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Magnetic properties of a two-dimensional electron gas strongly coupled to light
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Considering the quantum dynamics of two-dimensional electron gas (2DEG) exposed to both a stationary
magnetic field and an intense high-frequency electromagnetic wave, we found that the wave decreases the
scattering-induced broadening of Landau levels. Therefore, various magnetoelectronic properties of two-
dimensional nanostructures (density of electronic states at Landau levels, magnetotransport, etc.) are sensitive to
irradiation by light. Thus, the elaborated theory paves the way for optically controlling the magnetic properties
of 2DEG.
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I. INTRODUCTION

The study of two-dimensional electron gas (2DEG) exposed
to a high-frequency electromagnetic field is one of the most
exciting areas in the modern physics of nanostructures.
The continual interest in this topic originates from the rich
fundamental and applied capabilities of two-dimensional
electron systems (see, e.g., Refs. [1–3]). In particular, the mag-
netoelectronic properties of 2DEG subjected to microwave
irradiation have been studied actively in recent years [4–16].
However, the largest amount of attention in the subject has
been paid to the simplest case of a weak electromagnetic field
that does not change electron states. The only effect of the
weak field are the field-induced electron transitions between
the unperturbed states. In contrast, a strong electromagnetic
field can mix the electron states substantially. As a result of
this mixing, the composite electron-field object referred to
as an “electron dressed by a field” (dressed electron) appears
[17,18]. The light-induced renormalization of the physical
properties of dressed electrons has been studied in various
atomic systems [17–19] and condensed-matter structures,
including bulk semiconductors [20–22], quantum wells
[23–28], quantum rings [29–31], graphene [32–40], etc. In the
present research, we develop a theory to describe the magnetic
properties of dressed 2DEG, and we demonstrate that these
properties can be modified substantially by the dressing field.

The paper is organized as follows. In the second section, we
solve the Schrödinger equation for 2DEG subjected to both a
stationary magnetic field and a high-frequency dressing field.
In the third section, the found solutions of the Schrödinger
problem are used to analyze various magnetoelectronic char-
acteristics of dressed 2DEG, including the density of electron
states and magnetotransport. The final section contains our
conclusions.

II. SCHRÖDINGER PROBLEM FOR LANDAU
LEVELS IN DRESSED 2DEG

Let us consider two-dimensional electron gas (2DEG)
confined in the (x,y) plane, which is subjected to both a
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stationary magnetic field B = (0,0,B) directed along the z

axis and a linearly polarized electromagnetic wave (dressing
field) propagating along the same axis z (see Fig. 1). The
Hamiltonian of 2DEG reads

Ĥe = 1

2me

[p̂ − e(A0 + At )]
2, (1)

where me is the effective electron mass, e is the electron
charge, A0 = (−By,0,0) is the stationary vector potential
of the magnetic field, At = (0,[E/ω] cos ωt,0) is the time-
dependent vector potential of the electromagnetic wave, E

is the amplitude of the electric field of the wave, ω is
the wave frequency, and p̂ = (p̂x,p̂y,0) is the operator of
two-dimensional electron momentum, px,y . Solutions of the
nonstationary Schrödinger problem with the Hamiltonian (1)
should be sought in the form

ψ(r,t) = 1√
Lx

exp

[
i
pxx

�
+ i

eE(y − y0)

�ω
cos ωt

]
×φ(y − y0,t), (2)

where Lx,y are dimensions of the 2DEG plane, r = (x,y,0)
is the radius vector of an electron in the 2DEG plane, and
y0 = −px/eB is the center of the cyclotron orbit along the y

axis. Substituting the wave function (2) into the Schrödinger
equation with the Hamiltonian (1), i�∂ψ/∂t = Ĥeψ , we arrive
at the equation for the driven quantum oscillator,[

meω
2
0y

2

2
− eEy sin ωt − �

2

2me

∂2

∂y2
− i�

∂

∂t

]
φ(y,t) = 0,

which has the well-known exact solution (see, e.g.,
Refs. [41–43])

φ(y,t) = χN [y − ζ (t)] exp

[
− iεN t

�
+ imeζ̇ (t)[y − ζ (t)]

�

+ i

�

∫ t

dt ′L(t ′)
]
, (3)

where χN (y) is the eigenfunction of the quantum harmonic
oscillator, εN = �ω0(N + 1/2) is the energy spectrum of the
oscillator, N = 0,1,2, . . . is the number of the Landau level,
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FIG. 1. Sketch of the system under consideration: Two-
dimensional electron gas (2DEG) subjected to both a linearly po-
larized electromagnetic wave (EM) with the electric field amplitude,
E, and a stationary magnetic field, B, directed perpendicularly to the
2DEG plane.

ω0 = |e|B/me is the cyclotron frequency,

ζ (t) = eE sin ωt

me

(
ω2

0 − ω2
)

is the trajectory of the driven classical oscillator, and

L(t) = meζ̇
2(t)

2
− meω

2
0ζ

2(t)

2
+ eEζ (t) sin ωt

is the Lagrangian of the classical oscillator.
It should be noted that the field-induced terms in the wave

functions (2) and (3) do not depend on the Landau level
number, N . This means that the dressing field does not change
the structure of Landau levels. However, the dressing field
produces exponential phase shifts in the wave functions (2)
and (3). In the absence of a magnetic field, similar phase shifts
have a strong effect on the transport characteristics of dressed
2DEG via the renormalization of electron scattering [26,27].
Since the phase shifts in Eqs. (2) and (3) depend on both the
dressing field and the magnetic field, one can expect that the
magnetotransport properties of 2DEG will be renormalized
by the dressing field as well. To describe this renormalization
accurately, we have to solve the scattering problem for the
dressed electron states (2) and (3).

Let an electron interact with scatterers in the presence of
the same fields, A0 and At . Then the wave function of the
electron, 	(r,t), satisfies the Schrödinger equation

i�
∂	(r,t)

∂t
= [Ĥe + U (r)]	(r,t), (4)

where U (r) is the total scattering potential of 2DEG coming
from a macroscopically large number of scatterers. Since
the wave functions (2) at any time t coincide with the
eigenfunctions of a quantum harmonic oscillator, they form
the complete basis. Therefore, one can seek solutions to the
Schrödinger equation (4) as an expansion,

	(r,t) =
∑

j

aj (t)ψj (r,t), (5)

where the different indices j correspond to the different sets of
all quantum numbers (px and N ) describing the electron states
of the considered system. It should be stressed that Eqs. (2)
and (3) describe exact wave functions of a dressed electron.
Therefore, use of the complete basis (2) in the expansion (5)

takes into account the interaction between the electron and the
dressing field in full, i.e., nonperturbatively. As to the electron
transition from a state j to a state j ′ due to the potential U (r),
we will describe this scattering process within conventional
perturbation theory.

Let an electron be in state j at time t = 0 and, correspond-
ingly, aj ′(0) = δj ′,j . Substituting the expansion (5) into the
Schrödinger equation (4) and restricting the accuracy by the
first order of the perturbation theory (the Born approximation),
we can write the amplitude of scattering to state j ′ as

aj ′(t) = − i

�

∫ t

0
dt

∫
S

d2r ψ∗
j ′(r,t)U (r)ψj (r,t), (6)

where the integration should be performed over the 2DEG
area, S = LxLy . Applying the Jacobi-Anger expansion,

eiz cos θ =
∞∑

n=−∞
inJn(z)einθ ,

to transform the time-dependent exponential terms in the wave
functions (2) and (3), we go from the scattering amplitude (6)
to the scattering probability

|aj ′(t)|2 = |Uj ′j |2
�2

∣∣∣∣
∞∑

n=−∞
inJn

(
eE[y ′

0 − y0]ω2
0

�ω
[
ω2

0 − ω2
]

)

× ei(εj ′−εj +n�ω)t/2�

∫ t/2

−t/2
dt ′ ei(εj ′ −εj +n�ω)t ′/�

∣∣∣∣
2

,

(7)

where

Uj ′j = 〈ϕj ′(r)|U (r)|ϕj (r)〉 (8)

is the matrix element of the scattering between the “bare”
electron eigenstates,

ϕj (r) = eipxx/�

√
Lx

χN (y),

which satisfy the Schrödinger equation with the Hamiltonian
(1) in the absence of the dressing field (At = 0). Since the
integral in Eq. (7) for long time t → ∞ turns into the δ

function, the scattering probability (7) can be rewritten as

|ak′(t)|2 = 4π2|Uj ′j |2
∞∑

n=−∞
J 2

n

(
eE[y ′

0 − y0]ω2
0

�ω
[
ω2

0 − ω2
]

)

× δ2(εj ′ − εj + n�ω). (9)

To transform the square δ functions in Eq. (9), we can apply
the conventional procedure,

δ2(ε) = δ(ε)δ(0) = δ(ε)

2π�
lim
t→∞

∫ t/2

−t/2
ei0×t ′/�dt ′ = δ(ε)t

2π�
.

Then the probability of electron scattering between states j

and j ′ per unit time is

wj ′j = d|aj ′(t)|2
dt

= |Uj ′j |2
∞∑

n=−∞
J 2

n

(
eE[y ′

0 − y0]ω2
0

�ω
[
ω2

0 − ω2
]

)

× 2π

�
δ(εj ′ − εj + n�ω). (10)
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It should be noted that the derivation of Eqs. (6)–(10) is done
within the conventional time-dependent perturbation theory,
which is extended to the case of the oscillating basis (2).
Physically, this extension is similar to the scattering theory
developed recently for dressed electron states in various
conductors [26,27].

To avoid the energy exchange between a high-frequency
field and electrons, the field should be purely dressing
(nonabsorbable). In the considered electron system, there
are two mechanisms of absorption of the field by electrons:
(i) resonant absorption of the field, which corresponds to
electron transitions between different Landau levels; and
(ii) collisional absorption of the field, which corresponds
to electron transitions between different states within the
broadened Landau level. To exclude the first mechanism, the
field frequency ω should be far from the resonant frequencies,
nω0 (n = 1,2,3, . . . ), corresponding to interlevel electron
transitions. To exclude the second mechanism, the photon
energy �ω should be much more than the scattering-induced
broadening of Landau levels, � = �/τ (i.e., ωτ 	 1). Phys-
ically, the terms with n 
= 0 in Eq. (10) describe the electron
scattering accompanied by the absorption (emission) of n

photons. It follows from the aforementioned that these terms
can be neglected if the dressing field is both off-resonant and
high-frequency. Therefore, the only effect of the dressing field
on 2DEG is the renormalization of the probability of elastic
electron scattering within the same Landau level (εj ′ = εj ),
which is described by the term with n = 0 in Eq. (10):

wj ′j = J 2
0

(
eE[y ′

0 − y0]ω2
0

�ω
[
ω2

0 − ω2
]

)
w

(0)
j ′j , (11)

where

w
(0)
j ′j = 2π

�
|Uj ′j |2δ(εj ′ − εj ) (12)

is the probability of scattering of a “bare” electron. As
expected, the probabilities (11) and (12) are identical in the
absence of the dressing field (E = 0). The formal difference
between the scattering probability of dressed electron (11) and
the scattering probability of “bare” electron (12) consists in the
Bessel-function factor depending on both the dressing field and
the stationary magnetic field. Just this factor is responsible for
all the effects discussed below. In particular, the lifetime of the
dressed electron at the Landau level, τ , is renormalized by the
Bessel function as

1

τ
=

∑
j ′

wj ′j =
∑
j ′

J 2
0

(
eE[y ′

0 − y0]ω2
0

�ω
[
ω2

0 − ω2
]

)
w

(0)
j ′j . (13)

To calculate the lifetime (13), let us rewrite the δ function,
δ(εj ′ − εj ), using the well-known representation

δ(ε) = 1

π
lim
�→0

�

�2 + ε2
. (14)

In the context of the discussed problem, the parameter
� = �/τ has the physical meaning of scattering-induced
broadening of the Landau level. For the considered case of
elastic scattering within the same Landau level, we can write
the δ function (14) as δ(εj ′ − εj ) ≈ 1/(π�), and, therefore,

Eq. (13) takes the form

1

τ
=

⎡
⎣ 2

�2

∑
j ′

J 2
0

(
eE[y ′

0 − y0]ω2
0

�ω
[
ω2

0 − ω2
]

)∣∣Uj ′j
∣∣2

⎤
⎦

1/2

, (15)

where the summation is performed over electron states j ′
within the same Landau level. To calculate the lifetime (15),
let us approximate the scattering potential using the model of
δ-function scatterers,

U (r) =
Ns∑
i=1

U0δ(r − ri),

which is commonly used to describe electronic transport in
various two-dimensional systems [44–47]. Assuming that the
scatterers are distributed randomly and the total number of
scatterers, Ns , is macroscopically large, we can obtain from
Eq. (15) the final expression for the electron lifetime at the
N th Landau level,

1

τ
=

√
nsU

2
0

πl2
0�2

[ ∫∫ ∞

−∞
χ2

N (y ′)χ2
N (y + y ′)J 2

0

×
(

eEyω2
0

�ω
[
ω2

0 − ω2
])

dy dy ′
]1/2

, (16)

where ns = Ns/S is the density of scatterers per unit area
of 2DEG, and l0 = √

�/|e|B is the magnetic length. The
argument of the Bessel function in the integrand of Eq. (16)
is the dimensionless parameter, which describes the ratio
of the characteristic energy of the electron-field interaction
and the photon energy. Physically, it describes the strength
of electron-photon coupling in the considered electron-field
system. Since the dressing field, E, leads to a decreasing
Bessel function, the scattering time, τ , increases due to the
field. Magnetoelectronic effects following from this increase
are discussed below.

III. MAGNETOELECTRONIC CHARACTERISTICS
OF DRESSED 2DEG

Since the scattering time (16) depends on the dressing field,
the scattering-induced broadening of Landau levels, � = �/τ ,
is also affected by the field. To describe the broadening
accurately, it is convenient to rewrite Eq. (16) in dimensionless
form,

�(N)

�0
=

[ ∫∫ ∞

−∞
χ2

N (y ′)χ2
N (y + y ′)J 2

0

×
(

eEyω2
0

�ω
[
ω2

0 − ω2
])

dy dy ′
]1/2

, (17)

where �(N) = �/τ is the broadening for the Landau level
with the number N = 0,1,2, . . . , and �0 is the broadening
of Landau levels in the absence of the dressing field (natural
broadening). It should be noted that Eq. (17) does not depend
on the density of scatterers, ns , and the strength of scatterers,
U0. Therefore, Eq. (17) describes the dependence of the
broadening of Landau levels on the dressing field in the most
general form, where the broadening of “bare” Landau levels,

235411-3



K. DINI, O. V. KIBIS, AND I. A. SHELYKH PHYSICAL REVIEW B 93, 235411 (2016)

FIG. 2. The dependence of the Landau-level broadening, �, on
the irradiation intensity, I , for the lowest two Landau levels with the
numbers N = 0 (solid line) and N = 1 (dashed line) in a GaAs-based
quantum well at a magnetic field B = 1.2 T, irradiation frequency
ω = 2 × 1012 rad/s, and natural broadening �0 = 1 meV. The inset
shows the density of electron states, D, in the absence of irradiation
(solid line) and for irradiation intensities I = 200 W/cm2 (dashed
line) and I = 600 W/cm2 (dotted line).

�0, should be treated as a phenomenological parameter that can
be found from experiments. In the absence of the dressing field
(E = 0), the broadening (17) is the same for all Landau levels,
� = �0 ∝ √

B, in complete agreement with the conventional
theory of magnetoelectronic properties of 2DEG [44,45]. In
contrast, the dressing field leads to different broadening (17)
for different Landau levels (see Fig. 2). As to the density of
electron states, it is described by the expression [44,45]

D(ε) = D0

∑
N

�0

�(N)

[
1 −

(
ε − εN

�(N)

)2
]1/2

, (18)

where D0 = 1/(π2l2
0�0). Substituting the broadening (17) into

Eq. (18), one can calculate the density of states in dressed
2DEG (see the inset in Fig. 2). Since the dressing field
decreases the broadening of Landau levels (17), this results in
increasing the density of states at Landau-level energies, ε =
εN . As a consequence, all phenomena sensitive to the density of
electronic states (magnetotransport, magneto-optical effects,
etc.) are affected by the dressing field. In particular, the
longitudinal magnetoconductivity of 2DEG at the temperature
T = 0 is described by the conventional expression [44,45]

σxx ≈ σ0

(
N + 1

2

)[
1 −

(
ε − εN

�(N)

)2
]
, (19)

where σ0 = e2/π2
� is the elementary conductivity and N

is the number of the Landau level at the Fermi energy.
Substituting the broadening (17) into Eq. (19), one can
calculate the dependence of the conductivity on the dressing
field. Experimentally, one can change the Fermi energy of
2DEG, εF , with a gate voltage. Then we arrive from Eq. (19) at
the oscillating behavior of the conductivity (the Shubnikov–de
Haas oscillations) plotted in Fig. 3.

It should be stressed that there is a crucial difference
between the considered high-frequency dressing field and the

FIG. 3. The dependence of the longitudinal conductivity, σxx , on
the Fermi energy, εF , in a GaAs-based quantum well at a magnetic
field B = 1.2 T, irradiation frequency ω = 2 × 1012 rad/s, and natu-
ral broadening �0 = 1 meV. The solid line describes the conductivity
of unirradiated 2DEG, whereas the dotted line corresponds to the
conductivity at the irradiation intensity I = 600 W/cm2. The inset
shows the difference between these two conductivities, �σxx .

low-frequency case. Since 2DEG absorbs a low-frequency
field, the multiphoton-assisted scattering of electrons can
increase the longitudinal conductivity [7]. In particular, this
effect was proposed to explain the phenomenon of “zero
resistance states” in 2DEG subjected to both a magnetic
field and low-frequency (microwave) irradiation [4,13]. On
the contrary, the considered high-frequency field cannot be
absorbed by 2DEG. The only effect of the field is the
suppression of electron scattering, which results in decreasing
both the broadening of Landau levels and the longitudinal
conductivity (see Figs. 2 and 3). Thus, high-frequency and
low-frequency irradiation lead to different behaviors of the
magnetoelectronic properties of 2DEG.

It should also be noted that the magnetoelectronic effects
induced by a dressing field depend strongly on the kind of
electron dispersion. In Dirac materials with linear electron
dispersion, a dressing field changes the energy distance
between Landau levels and, therefore, modifies all phenomena
depending on the cyclotron frequency [40]. On the contrary,
in the considered case of 2DEG with parabolic electron
dispersion, a dressing field does not change the cyclotron
frequency but influences the electron scattering within Landau
levels.

As to the experimental observability of the discussed
phenomena, all dressing effects increase with increasing the
intensity of the dressing field. In particular, the strong dressing
field can turn the Bessel function in Eq. (16) into zero, which
corresponds physically to the field-induced suppression of
electron scattering [26]. However, intense irradiation can flu-
idize a semiconductor quantum well. To avoid this fluidizing,
it is reasonable to use narrow pulses of a strong dressing
field. This well-known methodology was elaborated upon long
ago, and it is commonly used to observe various dressing
effects—in particular, modifications of the energy spectrum
of dressed electrons arising from the optical Stark effect—in
semiconductor structures (see, e.g., Refs. [48–50]). Within this
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approach, giant dressing fields (up to GW/cm2) can be applied
to semiconductor structures.

IV. CONCLUSIONS

We can conclude that a strong high-frequency electro-
magnetic field (dressing field) decreases electron scattering
between different cyclotron orbits within the same Landau
level. As a consequence, the field decreases the scattering-
induced broadening of Landau levels in 2DEG. This results in
the field-induced modification of various magnetoelectronic
properties, depending on the density of electron states (in par-
ticular, magnetotransport characteristics of 2DEG). Therefore,
a dressing field can be considered as a perspective tool to
manipulate the magnetoelectronic properties of various two-

dimensional nanostructures. Since such nanostructures serve
as a basis for nanoelectronic devices, the developed theory
paves the way for optical control of their magnetoelectronic
characteristics.
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