of the
Dirac spectrum. The BDS dielectric function (7) is taken with g = 24,
εb = 6.2; other parameters of BDS are the same as for Fig. 1. The
region SPE corresponds to the interband Landau damping regime.

FIG. 4. The loss function (a.u.) of the TM and TE waves in BDS
films with different thickness from (a) to (c): d = 0.5, 0.1, 1 μm.
The parameters of BDS are the same as for Fig. 3. The region SPE
corresponds to the interband Landau damping regime. (d) The loss
function (a.u.) of the TM and TE waves in the traditional metal-
dielectric waveguide.

of the peak in the loss function—if the wave is overdamped,
there will be no peak in the loss function. At d = 0.5 μm
[see Fig. 3(a)] we obtain not only the symmetric (p−) and
the antisymmetric (p+) SPP modes but also the TM-polarized
(p+) and the TE-polarized (s+) antisymmetric WG modes.
Figure 4(a) shows that these WG modes will be not less
pronounced than the SPP modes, moreover the TE wave (s+) is
even less damped than SPPs. With decreasing of the thickness
of the film the high-frequency SPP mode reduces to ω = ωp

and the WG modes tend to the light line and become vanishing.
At d = 0.1 μm [see Figs. 3(c) and 4(b)] among the WG modes
only s+ will exist. On the other hand, with the increasing of
the thickness the SPP modes merge into one and, in addition
to the antisymmetric WG modes, the symmetric TM (p−) and
TE (s−) WG modes appear. At d = 1 μm all these types of
WG modes can be observed [see Fig. 3(d)], but as seen from
Fig. 4(c) they will be twice stronger damped. Therefore, with
the increasing of the thickness the number of the WG modes
grows, but also their damping rises. Thus the optimal thickness
of BDS WGs lies in the interval 0.5–1 μm. For the comparison
we have calculated the loss function of the TM and TE waves in
the traditional metal-dielectric WG. It also possesses different
WG modes in the dispersion region between the light line
out of WGs (light in ε1) and the light line in the dielectric
layer (light in ε2) [see Fig. 4(d)]. But unlike in BDS WGs,
here the WG region starts from the zero frequency and its
boundaries have the linear dispersion. The main advantage of
a BDS WG over a metal-dielectric one is that it consists of a
single material, but supports both SPP and WG modes at the
corresponding frequencies.

According to the experimental data [8–10] some BDSs have
a significant e-h asymmetry of the Dirac spectrum. As we
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FIG. 5. The loss function (units as in Fig. 4) of the TM and
TE waves in a BDS film with thickness d = 0.5 μm (a), (b) and
d = 1 μm (c), (d) at nitrogen temperature T = 77 K (a), (c) and at
room temperature T = 300 K (b), (d). Other parameters of BDS are
the same as in Fig. 3. The region SPE corresponds to the interband
Landau damping regime.

have shown in Appendix B the contribution of this asymmetry
to the conductivity can be accounted for by the factor γ =
(v+/v− + 1)/2, where v− and v+ are the velocities of electrons
and holes, respectively. For the realistic parameters v− ≡ vF ,
v+ = v−/2 (see, e.g., Ref. [8]) the factor is γ = 3/4, which
causes the shift of the interband damping region SPE: as seen
from Eq. (B6) the damping region starts from � = 2γ = 1.5
instead of � = 2. Also this asymmetry causes the shift with the
compression of the WG region [compare Figs. 3(a) and 3(b)],
which can suppress the TM WG mode (p+).

Calculating numerically the integral in Eq. (2) and neglect-
ing the temperature dependence of the mobility we compare
the loss function of the WG modes and SPP in BDS films at low
temperature (we take 77 K) and at room temperature (300 K).
As seen from Fig. 5 temperature does not greatly affect SPP but
suppresses the WG modes, though not destroying them. For
d = 0.5 μm at T = 300 K only TE mode s+ will survive [see
Fig. 5(b)] and for d = 1 μm at T = 77 K all modes except p−
exist, but at T = 300 K only p+ and s+ are still pronounced
[see Fig. 5(d)]. In any case among all WG modes the TE wave
s+ is the strongest one.

We also calculated the field confinement factor λ/2πLWG
z

of the WG modes, defined by the ratio of the free-space-light
wavelength λ and the WG modes decay length (in the direc-

tion transverse to the film) LWG
z = 1/|k1z| = 1/

√
q2 − (ω/c)2

corresponding to the 1/e field decay. This factor indicates the
measure of how strongly the WG modes are pinned to the film
surface. The confinement factor of the WG modes in BDS films
decreases with the reducing of the thickness: at d = 0.5 μm
it is by two orders of magnitude higher than at d = 1 nm

FIG. 6. The field confinement factor of the WG modes in a BDS
film with thickness d = 0.5 μm (solid colored), d = 1 nm (dashed)
and the confinement factor for the TE waves in graphene (solid black).
The parameters of BDS are the same as in Fig. 3 and for graphene as
in Fig. 1.

(see Fig. 6). Comparing with graphene in a free space with
the dispersion of the TE waves given by k1 = 2πiσGrω/c2,
from Fig. 6 one can see that in a BDS film with the thickness
d � 1 nm the TE WG modes will be pinned to the surface of the
film greater than the evanescent TE waves pressed to graphene.
Thickness reduction of a BDS film up to the atomic layer (other
words in the case of the 3D-2D Dirac spectrum crossover)
will lead to the vanishing of the WG TM mode (see Fig. 6)
and to the conversion of the WG TE mode to the evanescent
graphene-like TE wave [see Eq. (14), where σ3D = σGr/d].
Notice that for the TM waves the decay length is proportional
to the conductivity Lz = 1/|kz| ∼ |σ |, while for the TE waves
the reverse situation takes place Lz = 1/|kz| ∼ 1/|σ |.

B. The asymmetric environment

To solve this problem one should consider the solutions
of the electrodynamics equations for the asymmetric layer
system: the film with the thickness d, the dielectric function
ε, and the transverse wave vector k2 =

√
q2 − ε(ω/c)2; the

medium above the film with ε1 = 1 and the transverse wave
vector k1 =

√
q2 − ε1(ω/c)2; and the medium under the film

(the semi-infinite substrate) with ε3 and the transverse wave
vector k3 =

√
q2 − ε3(ω/c)2. For the TM waves (p±) we have(

k1k3

ε1ε3
+ k2

2

ε2

)
tanh(k2d) +

(
k1

ε1
+ k3

ε3

)
k2

ε
= 0 (15)

and for the TE waves (s±)(
k1k3 + k2

2

)
tanh(k2d) + (k1 + k3)k2 = 0. (16)

Taking the SiO2 substrate with ε3 = 2 (for the frequencies in
the WG region 0.14–0.3 eV) we get that the WG modes do not
exist between the dispersion lines of light in ε1 and in ε3 (they
leak into the substrate ε3) and exist only in the region between
the dispersion line of light in ε3 and the dispersion curve of
light in a BDS [see Fig. 7(a)]. Moreover, in this region they
are sufficiently suppressed [compare Figs. 7(b) and 4(a)]. For
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FIG. 7. The dispersion (a) and the loss function (a.u.) (b) of
the TM and TE waves in a BDS film with thickness d = 0.5 μm
in the asymmetric environment: ε1 = 1, ε3 = 2 (substrate). Other
parameters of BDS are the same as in Fig. 3. The region SPE
corresponds to the interband Landau damping regime.

the dielectric constant of the substrate larger than ε3 ≈ 15 the
dispersion curve of light in BDSs lies in the cone of light in ε3

and hence all WG modes become leaky and do not propagate
along a BDS film. Notice that the same effect takes place in
the case of the symmetric environment (see Sec. IV A) with
εa � 15. Therefore, to avoid the waves leakage BDS WGs
should be placed on the low-ε substrates [81] or just suspended.

V. OPTICAL SPECTRA OF BDS FILM

In this section we consider the influence of the dielectric
response in BDSs on the optical spectra of light incident on a
BDS film. The reflection (R), transmission (T), and absorption
(A) energy coefficients for the nonmagnetic layer with the
thickness d, the refractive index n2 = √

ε2, and the transverse
wave vector k2 = ω/c · n2 cos θ2 in the environment with n1 =√

ε1 and the transverse wave vector k1 = ω/c · n1 cos θ1 are
expressed by [82]

R =
∣∣∣∣ r12[1 − exp (2ik2d)]

1 − (r12)2 exp (2ik2d)

∣∣∣∣2

,

T =
∣∣∣∣k2

k1

(t12)2 exp (ik2d)

1 − (r12)2 exp (2ik2d)

∣∣∣∣2

, (17)

A = 1 − R − T,

where the Fresnel coefficients different for each polarization
are

rTE
12 = k1 − k2

k1 + k2
, rTM

12 = k1/ε1 − k2/ε2

k1/ε1 + k2/ε2
,

(18)

tTE
12 = 2k1

k1 + k2
, tTM

12 = 2k1/
√

ε1ε2

k1/ε1 + k2/ε2
.

Substituting Eq. (7) in Eqs. (17) we obtain RTA spectra of the
TM-polarized light incident on a BDS film. As seen from Fig. 8
the BDS shows the typical metallic behavior but in the mid-IR
region: the absorption peak at the bulk plasma frequency and
the total reflection at lower frequencies. However, unlike in
metal, in BDSs the dielectric response arises at � > 0.96 (see
Sec. III), which causes the typical dielectric films oscillations
in the reflection, the wide-angle passband in the frequency
window � ∈ [0.96,2] in the transmission, the wide-angle
plasmon absorption peak, and the total absorption region at
� > 2 corresponding to the interband electronic transitions
in BDS. The passband is limited from the bottom by the
reflection edge (represented by the the plasma frequency) and
from the top by the total absorption edge: � ∈ [�p,2EF ].
For the typical Fermi level EF = 0.15 eV the frequency
window of the wide-angle passband in a BDS film lies in
the mid-IR range (λ ∈ [4.1,8.6] μm), which can be used
for the omnidirectional mid-IR transmission filtering. The
deviation of the passband and the total absorption region
from the edge � = 2 (see Fig. 8) is connected with the
temperature smearing. Notice that the region of transparency
appears in some semiconductors or even metals [83]. Widely
used ITO and ZnO, being highly doped semiconductors with
the plasma frequency wp ≈ 1 eV, have large electronic band
gap  ≈ 3.75 eV resulting in rather broad photonic passband
� ∈ [ωp,2EF + ] ≈ [1,4] eV. Moreover, they possess very
low carrier mobility, less than 60 cm2 V−1 s−1 (Ref. [84]). The
Dirac nature of the electron spectrum in BDSs causes two main
benefits over common transparent conductors: zero electronic
band gap giving the narrow passband and symmetry protection
that strongly suppresses backscattering, which results in the
ultrahigh mobility (see Sec. I). In addition notice that unlike
Fabry-Perot omnidirectional bandpass filters based on the
interference effects (see, e.g., Ref. [85]), in the BDS filter the
passband is a result of the BDS electronic properties. Being

FIG. 8. (a) The reflection (R), transmission (T), and absorption (A) energy spectra of the TM-polarized light incident on the BDS film with
the thickness d = 2 μm surrounded by the medium with ε1 = 1 at T = 77 K vs normalized frequency and incidence angle. The dotted red line
displays the bulk plasma frequency and the dashed white lines display the frequency window of the dielectric response with weak damping.
(b) The cross section of the RTA spectra at θ = 70◦. Other parameters of BDS are the same as in Fig. 3.
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interferenceless the BDS filter can be used for geometrically
independent filtering.

VI. CONCLUSION

Using the Kubo formalism in RPA we have calculated the
BDS local dynamic conductivity and the dielectric function
and found that at frequencies lower than Fermi energy the
metallic response in a BDS film manifests in the existence
of SPP, but at higher frequencies the dielectric response is
dominated and a BDS film behaves as a dielectric WG. At
this dielectric regime we predict the existence of novel TM-
and TE-polarized EM modes propagating in BDS WGs, a
3D analog of the TE waves in graphene. However, this WG
mode at room temperature will be rather suppressed, though
still exist (mainly the TE mode). Besides, they strongly leak
into a substrate, thus BDS WGs should be placed on the
low-ε substrates or suspended. We estimate that the optimal
thickness of BDS WGs lies in the interval 0.5–1 μm. With
an increase of the thickness the additional sets of modes will
appear, but their spectral strength will reduce. With a decrease
of the thickness the WG TM mode will disappear and the
WG TE mode will convert to the graphene-like evanescent TE
wave. We also find that the dielectric response manifests as
the wide-angle passband in the mid-IR transmission spectrum
of light incident on a BDS film, which can be used for
the omnidirectional mid-IR bandpass filtering. Moreover,
being interferenceless the BDS filter could provide unique
opportunities for geometrically independent filtering. The
tuning of the Fermi level of the system allows us to switch
between the metallic and the dielectric regimes and to change
the frequency range of the predicted WG modes. All this makes
BDSs promising materials for photonics and plasmonics.
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APPENDIX A: LONGITUDINAL LOCAL DYNAMIC
CONDUCTIVITY OF THE DIRAC 3DEG

The optical response of the Dirac 3DEG with the low-
energy spectrum Ek,s = s�vF k, where k is the 3D momentum
magnitude, vF is the Fermi velocity of a Dirac fermion, and
s = ±1 denote the band indices, is described by the dynamic
conductivity tensor. For noninteracting electrons in the local
response approximation this tensor can be written in the Kubo-
Greenwood formulation as

σαβ(ω) = −ie2g�

V

×
∑
k,s,s ′

n(Ek,s) − n(Ek,s ′ )

Ek,s − Ek,s ′

〈ks |̂vα|ks ′〉〈ks ′ |̂vβ |ks〉
�(ω + i0) + Ek,s − Ek,s ′

.

(A1)

Here α = (x,y,z), ω is the frequency of the incident electro-
magnetic wave, V is the 3DEG volume, g is the degeneracy
factor, and v̂α = vF σα is the velocity operator, where σα are the
Pauli matrices, 〈ks| and |ks ′〉 are the initial and the final elec-
tron states of the Dirac 3DEG described by the Hamiltonian
Ĥ = �vF σk, and n(Ek,s) = 1/{exp [(Ek,s − EF )/T ] + 1} is
the Fermi distribution function with the Fermi level EF and
temperature T in the energy units. Therefore the intraband
and the interband contributions in the longitudinal dynamic
conductivity can be expressed as

σ intra
xx (ω) = −ie2g

(ω + i0)V

∑
k

∂n(Ek)

∂Ek
v2

x, (A2)

σ inter
xx (ω) = −ie2g�

V

×
∑

k,s �=s ′

n(Ek,s)− n(Ek,s ′ )

Ek,s − Ek,s ′

|〈ks |̂vx |ks ′〉|2
�(ω + i0) + Ek,s−Ek,s ′

.

(A3)

In this work we operate only with the longitudinal conductivity
and for simplicity omit the subscript: σxx ≡ σ . The spinor
part of the eigenfunctions of the 3D Dirac Hamiltonian,
corresponding to an electron with the momentum k [defined
in the 3D space by the azimuthal (ϕ) and the polar (θ ) angles]
from the conduction (s = −1) and the valence (s = +1) bands,
can be written as

|k+〉 =
(

cos(θ/2)

eiϕ sin(θ/2)

)
, |k−〉 =

( − sin(θ/2)

eiϕ cos(θ/2)

)
. (A4)

Writing Eq. (A2) in the integral form we get

σintra(ω) = −ie2g

ωV

∫ ∞

−∞

4πk2dk

(2π )3/V

∂n(E)

∂E

∫
�3D

v2
x

4π
, (A5)

where the last one is the integral over the solid angle
�3D in the 3D space. Using k = E/�vF and calculating∫ ∞
−∞ E2 ∂n(E)

∂E
dE = −E2

F − π2T 2/3,
∫
�3D

v2
x

4π
= v2

F /3 we fi-
nally obtain

σintra(ω) = ie2

�

gkF

6π2�

[
1 + π2

3

(
T

EF

)2
]
, (A6)

where � = �ω/EF , kF = EF /�vF is the Fermi momentum.
The interband conductivity (A3) in the integral form will be

σinter(ω) = −ie2g�

V

∫
�3D

|〈k+|̂vx |k−〉|2
4π

∫ ∞

0

4πk2dk

(2π )3/V

×
[
n(E) − n(−E)

2E

(
1

�(ω + i0) + 2E

+ 1

�(ω + i0) − 2E

)]
. (A7)

Using k = E/�vF and calculating with Eq. (A4)∫
�3D

|〈k + |vF σx |k−〉|2/4π = 2v2
F /3 we get

σinter(ω) = −ie2gω

3π2�vF

∫ ∞

0

(
n(E) − n(−E)

�2(ω + i0)2 − 4E2

)
EdE. (A8)

As for the 2D case (e.g., graphene [77]) one can resolve the
singularity E = �ω/2 rewriting the integral in the form useful
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for numerical calculations:

σinter(ω) = ie2gω

3π2�vF

[
−πi

2

G(�ω/2)

4

+
∫ ∞

0

(
G(E) − G(�ω/2)

�2ω2 − 4E2

)
EdE

]
, (A9)

where G(E) = n(−E) − n(E) = sinh(E/T )
cosh(EF /T )+cosh(E/T ) . Finally,

taking into account Eq. (A6) we obtain that the real and
imaginary parts of the longitudinal dynamic conductivity
σ = σintra + σinter are expressed as

Re σ (�) = e2

�

gkF

24π
�G(�/2), (A10)

Im σ (�) = e2

�

gkF

24π2

{
4

�

[
1 + π2

3

(
T

EF

)2
]

+ 8�

∫ εc

0

(
G(ε) − G(�/2)

�2 − 4ε2

)
εdε

}
, (A11)

where ε = E/EF and εc = Ec/EF (Ec is the cutoff of energy:
unlike the 2D case, in the 3D case the integral diverges). At the
low-temperature limit kT � EF G(�/2) → θ (� − 2), and
we obtain

Re σ (�) = e2

�

gkF

24π
�θ (� − 2), (A12)

Im σ (�) = e2

�

gkF

24π2

[
4

�
− � ln

(
4ε2

c

|�2 − 4|
)]

. (A13)

APPENDIX B: THE CASE OF THE ELECTRON-HOLE
ASYMMETRY IN THE 3DEG DIRAC SPECTRUM

In the case of the e-h asymmetry of the low-energy Dirac
spectrum with Ek,s = svs�k, where vs is the Fermi velocity
different for each band (v− for electrons and v+ for holes),
the intraband conductivity (A6) remains the same as for the
symmetrical case, but the interband one [Eq. (A7)] must be
rewritten as

σinter(ω) = −ie2g�

V

∫
�3D

|〈k+|̂vx |k−〉|2
4π

∫ ∞

0

4πk2dk

(2π )3/V

×
[
n(E+) − n(E−)

E+ − E−

(
1

�(ω + i0) + (E+ − E−)

+ 1

�(ω + i0) − (E+ − E−)

)]
, (B1)

where the velocity operator should be defined in the general
form v̂x = 1

�
( ∂Ĥ

∂k )
x
. Using the spectral representation one can

get the Hamiltonian corresponding to the asymmetrical Dirac
spectra: Ĥ = �v+k|k+〉 − �v−k|k−〉. Substituting Eq. (A4)
we obtain Ĥ = �k(v+ − v−)/2 + �σk(v+ + v−)/2. Then the
velocity operator will be v̂x = (v+ − v−)/2 + σx(v+ + v−)/2,
and the integral in Eq. (B1) has the form

∫
�3D

|〈k+|̂vx |k−〉|2
4π

=
2
3 ( v++v−

2 )
2
. Denoting in Eq. (B1) v− ≡ vF , γ ≡ (v+/v− + 1)/2

and E− ≡ −E, then E+ = Ev+/v−, and we get

σinter(ω) = −ie2gω

3π2�vF

γ

∫ ∞

0

(
n(Ev+/v−) − n(−E)

�2(ω + i0)2 − 4E2γ 2

)
EdE.

(B2)
Resolving the singularity E = �ω/2γ in the same way as we
have done in Appendix A we obtain

σinter(ω) = ie2gω

3π2�vF

γ

[
−πi

2

G̃(�ω/2γ )

4

+
∫ ∞

0

(
G̃(E) − G̃(�ω/2γ )

�2ω2 − 4E2γ 2

)
EdE

]
, (B3)

where G̃(E) = n(−E) − n(Ev+/v−). Thus the real and imag-
inary parts of the longitudinal dynamic conductivity in the case
of the asymmetrical Dirac spectra are written as [notations are
the same as for Eqs. (A10) and (A11)]

Re σ (�) = e2

�

gkF

24π
�γ G̃(�/2γ ), (B4)

Im σ (�) = e2

�

gkF

24π2

{
4

�

[
1 + π2

3

(
T

EF

)2
]

+ 8�γ

∫ εc

0

(
G̃(ε) − G̃(�/2γ )

�2 − 4ε2γ 2

)
εdε

}
. (B5)

At the low-temperature limit G̃(�/2γ ) → θ (� − 2γ ), and we
obtain the similar expressions as for the symmetrical case
[Eqs. (A12) and (A13)], but with the γ factor:

Re σ (�) = e2

�

gkF

24π
�γ θ (� − 2γ ), (B6)

Im σ (�) = e2

�

gkF

24π2

[
4

�
− �

γ
ln

(
4ε2

cγ
2

|�2 − 4γ 2|
)]

. (B7)
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