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One-dimensional carbon nanostructures for terahertz electron-beam radiation
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One-dimensional carbon nanostructures such as nanotubes and nanoribbons can feature near-ballistic electronic
transport over micron-scale distances even at room temperature. As a result, these materials provide a uniquely
suited solid-state platform for radiation mechanisms that so far have been the exclusive domain of electron
beams in vacuum. Here we consider the generation of terahertz light based on two such mechanisms, namely,
the emission of cyclotronlike radiation in a sinusoidally corrugated nanowire (where periodic angular motion is
produced by the mechanical corrugation rather than an externally applied magnetic field), and the Smith-Purcell
effect in a rectilinear nanowire over a dielectric grating. In both cases, the radiation properties of the individual
charge carriers are investigated via full-wave electrodynamic simulations, including dephasing effects caused by
carrier collisions. The overall light output is then computed with a standard model of charge transport for two
particularly suitable types of carbon nanostructures, i.e., zigzag graphene nanoribbons and armchair single-wall
nanotubes. Relatively sharp emission peaks at geometrically tunable terahertz frequencies are obtained in each
case. The corresponding output powers are experimentally accessible even with individual nanowires, and can
be scaled to technologically significant levels using array configurations. These radiation mechanisms therefore
represent a promising paradigm for light emission in condensed matter, which may find important applications
in nanoelectronics and terahertz photonics.
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I. INTRODUCTION

Carbon nanostructures including graphene and nanotubes
represent a promising materials platform for future device
applications in nanoelectronics and photonics. Of particular
interest for such applications are the large carrier mobilities
of these materials, which have enabled the observation of
ballistic electronic transport over micron-scale distances even
at room temperature. Specific examples of such ballistic
samples reported to date include single- and multiwall
carbon nanotubes [1–4], suspended graphene sheets [5,6],
graphene/boron-nitride heterostructures [7,8], and epitaxial
graphene nanoribbons [9]. Because of their exceptionally
long mean free paths, a distinctive analogy can be drawn
between the electron (and hole) gases in these nanomaterials
and electron beams in vacuum-based systems, so that novel
applications inspired by traditional vacuum-tube devices may
be envisioned. In the present work, we investigate numerically
the use of one-dimensional (1D) carbon nanostructures for the
generation of terahertz light based on two related electron-
beam radiation mechanisms: (i) the emission of cyclotronlike
radiation in the presence of mechanical corrugation (as
opposed to an externally applied magnetic field), and (ii) the
Smith-Purcell effect (i.e., radiation by charges in uniform
rectilinear motion near a grating [10]). Similar electron-
beam radiation mechanisms already form the basis of well-
established vacuum-tube devices such as free-electron lasers
(FELs) [11] and microwave magnetrons and orotrons [12]. At
the same time, they represent an unconventional paradigm
for light emission in condensed matter, with very limited
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prior work (either experimental [13] or theoretical [14–16])
involving traditional semiconductors.

The basic sample geometries under study are illustrated
schematically in Fig. 1. In Fig. 1(a), a 1D conductor (such
as a carbon nanotube or graphene nanoribbon) is corrugated
mechanically to produce a sinusoidal trajectory. In practice,
this geometry could be realized through the direct growth
or conformal transfer of the conducting wire on a substrate
surface patterned in the shape of a sinusoidal grating. Because
of the conductor 1D nature, in the presence of a bias voltage
the injected electron (or hole) trajectories are confined to
the sinusoidal path defined by the corrugation. As a result,
radiation is produced by these carriers due to their periodic
angular motion. This mechanism is analogous to cyclotron
radiation in FELs, except that the angular motion is obtained
via geometrical constraints rather than through the application
of an external magnetic field (e.g., with a periodic array of
alternating magnets as in typical FEL undulators).

In Fig. 1(b), we consider a rectilinear conducting wire in
the immediate vicinity of a periodic dielectric grating, which
could be patterned in the supporting substrate (as in the figure)
or fabricated directly above the wire. In this case, radiation
can still be emitted by the charge carriers in the 1D conductor
as they pass near the grating under uniform rectilinear motion,
via the Smith-Purcell effect. This radiation mechanism was
initially discovered through the observation of visible light
emission from a high-energy electron beam traveling near
a metallic grating in vacuum [10]. In a simple picture, the
emitted radiation can be attributed to the periodic angular
motion of the polarization charges that are induced under
the grating surface by the moving charges in the electron
beam. More precisely, the underlying physical mechanism
can be explained in terms of the evanescent electromagnetic
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FIG. 1. Schematic cross-sectional view of representative device
structures for the demonstration of terahertz electron-beam radiation
in 1D carbon nanostructures. (a) Corrugated carbon nanowire for the
generation of cyclotronlike terahertz radiation. (b) Carbon nanowire
in the near-field vicinity of a grating for the generation of terahertz
Smith-Purcell radiation.

fields that are created by the actual moving charges and
then diffractively scattered into radiation by the grating [17].
The use of the Smith-Purcell effect for the generation of
microwaves in vacuum-based devices (orotrons) is already
well established [12]. Its observation in condensed matter
has also been reported, with a high-mobility GaAs/AlGaAs
heterojunction, but only at cryogenic temperatures and with
extremely broad and weak output spectra [13].

The ability of carbon nanostructures to provide micron-
scale ballistic transport is critically important for both radiation
mechanisms. In a previous study [14], a related device
geometry [i.e., a semiconductor two-dimensional electron gas
(2DEG) adjacent to a grating] was investigated theoretically
in the regime of classical drift transport, as described with
a hydrodynamic model. In this regime, the carriers flowing
through the sample can become strongly coupled to plasma os-
cillations, and the radiation output was found to be dominated
by the diffractive scattering of these collective excitations by
the grating [18]. Terahertz emission from grating-coupled 2D
plasmons has in fact been reported in several experimental
studies with semiconductor 2DEGs [19–22]. In contrast, in
the (quasi)ballistic conductors under study the injected carriers
can flow through the entire sample (or a significant fraction
of its length covering several grating periods) at constant
velocity without any collisions involving plasma oscillations
or any other scattering mechanism. Radiation can then be
produced through the interaction of the individual carriers with
the grating, in closer analogy with the original Smith-Purcell
experiment.

For both radiation mechanisms of Fig. 1, the emission
frequency is on the order of v/� (as shown in detail
below), where v is the Fermi velocity and � the period
of either the sinusoidal trajectory or the nearby grating. In
metallic carbon nanostructures, the low-energy electrons and
holes generally feature a relatively large Fermi velocity near
vF ≈ 1 × 108 cm/s. As a result, cyclotronlike and Smith-
Purcell radiation frequencies spanning the entire terahertz
spectrum can be obtained with periods of a few hundred
nanometers. Importantly, such values of � are smaller than
the maximum mean free paths for room-temperature ballistic
transport achievable with the devices under study but still large
enough for their practical implementation. Therefore, these
devices can provide a promising approach to address a key
technology gap of modern-day optoelectronics, namely, the
lack of practical solid-state terahertz sources capable of room-
temperature operation [23]. The use of carbon nanomaterials
for terahertz science and technology has already become a sub-
ject of increasing interest [24–26], motivated by their unique
electronic properties. In the area of terahertz sources, several
theoretical proposals involving graphene [27–33] or carbon
nanotubes [34–39] have been presented, based on several
mechanisms including interband electronic transitions, tunable
plasmonic excitations, or real-space charge oscillations. The
experimental demonstrations of terahertz amplification and
emission in optically pumped samples have also already been
reported [40–44].

In recent work, we have investigated numerically the
feasibility of terahertz electron-beam radiation from the 2DEG
in corrugated [45] or grating-coupled [46] graphene sheets. In
both cases, promising results were obtained in terms of radiated
optical power and tunability of the emission frequencies. Here
we consider instead two specific types of 1D carbon nanos-
tructures, namely, zigzag graphene nanoribbons (ZZ-GNRs)
and metallic armchair single-wall nanotubes (AC-SWNTs).
The use of 1D conductors for electron-beam radiation is
intuitively compelling in light of the aforementioned analogy
with vacuum-tube devices, where all electrons can be made
to travel roughly along the same direction. In contrast, in a
condensed-matter 2DEG the carrier distribution in reciprocal
space is such that, even in the presence of a bias voltage,
there are carriers traveling along all possible directions on
the 2DEG plane. Such carriers radiate at different frequencies
and with different efficiency depending on their direction
of motion relative to the corrugation or grating. Therefore,
1D conductors can be expected to provide narrower and
stronger emission peaks, as confirmed by our simulation
results presented below. In addition, both zigzaglike GNRs
[9] and metallic SWNTs [3,4] have already been shown
to exhibit robust ballistic transport over distances longer
than 1 μm even at room temperature. Therefore, they both
represent a particularly suitable system to investigate terahertz
electron-beam radiation in condensed matter, with significant
promise for future technological impact.

The remainder of the article is organized as follows.
The electronic band structure and state-of-the-art transport
properties of the 1D nanomaterials under study are briefly
reviewed in the next section. In Sec. III we describe the sim-
ulation methods used to compute the electron-beam radiation
output, which involve full-wave electrodynamic calculations
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based on the finite difference time domain (FDTD) approach
combined with a standard model of charge transport in
(quasi)ballistic conductors. The important effect of carrier
collisions is also included in these FDTD simulations by
adjusting the length over which the motion of each electron
(and therefore its radiation output) is coherent. In Sec. IV
we present the calculated emission spectra for both radiation
mechanisms (cyclotronlike and Smith-Purcell) in both types
of nanostructure (ZZ-GNRs and AC-SWNTs) and discuss
how the output power and emission frequency depend on the
corrugation or grating period �. The main conclusions of this
study are finally summarized in Sec. V.

II. 1D CARBON NANOSTRUCTURES

A. Graphene nanoribbons

The crystal structure of a ZZ-GNR (oriented along the
y direction) is shown schematically in Fig. 2(a). As in all
sp2-hybridized carbon allotropes, the underlying lattice is
triangular with two carbon atoms per unit cell, denoted A
and B. In zigzag nanoribbons, all atoms on each edge parallel
to the ribbon axis belong to the same sublattice (A on one
edge, B on the other). The opposite extreme is that of armchair
edges, which consist of an equal number of alternating A
and B atoms. This distinction is important, because the edge
shape has a profound impact on the nanoribbon electronic
band structure [47]. In particular, ZZ-GNRs support localized
edge states near the Fermi energy. In contrast, in armchair
nanoribbons edge states are absent, and an energy band gap
can be found depending on the ribbon width. In practice, the
edges of typical nanoribbons contain both zigzag and armchair
sections, and the electronic properties tend to be dominated by
the zigzag sites [48]. Therefore, our present focus on ZZ-GNRs
is quite general in terms of applicability to practical samples.
Furthermore, the main channel for ballistic transport measured
in graphene nanoribbons so far is actually associated with
the low-energy subbands involving edge states [9], which are
characteristic of zigzaglike samples only.

In general, the energy band diagram of any graphene-
derived nanostructure can be computed from that of graphene
through the application of suitable boundary conditions. In
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FIG. 2. Crystal structure of the 1D carbon nanowires under study:
(a) ZZ-GNR and (b) AC-SWNT. In (a), a1 and a2 are the basis vectors
of the crystal lattice, Ch is the chiral vector, and the letters A and B
indicate representative carbon atoms belonging to the two sublattices.

graphene, the conduction and valence bands are well described
by the following analytical expression based on a simple
tight-binding model [48],

E±(k)

= ±t

√
1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4cos2

(
kya

2

)
,

(1)

where a is the length of the lattice basis vectors a1 and a2,
and t is the nearest-neighbor hopping parameter. According to
Eq. (1), the band-gap energy E+ − E− is zero at two distinct
high-symmetry points within the first Brillouin zone, labeled
K and K′. In the vicinity of these points, both bands have
conical dispersion E± ≈ ±�vF k, where the wave vector k is
measured from K or K′ and vF = (

√
3ta)/(2�) is the Fermi

velocity. This behavior is similar to that of ultrarelativistic
particles described by the massless Dirac equation, albeit at
smaller speeds. A two-dimensional analog of the massless
Dirac equation can in fact be derived from Eq. (1) using the
k•p approximation. In this formulation, the states near the K
point are described by a two-component energy eigenvector
�K = [�KA,�KB]T, where �KA and �KB are the electronic
envelope functions over sublattices A and B, respectively.
Then, the appropriate boundary condition for a zigzaglike edge
that mostly contains atoms of one sublattice (e.g., A) is that the
envelope functions associated with the other sublattice (�KB)
must vanish everywhere along the edge [49]. Application of
this condition to a ZZ-GNR of width W leads to the following
dispersion relation:

tanh(αW ) = ±α/k, (2)

where k indicates the electronic wave vector along the ribbon
axis, and the parameter α is related to the energy eigenvalues E
according to E = ±�vF

√
k2 − α2. The nanoribbon subbands

are finally computed by solving Eq. (2) for E as a function
of k.

Representative results are shown in Fig. 3 for a ZZ-GNR of
40-nm width. Of particular interest here are the lowest-energy
conduction and valence subbands, which exhibit a nearly flat

FIG. 3. Electronic band structure of a ZZ-GNR with 40-nm
width. The wave vector k is measured along the axis of the
nanoribbon, relative to the center of the graphene first Brillouin zone.
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dispersion for k between Ky = 2π/3a and K
′
y = 4π/3a (the y

components of the wave vector at K and K ′, respectively).
Vice versa, for k < Ky or > K

′
y, the slope of both bands

rapidly increases to the graphene limit of dE/dk = ±�vF .

These subbands contain the aforementioned localized states
confined near the edges of the nanoribbon, as can be verified by
computing the corresponding envelope functions. In contrast,
for all states in the remaining subbands, the wave functions are
delocalized across the entire width of the nanoribbon. More
detailed band-structure calculations also show that electron-
electron interactions can lift the degeneracy of the partially
flat subbands, thereby opening a band gap even in ZZ-GNRs
[49,50]. However, whether these modifications are included
or not in our analysis, the Fermi level can still be pushed to
the high-slope portion of the lowest-energy conduction (or
valence) subband at similar carrier densities. The resulting
radiation spectra are then going to be essentially the same,
since they are mostly determined by the carriers near the Fermi
level.

The possibility of ballistic transport in graphene nanorib-
bons even in the presence of disorder has been investigated
theoretically in Ref. [51]. The key conclusion of this study
is that the lowest-energy conduction and valence subbands
involving edge states can provide a perfectly conducting
channel, as long as impurity scattering is sufficiently long
range that it cannot promote intervalley transitions (i.e., from
states near Ky to states near K

′
y, and vice versa). The underlying

physics is related to the violation of pseudo time-reversal
symmetry associated with the different number of forward and
backward traveling modes within each valley. Experimentally,
room-temperature ballistic transport associated with these
conducting channels has been measured in ∼40-nm-wide
nanoribbons, over distances as long as 16 μm [9]. In contrast,
transport in the higher-energy subbands of the same samples
was found to be diffusive, with much shorter mean free paths
of about 200 nm. The nanoribbons used in these measurements
were synthesized via epitaxial growth on SiC, a technique that
can be scaled to high-density arrays over large device areas.

B. Carbon nanotubes

The other type of 1D nanostructure considered in this
work, AC-SWNTs, is illustrated schematically in Fig. 2(b).
These nanotubes can be conceptually visualized as ZZ-GNRs
rolled up about their long axes, so that both ends of the
resulting nanocylinders feature armchair edges. As shown in
Fig. 2(a), the chiral vector of AC-SWNTs (i.e., the vector
running across the unrolled nanotube perpendicular to its axis)
is Ch = n(a1 + a2) = √

3nax̂, where n is an integer related to
the tube circumference C = √

3na. In general, the electronic
band structure of carbon nanotubes can be obtained from that
of graphene by imposing periodic boundary conditions with
periodicity C along the direction of the chiral vector, i.e., by
requiring that the wave vector component in the direction
of Ch is quantized in integral multiples of 2π/C [52]. For
AC-SWNTs, this condition simply becomes

kx = 2sπ√
3na

, (3)

for any integer s between 1 and 2n.

FIG. 4. Electronic band structure of an AC-SWNT with 2-nm
diameter. The wave vector k is measured along the axis of the
nanotube, relative to the center of the graphene first Brillouin zone.

Figure 4 shows the electronic band structure of an AC-
SWNT with n = 15 (corresponding to a typical tube diameter
C/π of 2 nm), computed by substituting Eq. (3) into Eq. (1).
As illustrated by this plot, AC-SWNTs are metallic, which
follows from the fact that the crystal wave vectors of the high-
symmetry points K and K′ (where the graphene band gap is
zero) satisfy the boundary condition of Eq. (3) for s = n. As
a result, the conical shape with slope �vF and the zero-energy
crossing of the graphene conduction and valence bands near K
and K′ are preserved in the s = n subbands of AC-SWNTs near
Ky and K

′
y. This arrangement is particularly favorable for the

radiation mechanisms under study, because all electrons and
holes in the main conducting channels (the s = n subbands)
travel at the same relatively high velocity vF , and therefore
can radiate at the same frequency with relatively high output
power. In passing, we note that approximately one third of all
possible types of SWNTs (depending on their chiral vector
Ch = na1 + ma2) can be expected to be metallic based on
similar arguments. Therefore, the calculation results presented
below may also be extended to these other types of nanotubes,
although in many instances (but not in AC-SWNTs) curvature
effects lead to the opening of a small band gap [52].

The electronic transport properties of metallic SWNTs have
been widely investigated over the past several years, including
the theoretical prediction [53] and experimental observation
of (quasi)ballistic conduction [2–4]. At room temperature,
the electronic mean free path lm of high-quality samples is
limited by electron-phonon scattering and its specific value
depends on the applied voltage. At low bias (less than
about 0.2 V), no carrier has sufficient energy to emit an
optical phonon, and the mobility is limited by a relatively
weak acoustic-phonon scattering mechanism, leading to large
mean free paths exceeding 1 μm [3]. At higher voltages,
the emission of optical phonons becomes allowed, and lm
is correspondingly decreased by an order of magnitude.
Finally, at low temperatures and low bias, mean free paths
as long as ∼8 μm have been measured, limited only by
impurity scattering [4]. In general, the electron-beam radiation
mechanisms under study require ballistic transport over at least
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a few periods � of the sinusoidal trajectory or nearby grating,
and terahertz radiation frequencies are obtained with periods
of a few 100 nm. Therefore, metallic SWNTs also appear to
be suitable for these mechanisms, even at room temperature,
as long as the applied voltage is kept sufficiently small.

III. SIMULATION METHODS

In order to investigate the radiation properties of the
nanostructures of Fig. 1, we first consider an arbitrary
individual electron in these 1D conductors and compute its
light output using the FDTD method. In these calculations, the
moving electron is modeled with an equivalent distribution of
oscillating dipoles, so that the built-in dipole radiation sources
of the FDTD simulation engine [54] can be employed. The
polarization density of the equivalent dipole distribution P(r,t)
is derived from the current density carried by the electron
J(r,t) based on the general relationship J(r,t) = ∂P(r,t)/∂t

[i.e., J(r,ω) = −iωP(r,ω) in the frequency domain] [55].
Here J(r,t) = −q ṙe(t)δ[r − re(t)], where −q is the electron
charge and the electron trajectory re(t) depends on the specific
device geometry. In the corrugated wire of Fig. 1(a) (where
the corrugation is along the y direction),

re(t) = ŷye(t) + ẑAsin[2πye(t)/�], (4)

where A and � are the corrugation amplitude and period,
respectively. The electron instantaneous position along the y

direction, ye(t), can be calculated numerically as a function of
time by combining Eq. (4) with

|ṙe(t)| = vk = dE/d(�k), (5)

where k is the electronic wave vector along the axis of the
wire and E(k) is the electron energy (computed as a function
of k as described in the previous section). Equation (5)
simply expresses the condition that, if the electron occupies
the Bloch state of wave vector k, its speed is equal to vk .
To determine the equivalent polarization density, we Fourier
transform J(r,t) and divide the result by –iω, leading to the
following expression:

P(r,ω) = q

iω

[
ŷ + ẑ

2πA

�
cos(2πy/�)

]
δ(x)

× δ[z − Asin(2πy/�)]eiωt(y), (6)

where t(y) is the time instant when the electron position
along the corrugation satisfies ye(t) = y. For the Smith-Purcell
geometry of Fig. 1(b), Eqs. (4)–(6) still apply with the
corrugation amplitude A set equal to zero, in which case the
electron position along the y direction (i.e., perpendicular to
the grating lines) simply becomes ye(t) = vkt .

Equation (6) describes a continuous distribution of electric
dipoles linearly positioned along the electron trajectory, having
position-dependent magnitude, phase, and direction of their
dipole moments. In the FDTD simulations, this distribution is
discretized into a collection of neighboring dipoles separated
by a small distance 	y = �/20 along the y direction. The
radiation output is then computed as the superposition of the
light waves emitted by all the dipoles. In the Smith-Purcell
geometry of Fig. 1(b), the phase relationship among these
dipoles is such that the propagating components of their output

fields cancel one another (as expected, since a charge in
uniform rectilinear motion does not radiate). The superposition
of the evanescent components, however, remains finite and
can be diffracted into radiation by the nearby grating. The
end result is light emission at a discrete set of frequencies
associated with the different orders of diffraction. In this
framework, the dephasing effect of electronic scattering can
also be included by setting the length of the equivalent dipole
distribution equal to the electron mean free path between
consecutive collisions lm. As a result, coherent electron-beam
radiation is produced only over a finite number of periods equal
to lm/�, as in the case of an electron undergoing recurrent
collisions in a realistic sample.

Next, we consider a ZZ-GNR or AC-SWNT of length L and
electron density N (e.g., introduced via electrostatic doping
with a back gate), in the geometry of Figs. 1(a) or 1(b) under a
bias voltage V. Its total output power spectrum per unit length
can be calculated as follows:

Ptot(υ) = 2

L

∑
k

Pk(υ)f [E0(k)]{1 − f [E0(k) − hυ]}, (7)

where υ is the emission frequency, the factor of 2 accounts
for the spin degeneracy, E0(k) is the dispersion relation of
the lowest conduction subband, Pk(υ) is the output power
spectrum of a single electron in the Bloch state of energy
E0(k), and f is the electronic distribution function. Pauli
blocking effects are explicitly included in this equation through
the last two terms, where f [E0(k)] is the probability that the
initial electronic state is occupied, and 1 − f [E0(k) − hυ] is
the probability that the corresponding final state after photon
emission is empty. It should be noted that Eq. (7) does
not include any contribution to the output radiation from
the higher-energy subbands of the wire, even though these
subbands may contain an appreciable number of electrons
(particularly in highly doped and/or large wires). The reason
is that (quasi)ballistic transport in these 1D carbon conductors
has only been measured in the lowest-energy subbands (i.e.,
the partially flat subbands involving edge states in ZZ-GNRs
[9], and the linear subbands with zero-energy separation in
metallic SWNTs [2–4]). In contrast, for the higher-energy
subbands the measured mean free paths are too small to allow
for appreciable electron-beam radiation.

For each device geometry (either cyclotronlike or Smith-
Purcell), the single-electron emission spectra Pk(υ) depend on
the wave vector k only through the velocity vk = dE0/d(�k).
These spectra are computed via the FDTD simulations de-
scribed above for a selection of all possible velocities vk � vF

and are generally found to consist of a sharp peak at a frequency
on the order of vk/�. (Weaker features at higher-order
harmonics are also obtained in the same calculations but are
not considered in the following analysis for simplicity.) From
these simulation results, the center frequency, full width at
half maximum (FWHM), and integrated power of each peak
are determined. Next, the values of the same parameters for
all other velocities vk are extrapolated using a polynomial
fit. The single-electron spectra Pk(υ) for all values of vk are
then approximated in Eq. (7) with Gaussian peaks having the
correct center frequencies, FWHMs, and integrated powers
(as determined with this fitting procedure). The choice of a
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Gaussian function is consistent with the shape of the FDTD
single-electron emission peaks and does not in any case
significantly affect the resulting shape of Ptot(υ).

Finally, the occupation probabilities f in Eq. (7) are
computed using a standard model for the electronic distribution
function of ballistic conductors with ideal (i.e., reflection-less)
contacts [56]. In this model, all electrons moving from left to
right can only originate from (and therefore must be in thermal
equilibrium with) the contact on the left side of the conductor,
and vice versa. As a result, for states with positive velocity
(i.e., with dE0/dk > 0), the occupation probability f [E0(k)]
can be taken to be a Fermi-Dirac distribution function with
Fermi energy equal to the chemical potential μl of the left
contact. Similarly, all electrons in states with dE0/dk < 0
can be assumed to be in thermal equilibrium with the same
chemical potential μr as the right contact. To determine μl

and μr , first we note that their difference must be equal to the
applied voltage V times the electron charge −q. Second, we
require that the sum of the occupation probabilities of all states
in the conducting wire (including states in the higher-energy
subbands) must be equal to the electron density N. The same
description of the electronic distribution function f leads to
the Landauer formulation of conduction, which provides a
well-established model of (quasi)ballistic transport [56].

IV. RESULTS AND DISCUSSION

The simulation methods just described were applied to
several structures based on the corrugated wire of Fig. 1(a)
or the Smith-Purcell configuration of Fig. 1(b) for different
values of the period � and the electron mean free path lm.
In each structure the substrate material below the conducting
wire is SiO2, modeled with a frequency-dependent permittivity
from the internal database of the FDTD simulation engine
[54]. This choice of substrate material is based on the
aforementioned measurements of (quasi)ballistic transport
with metallic SWNTs [2–4]. Alternative substrates may also be
considered for the same devices, including hexagonal-BN, SiC
(as used with the ballistic ZZ-GNRs of Ref. [9]), and HfO2.
In fact, theoretical studies indicate that improved transport
properties may be obtained with carbon-based conductors
deposited or grown on such substrates, due to reduced remote
scattering from surface optical phonons and coupled plasmon-
phonon modes compared to SiO2 [57,58]. The corrugation
of the cyclotronlike samples is sinusoidal with amplitude
A = �/4, whereas in the Smith-Purcell devices the grating
consists of rectangular ridges of width W = �/2 and height
H = 300 nm. These parameters were selected via initial FDTD
simulations so as to maximize the output radiation power. The
lateral dimensions of the 1D conductors are the same as in
the band-structure calculations of Sec. II, i.e., the simulated
ZZ-GNRs have a width of 40 nm (as in the ballistic samples of
Ref. [9]) and the AC-SWNTs have a typical nanotube diameter
of 2 nm. Additional calculations show that the output radiation
depends only weakly on these lateral dimensions, as long as the
dispersion of the lowest-energy conduction subband maintains
the same features shown in Figs. 3 and 4.

In the FDTD calculations of the single-electron emission
spectra, the computational domain has the shape of a cube
centered about the dipole distribution, with 600-μm side

length and perfectly matched layers on all boundaries. The
corrugated substrate or grating lies at the center of the x-y
plane, with 5 × 5 μm2 area. All the FDTD computational
parameters, including mesh size and frequency resolution,
were optimized through extensive convergence tests. In pass-
ing, we note that the large disparity between the calculated
emission wavelengths (several 10 μm) and the periodicities
of the underlying nanostructures (a few 100 nm) makes these
simulations extremely demanding in terms of computational
resources. As explained above, in the FDTD calculations we
consider an electron traveling along the conductor trajectory
at a few different velocities vk (specifically, 0.2, 0.4, 0.6, 0.8,
and 1 times the graphene Fermi velocity vF ). The details of
the conductor band structure (ZZ-GNR versus AC-SWNT)
are then introduced when the total output power spectra are
computed from the FDTD simulation results using Eq. (7).
In all calculations presented below based on this equation we
assume a Fermi energy EF = 100 meV above the Dirac point,
an applied bias voltage V = 0.1 V, and room temperature.
In the case of ZZ-GNRs, a wide range of electron velocities
vk � vF contribute to Ptot(υ), due to the significant curvature
of the lowest-energy conduction subband near such Fermi
energy. In AC-SWNTs the lowest-energy conduction subband
is relatively linear near EF and all radiating electrons have
velocity close to vF .

Representative FDTD simulation results for a cyclotronlike
device are shown in Fig. 5 for all five electron velocities
considered. Specifically, the traces plotted in this figure are
obtained by dividing the single-electron power spectra Pk(υ)
by the photon energy hυ, which gives the photon emission rate
per unit frequency. The corrugation period � here is 68 nm, and
the corresponding length lcycle traveled by the electron in each
cycle of the sinusoidal trajectory is approximately 100 nm.

FIG. 5. Photon emission rate per unit frequency of an electron
in a corrugated carbon nanowire, plotted as a function of radiated
frequency for five different values of the electron velocity vk . The
corrugation period and amplitude are 68 nm and 17 nm, respectively.
Inset: total photon emission rate of the same electron, integrated over
all frequencies, versus electron velocity.
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The mean free path lm (i.e., the length of the equivalent dipole
distribution in the FDTD simulations) is taken to be 3 μm,
which is large enough to ensure that the resulting broadening
does not affect the shape of the output spectra Ptot(υ) but
is otherwise reasonably short to minimize the computational
time. The results presented here therefore apply to the optimal
case of highly ballistic samples, whereas the effect of shorter
mean free paths is described later in this section. For each
electron velocity vk , the frequency of peak emission in the
spectra of Fig. 5 is approximately equal to vk/lcycle (i.e.,
vk/vF × 10 THz for lcycle = 100 nm), which is consistent
with expectations for cyclotronlike radiation [55]. It should be
noted that only a relatively narrow spectral region is considered
in each one of these calculations, centered about the main
radiation peak, so that the aforementioned weaker emission
features at higher-order harmonics are not included.

The spectra of Fig. 5 also show that the single-electron
output power increases rapidly with increasing electron speed.
This behavior is again in agreement with basic expectations:
for example, Pk ∝ v4

k according to the Larmor formula for cy-
clotron radiation (which, however, applies only in the limit of
A � �) [55]. Therefore the radiation mechanisms under study
benefit strongly from the relatively large electron velocities of
carbon-based nanostructures. In particular, in the AC-SWNTs
of Fig. 4, the slope |vk| = |dE0/d(�k)| of the lowest-energy
conduction and valence subbands is approximately equal to
vF ≈ 1 × 108 cm/s over a broad energy range across the Dirac
point. In the ZZ-GNRs of Fig. 3, the lowest subbands feature a
nearly flat dispersion with almost zero velocity near the Dirac
point, but their slope |vk| then rapidly approaches vF as the
energy is increased or decreased beyond a few ±10 meV. As
already mentioned, in the calculations presented below we
assume a chemical potential EF = 100 meV, so that even in
the ZZ-GNRs the carriers near the Fermi level [i.e., the carriers
that produce the largest contribution to the sum of Eq. (7)]
travel at a relatively high velocity close to vF .

The inset of Fig. 5 shows the total emission rate 1/τrad

integrated over all frequencies and plotted as a function of
electron velocity. Values above 1 × 106 photons/s are obtained
for vk ≈ vF , corresponding to a radiative lifetime τrad of
less than 1 μs. We emphasize that such emission rates are
significant at terahertz frequencies. In fact, similar or smaller
rates are obtained for spontaneous emission from the active
materials of terahertz quantum cascade lasers (QCLs), which
represent the current state of the art for solid-state terahertz
sources, albeit limited to operation at cryogenic temperatures
[23]. For example, spontaneous emission lifetimes ranging
from 3 to over 60 μs are reported in Refs. [59–61] for different
terahertz QCL designs. Finally, we note that the same FDTD
simulations of Fig. 5 applied to Smith-Purcell devices produce
qualitatively similar results.

Figure 6 shows a selection of emission spectra Ptot(υ) com-
puted with Eq. (7) for different combinations of carbon nanos-
tructure (ZZ-GNR or AC-SWNT) and radiation mechanism
(cyclotronlike or Smith-Purcell). Each panel contains four
spectra corresponding to different values of the corrugation
or grating period �. These values were selected to produce
emission peaked near 4, 6, 8, and 10 THz, as an illustration of
the inherent geometric tunability of the underlying radiation
mechanisms. The linewidth and shape of these spectra are

FIG. 6. Output radiation spectra per unit length for different
periods of the grating or corrugation: (a) cyclotronlike radiation from
sinusoidally corrugated ZZ-GNRs; (b) Smith-Purcell emission from
ZZ-GNRs near a rectangular grating; (c) cyclotronlike radiation from
sinusoidally corrugated AC-SWNTs; (d) Smith-Purcell emission
from AC-SWNTs near a rectangular grating.

determined almost entirely by the dispersion of the single-
electron emission frequency with velocity |vk|. In general, the
output radiation is mostly produced by the electrons in states
within a few units of thermal energy kBT from the Fermi level,
due to Pauli blocking constraints. The emission spectra then
depend on the velocity distribution of these electrons, which
can be inferred from Figs. 3 and 4. In ZZ-GNR samples, |vk|
near EF exhibits an appreciable variation with k, which results
in the asymmetric broadening observed in Figs. 6(a) and 6(b),
with the slower electrons emitting at lower frequencies and at
a smaller rate. In AC-SWNTs, |vk| near EF is nearly constant
with k, but with slightly different values in the two branches
of opposite slope on either side of each conduction-subband
minimum. As a result, the AC-SWNT emission spectra consist
of two narrow overlapping peaks centered at slightly different
frequencies, which can be observed most clearly in the 10-THz
feature of Fig. 6(c). In any case, all spectra shown in Fig. 6
are significantly narrower than the output of similar radiation
mechanisms in 2D graphene samples [45,46], which suffer
from substantial broadening caused by carriers traveling along
different directions and emitting at different frequencies.

The total radiation power per unit length produced by the
structures of Fig. 6, integrated over all frequencies, is plotted
as a function of the corresponding frequency of peak emission
in Fig. 7. The comparison among the different nanomaterials
and radiation mechanisms under study is clearly displayed
in this figure. For both types of 1D conductors (ZZ-GNRs
and AC-SWNTs), cyclotronlike emission is always more
efficient than Smith-Purcell radiation. This observation makes
intuitive sense, since the latter mechanism involves charges
in uniform rectilinear motion and relies on the (nonunity)
diffraction efficiency of the underlying grating. Furthermore,
regardless of the emission process, AC-SWNTs consistently
produce stronger radiation than ZZ-GNRs emitting at the
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FIG. 7. Total output power per unit length of the structures of
Fig. 6, integrated over all frequencies and plotted as a function of the
corresponding frequency of peak emission.

same frequency. This difference can be ascribed to the more
favorable band structure of metallic nanotubes, which leads to
a narrower distribution of carrier velocities near the maximum
speed vF for all the radiating charges.

The data of Fig. 7 also show that experimentally measurable
cyclotronlike or Smith-Purcell radiation can be produced even
by a single nanotube or nanoribbon. Specifically, for all
structures considered in this figure, output powers of several
picowatts (i.e., above the noise equivalent power of standard Si
terahertz bolometers) are obtained with reasonable conductor
lengths of about 100 μm. For comparison, we also note that
the power levels per unit length shown in Fig. 7 are 3 orders
of magnitude higher than theoretical predictions for terahertz
interband spontaneous emission across fully inverted bands
in metallic SWNTs [38]. The device structures under study
can therefore be envisioned as promising building blocks
for future nanoscale electronic circuits operating at ultrahigh
frequencies. Furthermore, if the same structures can be
integrated in high-density arrays, technologically significant
power levels for terahertz-photonics applications are obtained
(e.g., in the microwatt range). In particular, the ballistic ZZ-
GNRs described in Sec. II A are produced by epitaxial growth
techniques [9], which are readily applicable to the fabrication
of ordered arrays with macroscale (e.g., millimeter-range)
dimensions. Significant progress has also been reported in
recent years towards the synthesis of high-density arrays of
aligned nanotubes [44,62]. In principle, these ZZ-GNR or
AC-SWNT arrays could also be combined with an optical
cavity for the demonstration of coherent stimulated emission,
and ultimately even lasing, in analogy with the operation of
traditional FELs. The design and analysis of suitable device
geometries will be the subject of future study.

Finally, the effect of electronic collisions is illustrated in
Fig. 8, where again each panel corresponds to a different com-
bination of carbon nanostructure and radiation mechanism. In
each case, we consider three different values of the mean free
path lm (i.e., the length of the equivalent dipole distribution in
the FDTD simulations), namely, 3, 1, and 0.5 μm. The period
� is fixed at the value that produces emission near 10 THz (68
and 100 nm for the cyclotronlike and Smith-Purcell devices,
respectively), and all other parameters are the same as in Fig. 6.

FIG. 8. Output radiation spectra per unit length for different
values of the electronic mean free path: (a) cyclotronlike radiation
from sinusoidally corrugated ZZ-GNRs; (b) Smith-Purcell emission
from ZZ-GNRs near a rectangular grating; (c) cyclotronlike radiation
from sinusoidally corrugated AC-SWNTs; (d) Smith-Purcell emis-
sion from AC-SWNTs near a rectangular grating.

As expected, decreasing the electronic mean free path causes
a broadening of the emission spectra and a reduction in their
peak values. A shift in the center frequencies is also observed
(particularly in the case of Smith-Purcell emission), as is often
the case in the presence of collision broadening [63]. In any
case, even for the lowest mean free path of 0.5 μm considered
in these plots, the emission peaks remain well resolved with a
relatively large quality factor. The key conclusion is that the
radiation phenomena under study can be implemented using
realistic high-quality samples based on existing technologies.

V. CONCLUSIONS

In summary, we have investigated numerically the use of
1D carbon nanostructures (specifically ZZ-GNRs and AC-
SWNTs) for the generation of terahertz light based on two re-
lated electron-beam radiation mechanisms (i.e., cyclotronlike
emission in the presence of mechanical corrugation and the
Smith-Purcell effect). In all cases we find that experimentally
accessible output powers at geometrically tunable terahertz
frequencies can be obtained even with individual nanowires.
Of all combinations of radiation mechanism and carbon
nanostructure considered, cyclotronlike emission from AC-
SWNTs produces the highest output power at all frequencies.
On the other hand, ZZ-GNRs have the advantage of more
immediate compatibility with integration in high-density
arrays, at least based on current fabrication methods. The
cyclotronlike sample geometry may also be more challenging
to implement compared to Smith-Purcell devices, due to the
critical requirement of conformal adhesion on a nanoscale
sinusoidal grating. Both radiation mechanisms are also found
to be relatively robust with respect to electronic collisions,
with pronounced emission peaks obtained even in the presence
of submicron mean free paths. These results suggest that 1D
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carbon nanostructures represent a uniquely suited materials
platform for the demonstration and study of electron-beam
radiation processes in condensed matter. Possible applications
include ultrahigh-frequency oscillators for future nanoelec-
tronic circuits, and (in the case of high-density arrays) radiation
sources for terahertz photonics. The observed increase in
output power with increasing frequency of peak emission (see
Fig. 7) is particularly significant in this respect, since existing
room-temperature terahertz sources are limited to frequencies
below ∼1 THz [23]. The radiation mechanisms under study

may therefore provide a promising solution to this important
technology gap.
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