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Multiple negative differential conductance regions and inelastic phonon assisted tunneling
in graphene/h-BN/graphene structures
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In this paper we study in detail the effect of the rotational alignment between a hexagonal boron nitride (h-BN)
slab and the graphene layers in the vertical current of a a graphene/h-BN/graphene device. We show how for
small rotational angles, the transference of momentum by the h-BN crystal lattice leads to multiple peaks in the
I -V curve of the device, giving origin to multiple regions displaying negative differential conductance. We also
study the effect of scattering by phonons in the vertical current and see how the opening up of inelastic tunneling
events allowed by spontaneous emission of optical phonons leads to sharp peaks in the second derivative of the
current.
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I. INTRODUCTION

Being able to tailor the properties of materials at will,
aiming at unveiling new physics, and achieving never thought
before properties is the main goal of condensed matter physics
and materials science. However, the degree of manipulation
we can undertake using conventional materials is somewhat
limited. In the last 10 years, the advent of two-dimensional
materials [1,2] opened new avenues waiting to be explored.
One of the less explored avenues is the one opened by van
der Waals (vdW) hybrid structures [3]: new systems formed
by stacking layers of two-dimensional crystals on top of each
other, which have emerged as a new approach for manipu-
lating and tailoring material properties at will [4,5]. Among
the various possible combinations of two-dimensional crys-
tals, graphene/semiconductor-insulator/graphene vdW struc-
tures, with semiconducting transition-metal dichalcogenide
(STMDC) or hexagonal boron nitride (h-BN) as the semicon-
ductor insulator, have appeared as some of the most promising
configurations from the point of view of applications. The
possibility of controlling electrostatically the effective barrier
height presented by the insulator semiconductor to the vertical
flow of electrons between the two graphene layers with a gate
voltage has enabled the operation of these devices as transis-
tors [6–8], with ON/OFF ratios as high as 106; this magnitude of
the ON/OFF ratio is obtained in graphene/WS2/graphene de-
vices [8]. It was also shown that graphene/STMDC/graphene
devices can operate as photodetectors with high quantum
efficiencies and fast response times [9–11]. Due to the extreme
high quality and atomically sharp interfaces [12] between
different layers in vdW structures, the lattice mismatch
and the relative alignment between consecutive layers play
a fundamental role in determining the electronic coupling
between different layers of the vdW structure. Ultimately,
these crystallographic properties determine electronic and
optical properties of the devices.

Lattice misalignment between different layers has been
known to lead to the formation of Moiré patterns in rotated
graphite layers [13]. The effect of lattice misalignment and
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lattice mismatch has been extensively studied in the context of
twisted graphene bilayers and in graphene on h-BN structures.
It was shown both theoretically and experimentally that the
misalignment in graphene bilayers leads to a renormalization
of graphene’s Fermi velocity [14,15]. It was also found out
that the mismatch and the misalignment control the formation
of mini Dirac cones in the band structure of graphene/h-BN
structures [16–21].

The dependence of the vertical current in vdW structures
on the rotation between different layers was first studied in
Ref. [22] in the context of twisted bilayer graphene. In this
reference was found that the current is extremely sensitive
to the twisting angle. Although this dependence was not
at first completely appreciated, it was soon understood and
experimentally verified [23,24] that the misalignment between
the graphene layers in graphene/h-BN/graphene structures
can lead to the occurrence of negative differential conductance
(NDC) regions, with the I -V curve displaying peaks whose
dependence on the bias voltage depends on the rotation
angle between the graphene layers. Systems displaying NDC
have application in the design of high-frequency devices.
Graphene/h-BN/graphene devices displaying NDC have been
proposed as frequency multipliers [25]. This kind of system
can also be used to implement radio-frequency oscillators
and other devices operating in the MHz region; indeed these
have already been achieved [23]. Theoretical analysis on the
dependence of the oscillator frequency on the parameters of the
graphene/h-BN/graphene device and of the external circuit
indicate that oscillation frequencies up to hundreds of GHz
could be achieved [26]. More recently, the effect of misalign-
ment on the vertical current in devices formed by two graphene
bilayers [27–29] and by one graphene monolayer and a
graphene bilayer separated by h-BN has also been studied [30].

Scattering by phonons can lead to incoherent phonon
assisted tunneling between the graphene layers. This effect
has been first theoretically studied for vdW structures in
twisted graphene bilayers [31]. More recently, effects of
phonon assisted scattering on vertical transport have been
experimentally detected in graphene/h-BN/graphite [32] and
graphene/h-BN/graphene structures [33], and it has been
proposed as a possible way to probe the phonon spectrum
of vdW structures.
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In this paper, we describe the vertical current in graphene/h-
BN/graphene devices with misaligned layers, and for small
twist angles, properly taking into account momentum con-
servation rules. Our approach to the transport problem em-
ploys the nonequilibrium Green’s function formalism and
describes the graphene/h-BN/graphene system with a tight-
binding-based continuous Hamiltonian. To lowest order in
the graphene/h-BN coupling and neglecting the momentum
and frequency dependence of the h-BN Green’s function,
the present formulation reduces to the theories used in
Refs. [23,24]. By taking into account processes involving
transference of momentum by the h-BN crystal lattice to the
tunneling electrons, we find that the vertical current depends
sensitively on the relative alignment between the graphene lay-
ers and the h-BN slab. By carefully controlling this alignment,
it is possible to obtain several peaks in the I -V curve of the
device, followed by regions of NDC, a possibility that has not
been considered previously. Differently from what is discussed
in Ref. [24], the multipeak structure occurs at zero magnetic
field. Application of an in-plane magnetic field further splits
each peak into three. We also find out that the structure
of graphene wave functions manifests itself in the vertical
current, suppressing some of the current peaks that would
be expected with considerations based only on electronic
dispersion relations. We study the effect of resonant disorder in
the graphene layers in the vertical current, treated within the
self-consistent Born approximation (SCBA). This approach
correctly describes the proportionality of the transport lifetime
with the energy [34]. We finally study how phonons and
disorder give origin to noncoherent current between the two
graphene layers, deriving an expression for this quantity.

The paper is organized as follows. In Sec. II, we describe
the theoretical framework we employed in this work: in
Sec. II A, we present the Hamiltonian used to model the
graphene/h-BN/graphene device, and in Sec. II B we present
the fundamental equations used to treat transport within the
nonequilibrium Green’s functions formalism. In Sec. III, we
discuss the coherent tunneling flowing through a pristine de-
vice taking into account the lattice mismatch and misalignment
between graphene layers and the h-BN slab. The consequences
of treating graphene as part of the device or as external contacts
are discussed and the role of the momentum transferred to
the tunneling electrons by the h-BN lattice is analyzed in
detail. The effect of an in-plane magnetic field in the current is
also discussed. In Sec. IV, the effects of disorder and phonon
scattering into the vertical current are studied and a expression
for the phonon/disorder assisted current to lowest order in
perturbation theory is derived. Finally, in Sec. V we conclude.
This paper has some rather technical parts, namely, Secs. III A
and IV A. The reader more interested in the results and in a
physical discussion of them is invited to skip these subsections
and go directly to Secs. III B and IV B. Longer derivations are
included as Appendixes.

II. FORMALISM

We want to study the vertical current flowing through
a device formed by two graphene layers (bottom, bg, and
top, tg) separated by a few layers N of h-BN. The distance
between the two graphene layers is given by d. We assume

(a) (b)
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Vgate

FIG. 1. (a) Schematic of a typical graphene/h-BN/graphene
vdW structure with four boron-nitride layers, with applied gate Vgate

and bias Vbias voltages. (b) Representation of crystalline structure
shared by a graphene/boron-nitride monolayer, showing the lattice
basis {a1, a2}, the nearest-neighbor vectors τ i , i = 1,2,3, and the
sublattice A/B sites. (c) Representation of the first Brillouin zone of
the rotated bottom and top graphene layers, showing the K points of
both layers and the reciprocal lattice basis vectors {b1,bg,tg, b2,bg/tg}.

that the top graphene layer and the h-BN slab are rotated
with respect to the bottom graphene layer by an angle of θtg

and θh-BN, respectively. We assume that layers forming the
h-BN slab are perfectly aligned with an AA′ stacking [35,36]
(consecutive honeycomb lattices are perfectly aligned, with
each boron/nitrogen atom of one layer directly on top of the
nitrogen/atom of the next layer). A bias voltage Vbias can be
applied between the top and bottom graphene layers inducing
a current between the two. The doping of the graphene layers
can be controlled by application of a gate voltage to the bottom
graphene. A schematic of a typical device structure is shown
in Fig. 1.

A. Model Hamiltonian

We model the graphene/h-BN/graphene system with the
following Hamiltonian:

H =Hbg + Htg+Hh-BN + (Th-BN,bg + Th-BN,tg + H.c.), (1)

where Hbg/tg is the Hamiltonian describing the isolated bot-
tom/top graphene layer and Th-BN,bg/tg = T

†
bg/tg,h-BN describes

the hopping of electrons from the bottom/top graphene layer
to the h-BN slab. The current between the two graphene
layers will be dominated by low-energy states. Focusing on
the states close to the K bg and K ′

bg = −K bg points of the
bottom graphene layer, we write the Hamiltonian of the bottom
graphene layer in sublattice basis and in term of Bloch states
as a massless Dirac Hamiltonian

Hbg =
∑
k,τ

c†kτ ,bg

·
[

Vbg τvF �|k|e−τ iθk,bg

τvF �|k|e−τ iθk,bg Vbg

]
· ckτ ,bg, (2)
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where vF is graphene’s Fermi velocity, Vbg is an onsite po-
tential induced by the applied bias and gate voltages, c†kτ ,bg =
[c†kτ ,A,bg c

†
kτ ,B,bg] is the electron creation operator for states

localized in the A/B sublattice, in the τ K bg valley (τ = ±1),
with momentum τ K bg + k (measured from the Brillouin zone
center), and θk,bg is the angle formed between k and K bg. We
choose the zero of energy to lie at the Fermi level of the bottom
graphene layer, in which case we have Vbg = −εF,bg, where
εF,bg is the Fermi energy of the bottom graphene layer measured
from its Dirac point. The Hamiltonian in Eq. (2) is diagonalized
by the eigenstates |k,τ,λ〉bg = [1, λτe−iτθk,bg ]

†
/
√

2 with the
corresponding dispersion relation given by εk,λ = λvF �|k|,
and with λ = ±1 for electrons in the conduction/valence band.
Using the same reference frame in momentum space as in
Eq. (2), the Hamiltonian describing the top graphene layer in
the Dirac cone approximation reads as

Htg =
∑
k,τ

c†kτ ,tg

·
[

Vtg τvF �|k′|e−iτθk′ ,tg

τvF �|k′|eiτθk′ ,tg Vtg

]
· ckτ ,tg, (3)

where k′ = k + τ�K b,t is measured from the τ K tg point
of the top graphene layer, with K tg = R(θtg) · K bg [R(θ )
a rotation matrix], �K b,t = K bg − K tg is the displacement
between the Dirac points of the two rotated graphene layers,
and k is measured with respect to the τ K bg Dirac point of the
bottom graphene graphene layer. θk′,tg is the angle between
k′ and K tg and Vtg is an onsite potential, due to the applied
bias and gate voltages, and is given by Vtg = −εF,tg − eVbias,
with εF,tg the Fermi level of the top graphene layer measured
from its Dirac point and e > 0 the elementary electronic
charge. The remaining symbols in Eq. (3) are similarly defined
to the ones in Eq. (2). Hamiltonians (2) and (3) do not
take into account the effect of the Moiré potential due to lattice
mismatch and misorientation between the graphene and the
h-BN layers [16–20,37,38]. We will later discuss the possible
effect of Moiré physics to our results (see Sec. III B). Due to
the large band gap of boron nitride, we ignore its momentum
dependence, writing the h-BN slab Hamiltonian as

Hh-BN

=
N∑

�=1

∑
k,τ

c†kτ ,�,h-BN ·
[
EB + V� 0

0 EN + V�

]
· ckτ ,�,h-BN

+
N−1∑
�=1

∑
k,τ

c†kτ ,�+1,h-BN ·
[

0 −t⊥
−t⊥ 0

]

·ckτ ,�,h-BN + H.c, (4)

where c†kτ ,�,h-BN = [c†kτ ,B�,h-BN c
†
kτ ,N�,h-BN] creates an elec-

tron in layer � = 1, . . . ,N of the h-BN slab, in the boron
(B)/nitrogen (N) site, τ specifies the valley, EB and EN are,
respectively, the onsite energies of boron and nitride sites
measured from the Dirac point of graphene, and t⊥ is the
nearest-neighbor interlayer hopping and V� is a potential
induced by the applied voltages. Due to the large energy offset
between graphene and h-BN sites, the charge accumulated

in the h-BN layers will be negligible. In this case, a simple
electrostatic calculation (see Appendix A) gives us V� =
−εF,bg − (εF,tg + eVbias)�/(N + 1). For two rotated crystal
layers, Bloch states from different layers can only be coupled
provided momentum is conserved modulo any combination of
reciprocal lattice vectors of both layers [22,39], in a so-called
generalized umklapp process. Focusing on the low-energy
states and considering only the three most relevant processes,
the coupling between the graphene layers and the h-BN slab
is described by (see Appendix B)

Th-BN,X =
∑
k,τ

2∑
n=0

c†
kτ +τ gX,h-BN

n ,�X,h-BN
· Rn

2π
3

· T̂ · Rn

− 2π
3

· ckτ ,X,

(5)
where ckτ ,X is an annihilation operator of an electron in the X =
bg/tg graphene layer with momentum kτ measured from the
τ K X point, c†kτ +τ gX

n ,�X,h-BN is a creation operator of an electron
state in the �X = 1/N layer of the h-BN slab, with momentum
kτ + τ gX

n measured from τ K X, and with the matrices T̂ and
Rθ defined as

Rθ =
[

1 0

0 eiθ

]
, (6)

T̂ =
[
tB,C tB,C

tN,C tN,C

]
, (7)

where tB,C (tN,C) is the hopping parameter between a carbon
site and boron (nitrogen) site and the vectors gX,h-BN

n are given
by (see Appendix B)

gX,h-BN
0 = 0, (8)

gX,h-BN
1 = b2,X − b2,h-BN, (9)

gX,h-BN
2 = −b1,X + b1,h-BN, (10)

where bi,X and bi,h-BN (i = 1,2) are, respectively, the recipro-
cal lattice vectors of the bottom/top graphene layer and of the
h-BN slab (see Fig. 1). Notice that if the boron-nitride slab is
formed by an even number of layers, one must replace Rn

2π
3

→
σx · Rn

2π
3

· σx for Th-BN,tg since boron and nitrogen atoms switch

positions in consecutive layers of h-BN. Different reciprocal
lattice vectors are related to each other by bi,tg = R(θtg) · bi,bg

and bi,h-BN = (ag/ah-BN)R(θh-BN) · bi,bg, where ag/ah-BN is a
scaling factor, with ag (ah-BN) the lattice parameter of graphene
(h-BN). Hamiltonians of the form of Eq. (5) have previously
been used to study twisted graphene bilayers [14,40–42] and
graphene on h-BN structures [37,38,43]. Considering the three
processes coupling the bottom graphene with h-BN and the
three processes connecting h-BN to the top graphene layer,
described by Eq. (5), there are nine h-BN mediated processes
coupling the bottom graphene layer to the top one [24]. These
nine processes couple a state from the bottom graphene layer
with momentum k (measured from τ K bg) to states of the top
graphene layer with momentum k + τQn,m (measured from
τ K tg) with (see Appendix B)

Qn,m = �K b,t + gbg,h-BN
n − gtg,h-BN

m , n,m = 0,1,2. (11)
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The processes with n �= m involve transfer of momentum by
the h-BN lattice, while processes with n = m do not. At zero
magnetic field, the overall threefold rotational invariance of
the graphene/h-BN/graphene structure implies that these nine
processes can be organized in three groups of three, with
processes in the same group being related by 2π/3 rotation and
therefore giving the same contribution to the vertical current.
The three groups are

{Q0,0,Q1,1,Q2,2},
{Q0,1,Q1,2,Q2,0}, (12)

{Q0,2,Q1,0,Q2,1},
with length of the vectors in each group being the same. For
small rotation angles and lattice mismatch, δ = ah-BN/ag − 1,
we have1

|Q0,0|2
K2

g

� θ2
tg, (13)

|Q0,1|2
K2

g

� θ2
tg + 3

(
θ2
h-BN + δ2 − θtgθh-BN

)+
√

3δθtg, (14)

|Q0,2|2
K2

g

� θ2
tg + 3

(
θ2
h-BN + δ2 − θtgθh-BN

)−
√

3δθtg, (15)

with Kg = 4π/(3ag) the length of K bg/tg. For numerical
purposes we use ag � 2.46 Å, ah-BN � 2.50 Å, such that
δ � 1.8%, vF � 106 ms−1, t⊥ � 0.32 eV [36], EB � 3.33 eV,
EN � −1.49 eV, tB,C � 0.432 eV, and tN,C � 0.29 eV [38].

B. Current evaluation

The standard approach to transport in a mesoscopic device
assumes that the device is attached to external contacts that
are in a thermal equilibrium state with well-defined chemical
potentials. This is only an approximation as once a current
starts flowing through the system, the contacts will also be in
a nonequilibrium state [44,45]. The problem of computing the
current flowing through a mesoscopic device is then analogous
to the problem of computing the water flux through a thin
pipe that is connecting two large vessels with different water
levels [46]. Once water starts flowing through the pipe, the
water levels in each vessel are no longer constant, however,
on short time scales, assuming that the water levels in the
vessels are constant is a reasonable approximation, provided
that these are wide enough with respect to the pipe. In the
same way, within short time scales compared to the depletion
time of an external battery, it is a reasonable approximation to
assume that the external contacts have well-defined, constant
chemical potentials.

Using the nonequilibrium Green’s function technique, one
can find an expression for the current of a mesoscopic device

1In Ref. [24], the processes corresponding to Q0,1 and Q0,2 were
identified as being equivalent, with |Q0,1| = |Q0,2|. This was likely
caused by first expanding Qn,m to linear order in θtg, θh-BN, and δ,
and only then evaluating |Qn,m|, losing in the process terms involving
the product δθtg in |Qn,m|2, which lifts the equivalence between the
processes associated with Q0,1 and Q0,2.

connected to two noninteracting2 contacts, bottom and top,
in a thermal equilibrium state described, respectively, by the
Fermi-Dirac distribution functions fb(ω) = [eβ(ω−μb) + 1]

−1

and ft(ω) = [eβ(ω−μt) + 1]
−1

with μb (t) the chemical potential
of the bottom (top) contact. In these conditions, the current
flowing from the bottom to the top contact is given by [47]
(using a compact notation where capital boldface symbols
represent matrix elements evaluated in some one-particle
electron basis and omitting the frequency argument of the
different quantities)

Ib→t = e

�

∫
dω

2π
fb(ω)Tr[�b · A] + e

�

∫
dω

2π
iTr[�b · G<],

(16)

with the spectral function of the central mesoscopic device
given by

A = i(GR − GA) = i(G> − G<), (17)

where GR/A/</> is the retarded/advanced/lesser/greater
Green’s function of the central device (which takes into
account coupling to the external contacts) and �b (t) is a level
width function due to the bottom (top) contact. The level
width function is the density of states of the contacts weighted
by the their coupling to the central device: �b (t) = 2πτ b (t) ·
δ(ω − Hb (t)) · τ

†
b (t), with Hb (t) the Hamiltonian describing the

bottom (top) contact and τ b (t) describing the coupling between
the central device and the contact. The second equality in
Eq. (17) is true by the very definition of the different Green’s
functions. A property that will later be useful is [48]

A = GR · � · GA = GA · � · GR, (18)

where the decay rate matrix is defined as � =
−i([GR]

−1 − [GA]
−1

). This result can be obtained by writing

GR − GA = GR · ([GA]−1 − [GR]−1) · GA

= GA · ([GA]−1 − [GR]−1) · GR. (19)

Using the Dyson equation for the retarded/advanced Green’s
function [GR/A]

−1 = [G0,R/A]
−1 − �R/A, with G0 indicating

the bare Green’s function (in the absence of interactions and
coupling to external contacts), and noting that [G0,R]

−1
and

[G0,A]
−1

only differ by an infinitesimal constant that is taken
to zero, the decay rate matrix can be written as

� = i[�R − �A] = i[�> − �<], (20)

where the last identity is inherited from the second equality
in Eq. (17). The lesser/greater Green’s functions obey the
Keldysh equation [47]

G≶ = GR · �≶ · GA, (21)

2In mesoscopic transport, the problem of computing the current that
is flowing through the device is reduced to a problem only involving
degrees of freedom in the mesoscopic region by integrating out the
external contacts. This is only done exactly provided the contacts are
noninteracting.
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where the lesser/greater self-energy can be split into contribu-
tions from the contacts and interactions as

�< = ifb�b + ift�t + �<
int, (22)

�> = −i(1 − fb)�b − i(1 − ft)�t + �>
int, (23)

with �
≶
int the contribution from interactions. In the same

manner, the decay rate (20) can be split into a contribution
from external contacts and interactions

� = �b + �t + �int. (24)

Using Eqs. (18) and (21)–(24) in Eq. (16), the total current
can then be written as a sum of coherent and incoherent
contributions

Ib→t = I coh
b→t + I incoh

b→t , (25)

with the coherent contribution being given by the Landauer
formula

I coh
b→t = e

�

∫
dω

2π
(fb − ft)T , (26)

with the transmission function T given by

T = Tr[�b · GR · �t · GA] (27)

and the incoherent contribution, which describes sequential
tunneling processes and plays the same role as vertex correc-
tions in the Kubo formalism for linear response, being given
by

I incoh
b→t = e

�

∫
dω

2π
ifbTr[�b · GA · �>

int · GR]

+ e

�

∫
dω

2π
i(1 − fb)Tr[�b · GR · �<

int · GA]. (28)

In the following sections, we will use this general formalism
together with the model Hamiltonian from Sec. II A to evaluate
the vertical current in graphene/h-BN/graphene structures.

III. CURRENT IN THE NONINTERACTING,
PRISTINE LIMIT

A. General discussion

When applying the nonequilibrium Green’s function for-
malism to a graphene/h-BN/graphene device with metal
contacts, one is faced with the issue of how to make the
separation between central mesoscopic region, and the external
contacts which are in thermal equilibrium. Two natural
approaches exist: (A) describing the graphene layers as part of
the external contacts, and (B) describing the graphene layers
as part of the central mesoscopic device. In all theoretical
works to date, the graphene layers were assumed to be part
of the external contacts [23,24,29,49,50], therefore being in
equilibrium. However, due to the low density of states of
graphene, it seems more natural to consider graphene as part
of the mesoscopic device. We will start from approach (B) and
see that under certain approximations, it reduces to approach
(A). We will first consider the noninteracting, pristine case.
In approach (B), GR/A(ω) in Eq. (27) is the Green’s function
of the graphene/h-BN/graphene device. We are interested in

the matrix elements of GR/A that connect the bottom and
the top contacts. Due to the block-diagonal structure of the
Hamiltonian (1) (there is no direct coupling between the two
graphene layers), these can generally be written as

[GR]b,t = G0,R
bg · T bg,tg · G0,R

tg , (29)

[GA]t,b = G0,A
tg · T tg,bg · G0,A

bg , (30)

where G0,R/A

bg/tg are the Green’s function of the bottom/top
graphene layer in the absence of graphene/h-BN coupling (but
taking into account the coupling to the external contacts) where
we have defined the h-BN mediated tunneling amplitudes

T bg,tg = T bg,h-BN · GR
h-BN · Th-BN,tg, (31)

T tg,bg = T tg,h-BN · GA
h-BN · Th-BN,bg, (32)

with GR/A

h-BN the Green’s function of the h-BN slab, which in
general takes into account its coupling to the graphene layers.
Therefore, the transmission function (27) can be written as

T = Tr
[
G0,A

bg · �b · G0,R
bg T bg,tg · G0,R

tg · �t · G0,A
tg · T tg,bg

]
.

(33)

If we now use Eq. (18), we can write the spectral function of
the bottom graphene layer taking into account the coupling to
the bottom metallic contact A0

bg = i(G0,R
bg − G0,A

bg ), as A0
bg =

G0,R
bg · �b · G0,A

bg = G0,A
bg · �b · G0,R

bg and similarly for the top
graphene layer. As such, the transmission function can be
written as

T = Tr
[
T bg,tg · A0

tg · T tg,bg · A0
bg

]
. (34)

Equation (34) is the result that would be directly obtained, if we
followed approach (A) instead, in which case the level width
functions are given by �b = Th-BN,bg · A0

bg · Th-BN,bg and �t =
Th-BN,tg · A0

tg · Th-BN,tg. As such, we have proved that in the
noninteracting case both approaches (A) and (B) coincide. We
will leave the discussion for tunneling in the presence disorder
and electron-phonon interactions to the next section.

In order to make analytical progress, we will employ the
wide-band limit for the metallic contacts, neglecting any
frequency dependence of �b/t, and assume that the contacts
couple equally to all graphene states, not spoiling translation
invariance. We expect that this last approximation works
well for cases where the metallic contacts are deposited on
a small region of the graphene sample, which is the case
in the experimental devices. Within these approximations,
the only effect of the metallic contacts is to introduce a
broadening factor of γbg/tg = �b/t/2 in the Green’s function
of the bottom/top graphene layer. We will now write T for
a graphene/h-BN/graphene device more explicitly. Using the
graphene/h-BN coupling Hamiltonian (5), the transmission
function can be written using the Bloch momentum basis as
(writing explicitly the frequency argument)

T (ω) =
∑
k,λ,λ′
n,m,τ

|tg〈k + τQn,m,τ,λ′|T tg,bg(ω)|k,τ,λ〉bg|2

× A0
tg,k+τQn,m,τ,λ′(ωtg)A0

bg,k,τ,λ(ωbg) (35)
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with the sum on n,m going from 0 to 2 and where ωbg =
ω + εF,bg and ωtg = ω + εF,tg + eVbias are measured from the
position of the Dirac point in the bottom and top graphene
layers, respectively. The effective tunneling probability can be
written as

|tg〈k + Qn,m,τ,λ′|T tg,bg(ω)|k,τ,λ〉bg|2

= ϒ
bg,n

k,τ,λϒ
tg,m

k+τQn,m,τ,λ|Tn,m(ω)|2, (36)

where ϒ
bg/tg,n

k,τ,λ = 1 + τλk̂ · K̂ bg/tg,n, with K bg/tg,n =
R(n2π/3) · K bg/tg, are the graphene wave-function overlap
factors and

Tn,m(ω) = 1
2 tr
{

T̂
† · Rm

−p 2π
3

· [GA
h-BN(ω)

]
N ,1 · Rn

2π
3

· T̂
}
,

(37)

with the trace being performed over the sublattice degrees of
freedom. Neglecting the frequency dependence of GR/A

h-BN and
to lowest order in t⊥ we can write

|Tn,m|2 �
(

t2
⊥

EBEN

)N−1

×
⎧⎨
⎩

4
t2
B,Ct2

N,C

EBEN
cos2

[
π
3 (n − m]

)
, N is even

t4
B,C

E2
B

+ t4
N,C

E2
N

+ 2
t2
B,Ct2

N,C

EBEN
cos
[

2π
3 (n − m)

]
, N is odd.

(38)

Notice that in Eq. (35) both valleys give the same contribution,
which can be seen by making a simultaneous change τ → −τ

and k → −k. The transmission function can then be written
as

T (ω) = Agsgv

3∑
n,m=0

|Tn,m|2TDoSn,m(ωbg,ωtg), (39)

where A is the area of the device, gs = gv = 2 are the spin
and valley degeneracies, and we have defined the tunneling
density of states as

TDoSn,m(ωbg,ωtg) =
∑

λ,λ′=±1

∫
d2k

(2π )2 ϒ
bg,n

k,λ ϒ
tg,m

k+Qn,m,λ′

× A0
bg,k,λ(ωbg)A0

tg,k+Qn,m,λ′(ωtg), (40)

which only depends on the graphene’s dispersion relation and
wave functions (for simplicity we have dropped the valley
indice τ ). In the limit of infinite lifetime for graphene electrons,
the spectral functions reduce to δ functions and it is possible
to provide an analytical expression for TDoSn,m(ωbg,ωtg). In
the presence of a finite, momentum-independent, lifetime, it
is still possible to find an approximate analytical expression
to Eq. (40). These analytical expressions lead to a significant
speedup in the evaluation of the current and are presented
in Appendix C. The presence of the spectral functions for
the bottom and top graphene layers leads to conservation of
energy and momentum in the tunneling process between the
two graphene layers.

B. Results

The tunneling in a graphene/h-BN/graphene structure
is controlled both by energy-momentum conservation and
by Pauli’s exclusion principle. The constraints imposed by
energy-momentum conservation can be understood consider-
ing that the Dirac cones of the bottom and top graphene layers
are shifted in energy by a value of εF,tg + eVbias − εF,bg and in
momentum by a value of |Qn,m| (see Fig. 2). The intersection
of the shifted cones allows one to visualize the states which
respect energy-momentum conservation [24]. Whenever the
bias voltage is tuned such that

εF,tg + eVbias − εF,bg = vF �|Qn,m|, (41)

there is a complete overlap of the Dirac cones and a maximum
in the current occurs. The information regarding energy-
momentum conservation for an electron tunneling between
the two graphene layers is encoded in the tunneling density of

(a) (b)

(c) (d)

FIG. 2. Band diagram representing the constraints imposed by
energy-momentum conservation and Pauli’s exclusion principle in the
vertical current of a graphene/h-BN/graphene device. The two cones
represent the dispersion relation for electrons of the bottom and top
graphene layers. The shadowed blue regions represent the occupation
of electronic states in both graphene layers. Energy-momentum
conservation is only satisfied when the two shifted Dirac cones
intersect and the energy windows where this occurs are represented
by the dashed arrows. The following cases are represented: (a) Only
intrabands are possible, εn,m < 1; these are, however, Pauli blocked or
there are no states available, therefore in the low-temperature limit,
no vertical current flows. (b) Threshold bias voltage above which
intraband processes which satisfy energy-momentum conservation
appear in the energy window where tunneling is allowed by the
electronic occupation factors. (c) The condition which corresponds
to the occurrence of a peak in the current, when εn,m = 1, when
both intraband and interband (conduction-to-valence and valence-
to-conduction) processes are allowed. (d) If one further increases the
bias voltage, only interband tunneling εn,m > 1 becomes possible and
the current diminishes.
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FIG. 3. Plot of the quantity TDoSm,n(ω + εm,nvF �|Qn,m|/2,ω −
εn,mvF �|Qn,m|/2) for different values of εm,n as a function of the
energy at zero magnetic field and for rotation angles of θTG = 1◦ and
θh-BN = 1.5◦. The solid red line shows the tunneling density of states
if the wave-function overlap factors ϒ

B/T,n

k,λ in Eq. (40) are set to one.
A constant broadening factor of γ = 2.5 × vF �|Qn,m| × 10−3 was
used in all plots.

states TDoSn,m. In Fig. 3, we plot the quantity TDoSn,m(ω −
εn,mvF �|Qn,m|/2,ω + εn,mvF �|Qn,m|/2), for different val-
ues of εn,m = (εF,tg + eVbias − εF,bg)/(vF �|Qn,m|). For ε2

n,m <

1, the tunneling is due to intraband processes (from the
conduction/valence band of the bottom graphene into the
conduction/valence band of the top graphene), going to zero
in the pristine limit for ω2 < (vF �)2|Qn,m|2/4. For ε2

n,m >

1, the tunneling is due to interband processes (from the
conduction/valence band of the bottom graphene layer to the
valence/conduction band of the top graphene layer), being zero
in the pristine limit for ω2 > (vF �)2|Qn,m|2/4. For ε2

n,m =
1, TDoSn,m(ω − εn,mvF �|Qn,m|/2,ω + εn,mvF �|Qn,m|/2) di-
verges in the pristine limit for any value of ω. This divergence
in TDoSn,m leads to a divergence in the vertical current [23,24],
which is made finite with the introduction of a finite electronic
lifetime. Since for different processes (n,m) with different
|Qn,m| there is a different effective separation in momentum
between the Dirac cones of the bottom and top graphene
layers, one expects the occurrence of multiple peaks in the I -V
curve, followed by subsequent regions of negative differential
conductance. This is indeed the case as shown in Fig. 4.
Based only on energy-momentum conservation, one would
expect the occurrence of three peaks in the I -V curve for
positive bias voltage and another three for negative bias
(notice that according to the discussion of Sec. II A from
the nine processes coupling the two graphene layers, only
three are independent). This is indeed the case as shown
in Fig. 4. However, the computed curve only displays two
peaks, with those corresponding to the situations when and

�20
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.u
�
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Total
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T � 300 K

FIG. 4. I -V curves for vertical current in a graphene/h-
BN/graphene device with four layers of h-BN for rotation angles of
θtg = 1◦ and θh-BN = 1.5◦ at gate voltage Vgate = 0 for two different
temperatures. The solid red line indicates the current due to all the
nine processes coupling both graphene layers, for graphene electrons,
while the dashed black lines represents the total current for scalar
electrons (by setting the wave-function factors ϒ

bg/tg,n

k,λ to 1). The
remaining lines represent the contributions to the current arising from
processes involving different Qn,m [taking into account the relations
imposed by threefold rotational invariance, Eq. (12)]. The dashed
vertical lines labeled by (n,m)± mark the bias voltages when the
condition εF,tg + eVbias − εF,bg = ±vF �|Qn,m| is satisfied. Notice that
while for scalar electrons all the expected peaks in the current are
present, for Dirac electrons some of them are absent. Is is due to the
suppression by the ϒ

bg/tg,n

k,λ factors. A constant broadening factor of
γ = 2.5 meV was used.

ε0,2 = −1 being absent. The reason for the suppression of these
peaks is due to the spinorial structure of graphene electronic
wave functions, via the overlap factors ϒ

bg/tg,n

k,λ , that appear
in Eq. (40). These overlap factors can severely suppress the
value of TDoSn,m close to εn,m = ±1 and consequently of the
height of the peaks in the I -V curve. This is shown in Fig. 3,
where a considerable suppression of TDoSn,m for ε0,1 = 1
and ε0,2 = −1 is seen. The effect of the overlap factors can
also be seen in Fig. 4, where it is also shown the current
that would be obtained, if the electronic wave function of
graphene where scalars, i.e., by setting ϒ

bg/tg,n

k,λ = 1 in (40) [see
Eq. (C20) in Appendix C], displaying the three peaks expected
by kinematic considerations. While the occurrence of NDC
in graphene/h-BN/graphene has already been experimentally
observed [23], the occurrence of multiple NDC regions has
not. This might be due to the fact that the position of the
current peaks depends very sensitively in the rotation angles
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FIG. 5. I -V curves at constant Vgate = 0 in a graphene/h-
BN/graphene device with four layers of h-BN, at Vgate = 0 and
T = 300 K, for different rotation angles between the top and bottom
graphene layers, and the h-BN slab and the bottom graphene layer.
The black dashed line marks the bias voltage when ε0,0 = ±1 (a
condition that is independent of θh-BN). The remaining vertical lines
mark the bias voltages when εn,m = ±1 for n �= m for different values
θh-BN (the color and type of line match the ones used in the plots).

θtg and θh-BN. This is exemplified in Fig. 5, where the computed
I -V curves for several rotation angles are shown. As shown,
for a fixed angle of θtg = 1◦, changing θh-BN from 1.5◦ to 3◦
moves the additional peaks in the current due to the transfer
of momentum by the h-BN crystal lattice from a bias voltage
of ∼1 V to bias voltages >1.5 V. Tunneling processes which
satisfy energy-momentum conservation can only contribute to
the current if these lie in an energy window between the zero
of energy and the bias voltage, as presented in Fig. 2. The
condition for which processes allowed by energy-momentum
conservation become allowed by the occupation factors occurs
in the limit of zero temperature when [see Fig. 2(b)]

εF,tg ± eVbias + εF,bg = ± 1
2vF �|Qn,m|. (42)

FIG. 6. Density plot of current I and its second derivative with
respect to the applied bias voltage d2I/dV 2

bias, as a function of the
applied bias and gate voltages at T = 10 K. In the current plot, it
is also shown the lines defined by the following conditions: εF,bg =
0 and εF,tg = 0, represented by the solid lines in red and purple;
εF,tg + eVbias − εF,bg = ±vF �| Q0,m| [Eq. (41)] for m = 0, 1, and 2,
represented by the solid lines in blue, green, and yellow, respectively;
εF,tg ± eVbias + εF,bg = ± 1

2 vF �| Q0,m| for m = 0, 1, and 2 [Eq. (42)]
represented by the dashed lines in blue, green, and yellow. Notice
now the guide lines shown in the current plot match perfectly the
sharp features shown in the d2I/dV 2

bias plot. Also, the peaks expected
to occur through channels (0,1)+ and (0,2)− are absent. A constant
broadening factor of γ = 2.5 meV was assumed for both layers.

This explains the occurrence of the plateau with nearly zero
current seen at low temperature in Fig. 4, and gives origin to
the features in the d2I/dV 2

bias as a function of applied bias and
gate voltages as seen in the density plot of Fig. 6. At higher
temperatures, all these sharp features tend to vanish, as the
Fermi-Dirac occupation factors become a smooth function of
the energy.

By applying an in-plane magnetic field, the threefold ro-
tational invariance of the graphene/h-BN/graphene structure
is broken and, therefore, the processes corresponding to the
different groups in (12) will contribute differently to the
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FIG. 7. I -V curves for a graphene/h-BN/graphene device with
four layers of h-BN, with rotation angles of θtg = 1◦ and θhBN =
1.5◦ at constant Vgate = 0 and T = 300 K, for different values and
orientation of the in-plane magnetic field and electronic broadening
factor. The vertical lines, labeled by (n,m)±, mark the bias voltages
for which εn,m = ±1. Notice how the applied magnetic field leads
to a splitting of the peaks that occur at zero magnetic field. As the
broadening factor is increased, the peaks become less resolved.

current, and one expects that each peak in the I -V curve
will split into three. An in-plane magnetic field of the form
B = B(cos φB, sin φB,0) can be described by the vector po-
tential A = Bz(sin φB,− cos φB). Neglecting the momentum
dependence of Hh-BN the effect of the in-plane magnetic field
reduces to an additional transference of momentum to the
tunneling electrons, which is encoded in a shift in the Qn,m

vectors [23,24,51–53]

Qn,m → Qn,m + eBd

�
(sin φB,− cos φB). (43)

The splitting of the peaks in the I -V curve is shown in Fig. 7,
where it is also presented the effect of an increasing electronic
broadening factor.

FIG. 8. Diagram representing the possible effect of the recon-
struction of the graphene Dirac spectrum, due to the presence of
h-BN, in the vertical current of a graphene/h-BN/graphene device
when εn,m = ±1. The red bars represent the position in energy of
the regions, of width �, where graphene’s spectrum reconstruction is
significant. Provided eVbias/� � 1, the peaks in the current will still
be present.

Finally, we comment on the possible effect of the h-BN
in the electronic structure of graphene. It is known that
the potential modulation with the periodicity of the Moiré
pattern formed by graphene on top of h-BN can lead to a
reconstruction of the density of states of graphene at energies
of the order of ±vF �|gg,h-BN

1/2 |/2 measured from the original

Dirac cone, where |gg,h-BN
1/2 | � 4π

√
δ2 + θg,h-BN

2/(
√

3ag) is
the wave vector of the Moiré pattern reciprocal lattice [16–21]
and with θg,h-BN is the rotation angle between the graphene
layer and the h-BN slab. We have disregarded such effects in
our discussion. As we have seen in Fig. 5, the additional peaks
in the current enabled by the transference of momentum by
the h-BN lattice, only appear for reasonable values of the bias
voltage for small twist angles between the graphene layers and
h-BN slab. It is precisely in this case that the reconstruction
of the graphene dispersion relations becomes important at
low energy. The effect of this reconstruction should impact
not only the peaks that involve transference of momentum
by the h-BN lattice (n �= m), but also the ones that do not
(n = m). In this situation, one can question the validity of the
results from this section. However, we argue that the possible
reconstruction of the graphene dispersion relations should
not affect in a profound way the occurrence of peaks and
NDC in the I -V curves of graphene/h-BN/graphene devices.
The energy width �, where the reconstruction of the linear
dispersion relation of graphene is significant, is of the order
of the tens or few hundreds of meV [17,54], while the total
energy window of states that contribute to the current is, at low
temperatures, of the width of ∼eVbias. Provided the condition
eVbias/� � 1 is satisfied (see Fig. 8), we expect that the effect
of the dispersion relation reconstruction is negligible, and apart
from a possible reduction of the height of the peaks, should
not affect the current in any drastic way.

IV. INCOHERENT CURRENT: PHONON AND DISORDER
ASSISTED TUNNELING

A. General discussion

We will now study, in a unified way, the effect of phonons
and disorder in the current of a graphene/h-BN/graphene
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device. We consider a generic electron-phonon interaction
described by the Hamiltonian

He-ph = c† · Mζ · cφζ , (44)

where φζ = (aζ + a
†
ζ )/

√
2 is the phonon field operator, with

a
†
ζ the creation operator for a phonon mode ζ , Mζ is an

electron-phonon coupling matrix, and c† is row vector of
electronic creation operators in an arbitrary basis. For this
electron-phonon interaction, the Fock (or sunset)3 contribution
to the lesser/greater self-energy is given by (from now on we
write all frequency arguments explicitly)

�
≶
e-ph(ω) = i

∑
ζ

∫
dν

2π
Mζ · G≶(ω − ν) · M†

ζD
≶
ζ (ν), (45)

where D
≶
ζ (ν) is the lesser/greater Green’s function for the

phonon field operator, which, assuming the phonons are in
thermal equilibrium, are given by

D
≶
ζ (ν) = ∓i2πb(±ν)2ωζ sgn(ν)δ

(
ν2 − ω2

ζ

)
, (46)

where b(ν) = (eβν − 1)−1 is the Bose-Einstein distribution
function, which satisfies 1 + b(ν) = −b(−ν), and ωζ is
phonon frequency of mode ζ . Therefore, the self-energy due
to electron-phonon interaction reads as

�
≶
e-ph(ω) =

∑
ζ,s=±1

[±sb(±sωζ )]Mζ · G≶(ω − sωζ ) · M†
ζ .

(47)

We point out that this self-energy can also describe elastic scattering by impurities by dropping the summation over s, taking
ωζ → 0, and setting ±sb(±sωζ ) → 1, in which case the quantity Mζ M†

ζ is to be interpreted as the disorder correlator. With this
in mind, the following discussion applies both to inelastic scattering by phonons and elastic scattering by impurities. Combining
Eq. (47) with Eqs. (21) and (22), it is possible to write to lowest order in the electron-phonon interaction

�<
e-ph(ω) �

∑
ζ,s=±1

ifb(ω − sωζ )sb(sωζ )Mζ · GR(ω − sωζ ) · �b (ω − sωζ ) · GA(ω − sωζ ) · M†
ζ

+
∑

ζ,s=±1

ift(ω − sωζ )sb(sωζ )Mζ · GR(ω − sωζ ) · �t(ω − sωζ ) · GA(ω − sωζ ) · M†
ζ , (48)

with �>
e-ph(ω) obtained by replacing fb/t → 1 − fb/t and b(sωζ ) → b(−sωζ ). Inserting this expression in Eq. (28), we obtain the

lowest-order contribution to the noncoherent current

I
incoh,1-ph
b→t = e

�

∑
ζ,s

∫
dω

2π
fb(ω)[1−ft(ω−sωζ )][−sb(−sωζ )]T (ζ,s)

b,t (ω)− e

�

∑
ζ,s

∫
dω

2π
[1−fb(ω)]ft(ω−sωζ )sb(sωζ )T (ζ,s)

b,t (ω)

+ e

�

∑
ζ,s

∫
dω

2π
fb(ω)[1−fb(ω−sωζ )][−sb(−sωζ )]T (ζ,s)

b,b (ω)− e

�

∑
ζ,s

∫
dω

2π
[1−fb(ω)]fb(ω−sωζ )sb(sωζ )T (ζ,s)

b,b (ω),

(49)
where the one-phonon (disorder) assisted transmission function is given by

T (ζ,s)
�,�′ (ω) = Tr[��(ω) · GR(ω) · Mζ · GR(ω − sωζ ) · ��′(ω − sωζ ) · GA(ω − sωζ ) · M†

ζ · GA(ω)]. (50)

It is easy to check that

fb(ω)[1 − fb(ω − sωζ )][−sb(−sωζ )] = [1 − fb(ω)]fb(ω − sωζ )sb(sωζ ) (51)

and as such the last two terms of Eq. (49) cancel each other. This cancellation is required since in a steady state, no charge
accumulation can occur in the device and, therefore, the current flowing from the top to the bottom contact should satisfy
It→b = −It→b. As such, terms that involve only the occupation factor of one the contacts must cancel at the end of any
calculation. A similar approach to this one has been previously used to study phonon assisted tunneling in metal/insulator/metal
devices in Ref. [55]. Processes assisted by a greater number of phonons can also be obtained. Higher-order corrections to Eq. (48)
can be derived by iterating Eq. (47) using Eqs. (21) and (22). As for the lowest-order case, contributions involving only occupation
factors from one of the contacts cancel each other. Therefore, the contribution to the incoherent current assisted by n phonons
can be written as

I
incoh, n-ph
b→t = e

�

∑
ζ1,s1,...,ζn,sn

∫
dω

2π
fb(ω)

[
1 − ft

(
ω + s1ωζ1 + · · · + snωζn

)][
s1b
(
s1ωζ1

)] · · · [snb
(
snωζn

)]
T (ζ1,s1)...(ζn,sn)

b→t (ω)

− e

�

∑
ζ1,s1,...,ζn,sn

∫
dω

2π
ft(ω)

[
1 − fb

(
ω + s1ωζ1 + · · · + snωζn

)][
s1b
(
s1ωζ1

)] · · · [snb
(
snωζn

)]
T (ζ1,s1)...(ζn,sn)

t→b (ω), (52)

3We point out that the Hartree (or tadpole) self-energy is local in time and as such does not give origin to lesser/greater self-energy terms,
contributing only to the retarded/advanced self-energies.
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where we have defined the n-phonon assisted transmission functions

T (ζ1,s1)...(ζn,sn)
b→t (ω) = Tr

[
�b(ω) · GR(ω) · Mζ1 · GR

(
ω + s1ωζ1

)
. . . · Mζn

· GR
(
ω + s1ωζ1 + · · · + snωζn

)
·�t
(
ω + s1ωζ1 + · · · + snωζn

) · GA
(
ω + s1ωζ1 + · · · + snωζn

) · M†
ζn

· . . . · GA
(
ω + s1ωζ1

) · M†
ζ1

GA(ω)
]
,

(53)

T (ζ1,s1)...(ζn,sn)
t→b (ω) = Tr

[
�t(ω) · GA(ω) · M†

ζ1
· GA

(
ω + s1ωζ1

) · . . . · M†
ζn

GA
(
ω + s1ωζ1 + · · · + snωζn

)
·�b
(
ω + s1ωζ1 + · · · + snωζn

) · GR
(
ω + s1ωζ1 + · · · + snωζn

) · Mζn
· . . . · GR

(
ω + s1ωζ1

) · Mζ1 · GR(ω)
]
.

(54)

Notice that with respect to Eq. (49), we have made a
change of si → −si in the first line and made a shift in
the frequency variable ω → ω + s1ωζ1 + · · · + snωζn

in the
second line of Eq. (52). Equations (52), (53), and (54)
have a very simple interpretation. The first/second line of
Eq. (52) can be understood has the probability of an electron
being injected from the bottom/top contact being collected by
the top/bottom contact, while being scattered by n phonons
during the contact to contact trip, with si = ±1 representing
a phonon absorption/emission process. We will now use this
general formalism to study the effect of phonon scattering in
vertical transport in a graphene/h-BN/graphene device. We
will analyze separately the effect of scattering by graphene
and h-BN phonons.

1. Scattering by phonons in the graphene layers

We now return to the issue of the consequences of
considering graphene as part of the external contacts or part of
the central mesoscopic region. For simplicity, we will first
study the effect of multiple scatterings of electrons in the
graphene layers by phonons (or impurities). We will first
focus on scattering by phonons in the top graphene layer, with
scattering in the bottom layer being treated in the same way.
Using Eq. (53), the tunneling amplitude assisted by n-phonon
scattering events in the the top graphene layer can be written
to lowest order in the graphene/h-BN coupling as

T (ζ1,s1)...(ζn,sn)
b→t (ω)

� Tr
[
T tg,bg(ω) · �b(ω) · GR

bg(ω) · T bg,tg(ω) · GR
tg(ω) · Mζ1

·GR
tg

(
ω+s1ωζ1

)
. . . · Mζn

· GR
tg

(
ω+s1ωζ1 +· · ·+snωζn

)
·�t
(
ω+s1ωζ1 +· · ·+snωζn

) · GA
tg

(
ω+s1ωζ1 +· · ·+snωζn

)
· M†

ζn
· . . . · GA

tg

(
ω+s1ωζ1

) · M†
ζ1

GA
tg(ω)

]
,

(55)

and similarly for T (ζ1,s1)...(ζn,sn)
t→b (ω). These contributions cor-

respond to multiple scatterings of an electron before leaving
the top graphene layer. Summing up all the contributions of
the form of Eq. (55), together with the contribution from the

coherent current, we obtain

Ib→t =
∞∑

n=0

I
incoh, n-ph
b→t

= e

�

∞∑
n=0

∫
dω

2π
fb(ω)[1 − ft(ω)]

× Tr
[

Abg(ω) · T bg,tg(ω) · A(n)
tg (ω) · T tg,bg(ω)

]
− e

�

∞∑
n=0

∫
dω

2π
ft(ω)[1 − fb(ω)]

× Tr
[

A(n)
tg (ω) · T tg,bg(ω) · Abg(ω) · T bg,tg(ω)

]
, (56)

where we have written Abg(ω) = GA
bg(ω) · �b(ω) · GR

bg(ω)
since we are considering only scattering in the top graphene
layer. It can be checked that the different terms A(n)

tg (ω) obey
the following recursion relation:

A(0)
tg (ω) = GR(ω) · �t(ω) · GA(ω), n = 0 (57)

A(n)
tg (ω) =

∑
sn,ζn

[
1 − ft

(
ω − snωζn

)][−snb
(− snωζn

)]
1 − ft(ω)

× GR
tg(ω) · Mζn

· A(n−1)
tg

(
ω − snωζn

)
· M†

ζn
· GA

tg(ω), n > 0. (58)

This can be compared with the spectral function of the top
graphene layer. Assuming that the top graphene layer is in near
equilibrium with the top contact, then the spectral function can
be written as

Atg(ω) � GR(ω) · [�t(ω) + �e-ph,tg(ω)] · GA(ω), (59)

where, under the approximation that the top graphene is in
equilibrium with the top contact, the decay rate due to electron-
phonon interaction can be written as

�e-ph,tg(ω) �
∑
s,ζ

s[1 − ft(ω − sωζ ) + b(sωζ )]

×Mζ · Atg(ω − sωζ ) · M†
ζ . (60)
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It is easy to check that the equilibrium occupation functions
satisfy the equality

[1 − f (ω − sωζ )][−sb(−sωζ )]

1 − f (ω)

= s[1 − f (ω − sωζ ) + b(sωζ )]. (61)

Therefore, by inserting Eq. (60) into (59) and iterating the
equation, we obtain

Atg(ω) �
∞∑

n=0

A(n)
tg (ω), (62)

with the different terms A(n)
tg (ω) coinciding with Eqs. (57)

and (58), and the ∼eq means we are making the approximation
that the top graphene layer is in near equilibrium with the
top contact. Therefore, the sum of all incoherent scattering
processes occurring before the electron leaves the graphene
layer and the coherent contribution reproduces the spectral
function of graphene taking into account electron-phonon
interaction/disorder. The same is true for scattering in the
bottom graphene layer. Notice that in Eqs. (53) and (54),
retarded/advanced Green’s functions appear to the right/left of
�b. Nevertheless, by using Eq. (18), the previous calculation
can also be applied for scattering in the bottom graphene
layer. We have thus arrived at an important conclusion: the
expression

Ib→t = e

�

∫
dω

2π
[fb(ω) − ft(ω)]

×Tr[T bg,tg(ω) · Atg(ω) · T tg,bg · Abg(ω)], (63)

which would be the one obtained if we employed approach (A),
actually already includes the effect of multiple noncoherent
scattering processes in the graphene layers, provided Atg/bg(ω)
are replaced with the respective expressions in the presence
of phonon/disorder scattering. We also point out that in the
case of elastic scattering due to disorder in the graphene
layers, the result from Eq. (63) can be obtained by performing
disorder averages of Eq. (33) (see Appendix F). To lowest order
in the graphene/h-BN coupling, Eq. (63) actually includes
all the possible scattering processes of an electron in the
graphene layers. Including the effects of graphene into the
Green’s function of h-BN that appears in T bg,tg(ω), Eq. (63)
includes only a subclass of all possible contributions due
to electron-phonon interaction (see Fig. 9). Therefore, we
conclude that approaches (A) and (B) coincide to lowest order
in the graphene/h-BN coupling and to higher order in this
coupling, approach (A) can correctly capture a class of all the
possible electron phonon scatterings.

2. Scattering by phonons in the h-BN slab

We will now discuss the effects of scattering by
phonons/disorder in the h-BN slab. We will restrict ourselves,
for simplicity, to the case of tunneling assisted by one phonon.
We write the electron phonon interaction in a Bloch state basis
as

He-ph,h-BN = 1√
N

∑
k,q

c†k+q,h-BN · Mq,ζ · ck,h-BNφq,ζ , (64)

b t

tg

tg

bg

bg

hBN

hBN

... ...

�a�

b t

tg

tg

bg

bg

hBN

hBN

hBN

hBN

tg

tg

�b�

b t

tg

tg

bg

bg

hBN

hBN

hBN

hBN

tg

tg

�c�

FIG. 9. Diagrammatic representation of contributions to the
current involving phonon scattering. The dots represent the level
width functions due to the bottom and top external metallic contacts,
the squares represent the graphene/h-BN coupling, solid lines
represent graphene electronic propagators, and dashed lines represent
h-BN propagators. The wiggly lines represent phonon propagators.
(a) Ladder diagrams that are resummed in Eq. (63). To lowest order
in the graphene/h-BN coupling, these are all the contributions due
to electron-phonon interaction in the graphene layers. (b) Diagram
contributing to the current in higher order in the graphene/h-BN
coupling, including the renormalization of the top graphene layer
Green’s function by phonons. This kind of diagram can be captured
in Eq. (63), provided the effect of coupling to the graphene layers is
included into Gh-BN. (c) Higher-order diagrams in the graphene/h-BN
coupling, including electron-phonon interaction in the graphene
layers, that is not included in Eq. (63) and more generically cannot
be captured when evaluating the current following approach (A).

where

c†k,h-BN = [c†k,B,1,h-BN, c
†
k,N,1,h-BN, . . . , c

†
k,B,N ,h-BN, c

†
k,N,N ,h-BN]

(65)

and φq,ζ = (aq,ζ + a
†
−q,ζ )/

√
2 is the phonon field operator and

N is the number of unit cells in the h-BN slab. For small
rotation angles between the different layers and assuming only
scattering by phonons close to the � or K points of h-BN,
such that only states close to the Dirac points of each layer
are involved, using Eq. (52), we can write the one-phonon
assisted tunneling current to lowest order in the graphene/h-
BN coupling as

I
incoh, 1-ph
b→t = e

�N

∑
k,λ,λ′
n,m

∑
q,ζ,s

∫
dω

2π
fb(ω)[1 − ft(ω + sωζ )]

× [sb(sωζ )]
∣∣T (ζ,s)1-ph

n,m,k,q (ω)
∣∣2ϒbg,n

k,λ ϒ
tg,m

k+Qn,m−q,λ′

×Abg,k,λ(ωbg)Atg,k+Qn,m−q,λ′ (ωtg + sωζ )

− e

�N

∑
k,λ,λ′
n,m

∑
q,ζ,s

∫
dω

2π
ft(ω + sωζ )
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× [1 − fb(ω)][−sb(−sωζ )]
∣∣T (ζ,s)1-ph

n,m,k,q (ω)
∣∣2

×ϒ
bg,n

k,λ ϒ
tg,m

k+Qn,m−q,λ′Abg,k,λ(ωbg)

×Atg,k+Qn,m−q,λ′(ωtg + sωζ ),

where we have introduced the phonon assisted tunneling
amplitude between the graphene layers

T (ζ,s)1-ph
n,m,k,q (ω) = 1

2 tr
{

T̂
† · Rm

−p 2π
3

· [GA

h-BN,k+gbg
n −q

(ω + sωζ )

· M†
q,ζ · GA

h-BN,k+gbg
n

(ω)
]
N ,1 · Rn

2π
3

· T̂
}
.

Neglecting the momentum and frequency dependence of
GA

h-BN and assuming dispersionless phonons, one can make
a shift in the momentum variable q → k − k′ + Qn,m, such
that the summation over k and k′ factors and we can write

I
incoh, 1-ph
b→t = AAcellgsgv

e

�

∑
n,m

∑
ζ,s

×
∫

dω

2π
{fb(ω)[1 − ft(ω + sωζ )]sb(sωζ )

− ft(ω + sωζ )[1 − fb(ω)]s[1 + b(ωζ )]}
× ∣∣T (ζ )1-ph

n,m

∣∣2DoSbg(ωbg)DoStg(ωtg + sωζ ),

(66)

where Acell is the area of the unit cell of h-BN and graphene’s
density of states per spin and valley is given by

DoS(ω) = 1

V

∑
k,λ

Ak,λ(ω) = |ω|
(vF �)2 , (67)

where the last equality is valid for noninteracting electrons
in pristine graphene. A similar expression to Eq. (66), which
included only processes involving spontaneous emission of
phonons (equivalent to assuming that the phonons are at zero
temperature), was recently presented without derivation and
used in Ref. [33] to model vertical current in graphene/h-
BN/graphene devices. In the case of elastic scattering by
disorder with short-range correlation, Eq. (66) becomes

I
incoh, 1-dis
b→t = AAcellgsgv

e

�

∑
ζ,s

n,m

∫
dω

2π
[fb(ω) − ft(ω)]

× ∣∣T 1-dis
n,m

∣∣2DoSbg(ωbg)DoStg(ωtg), (68)

with T 1-dis
n,m a disorder assisted tunneling amplitude. Although

an expression of the form of Eq. (68) was previously
used to model vertical current in graphene/h-BN/graphene
devices [6,7], we emphasize that Eq. (68) only describes
processes where there is a complete degradation of in-plane
momentum conservation (as dispersionless phonons or short-
range impurities can carry an arbitrary momentum in a
scattering event), something that has been previously pointed
out in Refs. [24,29]. The complete degradation of momentum
conservation only occurs for scattering by dispersionless
phonons or for disorder with short-distance correlation.

As an example, we consider scattering by optical out-of-
plane breathing modes close to the � point, with nonzero

components of polarization vector given by

ξ z
ZB,a,� = (ξz

ζ,B,1, ξ
z
ζ,N,1 ,ξ z

ζ,B,2,ξ
z
ζ,N,2, . . .

)
=
√

μBN

N

(
1√
mB

,
1√
mN

,
−1√
mB

,
−1√
mN

, . . .

)
, (69)

where μ−1
BN = m−1

B + m−1
N is the reduced mass of the h-BN

phonon mode. We assume that electron-phonon coupling for
this mode can be described as a local change in the value of the
interlayer hopping parameter in Hamiltonian (4). Considering
electrons close to the K point and phonons close to the �

point, we derive an electron-phonon Hamiltonian of the form
of Eq. (64), with a momentum-independent coupling constant
which reads as

Mh-BN
ZB = gh-BN

ZB√
N

⎡
⎢⎢⎢⎢⎢⎣

0 σ x

σ x 0 −σ x

−σ x 0
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦, (70)

with the electron-phonon coupling constant given by

gh-BN
ZB = − ∂ ln t⊥

∂ ln cBN

t⊥
cBN

√
�

μBNωh-BN
ZB

, (71)

where −∂ ln t⊥/∂ ln cBN describes the change of the interlayer
hopping t⊥, with the interlayer distance, cBN � 3.3 Å, and for
p orbitals is estimated as ∼eq3 [56,57], ωh-BN

ZB is the out-of-
plane breathing phonon frequency. For this electron-phonon
interaction we obtain to lowest order in t⊥ and neglecting the
frequency and momentum dependence

∣∣T (ZB)1-ph
n,m

∣∣2 � (N − 1)2

N

∣∣∣∣gh-BN
ZB

t⊥

∣∣∣∣
2

|Tn,m|2,

with |Tn,m|2 given by Eq. (38).

B. Results

In Fig. 10, we show the vertical current as a function
of bias voltage taking into account the effect of scattering
of graphene electrons by resonant scatterers (treated within
the SCBA, see Appendix D) and in-plane graphene phonons
(see Appendix E). For comparison, we also show the current
computed used a constant relaxation time. The main differ-
ence between modeling electron scattering with a constant
relaxation rate or considering scattering by resonant scatters is
that for resonant scatters, the electron decay rate has a strong
dependence in energy, behaving as ω−1. Therefore, for higher
bias voltages (when the graphene Fermi levels are higher),
the electron lifetime is larger. This is manifest in Fig. 10,
where it is seen that when assuming a constant relaxation rate,
the second peak in the I -V current is considerably smaller
than the first one, while for resonant scatterers both peaks are
roughly the same height. Inclusion of phonons makes again
the peak at higher bias voltage smaller due to the fact that
the decay rate due to scattering with graphene in-plane optical
phonons increases with frequency. Also, notice that inclusion
of resonant disorder and phonons leads to a small splitting
of the peaks in the I -V current. This splitting is due to real
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FIG. 10. I -V curves at constant Vgate = 0 in a graphene/h-
BN/graphene device with rotations angles θtg = 1◦ and θh-BN = 1.5◦,
considering different sources of scattering in the graphene layers:
(RT) constant relaxation time of γ = 3 meV; (Imp) scattering
by resonant scatterers treated within the SCBA with an impurity
concentration of nimp = 10−4 impurities per graphene unit cell;
(Imp+RT) scattering by resonant scatterers and graphene in-plane
optical phonons also with nimp = 10−4.

part of the self-energy, both that of resonant scatterers and that
of phonons. Apart from increasing graphene electron’s decay
rate and as such providing an additional broadening of peaks
in the I -V current, phonons do not play a relevant role for the
high-bias I -V characteristics of a graphene/h-BN/graphene
device. This changes if one focuses on small bias. At very
low temperature, the spontaneous emission of optical phonons
becomes possible whenever Vbias > ωOph, where ωOph is the
optical phonon frequency, opening up new tunneling channels
for electrons. Although for small electron-phonon coupling,
this phonon assisted contribution to the current is small, the
opening up of a new tunneling channel can be observed in the
derivatives of the current with respect to the bias, as can be
seen in Fig. 11, where we show the current and d2I/dV 2

bias
taking into account the effect of scattering by in-plane optical
graphene phonons and out-of-plane boron-nitride breathing
phonons. The features in d2I/dV 2

bias are only significant at low
temperature, being smoothed out at higher temperatures due
to the smearing of the Fermi occupation factors in graphene.
Notice that the electron-phonon couplings estimated using
Eqs. (71) and (E2) yield a peak in d2I/dV 2

bias due to the h-BN
breathing mode that is nearly two orders of magnitude larger
than the one due to the graphene in-plane optical phonons,
while in experimental situations [32,33] all the peaks seem
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FIG. 11. I -V curve and d2I/dV 2
bias as a function of bias voltages

at a constant Vgate = 10 V for different temperatures and for rotation
angles θtg = 2◦ and θh-BN = 3◦, including effects of scattering by out-
of-plane breathing phonons of h-BN, ωh-BN

ZB = 15 meV [58], and of
the in-plane graphene phonons, ωg

�O = 196 meV [59] (represented by
the vertical dashed lines). Processes involving spontaneous emission
of phonons open up new tunneling channels that appear as peaks
in d2I/dV 2

bias at low temperature. The solid lines are the curves
computed with the electron-phonon coupling parameters estimated
using Eqs. (71) and (E2): gh-BN

ZB � 0.06 eV and g
g
�O � 0.6 eV for

h-BN and graphene, respectively. The dashed lines show the curves
computed with a gh-BN

ZB that is 10 times larger. The inset zooms in
the small peak due to the h-BN out-of-plane breathing phonon. The
feature that occurs around Vbias ∼ 0.1 V is not due to phonons, but
due to the tunneling density of states structure.

to be of the same order of magnitude. This might either be
due to Eq. (71) being an oversimplified estimation of the
electron-phonon coupling for the h-BN breathing mode, or due
to the possibility of the peak seen in experiments at ∼0.15 V
also having contributions from a graphene/h-BN out-of-plane
interfacial phonon which we are not considering and might
have a larger electron-phonon coupling. We also point out that
the features due to phonons are a small contribution that can be
overridden due to features in the coherent current induced by
the rotation between different layers (shown in Fig. 6), even if
we treat the phonons as dispersionless, leading to a complete
degradation of electron-momentum conservation. We also note
in passing that tunneling assisted by emission of multiple
phonons is also possible [see Eqs. (52)–(54)] which would
open up new scattering channels when nωOph > Vbias, where
n is the number of phonons. These would lead to additional
peaks in d2I/dV 2

bias but would be instead suppressed by higher
powers of the electron-phonon coupling.

V. CONCLUSIONS

This works provides another example of the extreme
sensitivity of the properties of vdW structures to the rotational
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alignment of the different constitutive layers. We have seen
how this additional degree of freedom can be exploited in
order to create devices displaying multiple regions of negative
differential conductance. The development of devices that
display multiple NDC regions is relevant for the development
of multivalued logic devices [60,61], which showcases another
possible application of vdW structures. We have studied in
detail the effect of the rotational alignment between the boron-
nitride slab and the graphene layers in the vertical current of a
graphene/h-BN/graphene vdW structure for small rotational
misalignment, which have so far not been observed [23]. We
have seen how the transference of momentum, by the h-BN
crystalline structure, to the tunneling electrons gives origin
to additional peaks in the I -V characteristics of this device,
followed by regions of negative differential conductance.
These additional peaks are, however, extremely sensitive to
the rotation angle between the graphene layers and the h-BN
slab, and rotational angles as small as 3◦ can already push these
additional peaks to bias voltages higher than 1.5 V. Therefore,
the observation of multiple NDC in graphene/h-BN/graphene
devices requires a control of the rotational angle between the
different layers with a precision of �1◦, something which is
within experimental reach [21,23,62].

We have also analyzed the effect of treating graphene
as being the source and drain contacts of the graphene/h-
BN/graphene device, or by treating them as part of the device
and taking the source and drain as being external metallic
contacts. We have seen that provided the metallic contacts do
not significantly spoil translation invariance of graphene (as
expected if the contact is deposited only over a small region
of the graphene layer), and in the noninteracting case, both
approaches are equivalent. In the presence of interactions, both
approaches are equivalent to lowest order in the graphene/h-
BN coupling.

Finally, we have studied, in a unified way, the effect of
scattering by disorder and phonon scattering in the vertical
current of graphene/h-BN/graphene devices. Starting from
a nonequilibrium Green’s function (NEGF) formalism, we
derived the contribution to the current due to phonon (or
disorder) assisted tunneling processes. We have seen now
scattering by short-range disorder or dispersionless phonons
leads to a complete degradation of electron momentum
conservation in the graphene-to-graphene tunneling process
and how spontaneous emission of phonons at lower tem-
peratures appears as sharp features in the derivatives of the
current with respect to the bias voltage at the energy of the
phonons. This signature of the phonon assisted tunneling
can, however, be hidden by features due to the rotational
alignment between the different layers. We have focused on the
effect of graphene in-plane optical phonons and h-BN optical
out-of-plane breathing phonons. We have not considered the
effect of vibrations at the graphene/h-BN interface, as these
would require the description of phonons in incommensurate
structures, something which will be the focus of future work.

As a side note, we expect that the possible reconstruction
of graphene spectrum due to the periodic potential induced
by h-BN for small rotational angles should not affect in a
qualitative way the occurrence of multiple NDC regions in
graphene/h-BN/graphene devices, provided the applied bias
voltage is much larger than the width of the region where

the spectrum reconstruction is significant. However, a more
quantitative treatment of these effects is required and will be
the goal of a future work.
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APPENDIX A: THOMAS-FERMI MODELING
OF ELECTROSTATIC DOPING

We wish to model the charging of a graphene/h-
BN/graphene device by application of a gate Vgate and
bias Vbias voltage. The graphene/h-BN/graphene structure
is formed by Nh-BN monolayers, sandwiched between two
graphene layers. The graphene/h-BN/graphene structure is on
top of a dielectric spacer (typically h-BN/SiO2) separating the
structure from a back gate, typically a highly doped Si layer.
We treat each layer forming the graphene/h-BN/graphene
structure as a 2D film with a two-dimensional charge density
given by ρ�, � = −1, . . . ,N + 1, where � = −1 indexes the
Si layer, � = 0 and � = N + 1 are, respectively, the bottom
and top graphene layers, and � = 1, . . . ,N index the layers
of h-BN slab. Layers � − 1 and � are separated by a distance
d� and we assume that this is filled with a dielectric with
relative constant along the z direction given by ε̄�. Applying
Gauss’s law around each plate, and assuming charge neutrality∑N

�=−1 ρ� = 0, we obtain

ε̄0E0 = ρ−1/ε0, (A1)

ε̄�+1E�+1 − ε̄�E� = ρ�/ε0, � = 0, . . . ,N (A2)

− ε̄N+1EN+1 = ρN+1/ε0, (A3)

where E� is the electric field along the z direction, between
layers � − 1 and �, and ε0 is vacuum’ s permittivity. From these
equations we can write

ε̄�E� = 1

ε0

�−1∑
k=−1

ρk, � = 0, . . . ,N + 1 (A4)

and the stored electrostatic energy is given by

UEM =
N+1∑
�=0

1

2
ε0d�ε̄�E

2
�

= 1

2

N+1∑
�,�′=0

ρ�

⎛
⎝min(�,�′)∑

k=0

dk

ε0ε̄k

⎞
⎠ρ�′ , (A5)

where we have used the charge neutrality condition in order
to eliminate the charge in the Si gate ρ−1. This is nothing
more than the Hartree energy for a layered material. We
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split the charge density of each layer into a contribution
from charge carriers and another from charged impurities
ρ� = −en� + en

imp
� , where n� is the charge carrier concentra-

tion (n� > 0 for electron doping) and n
imp
� is the concentration

of charged impurities (nimp
� > 0 for positively charged impu-

rities). Including the effects of a gate voltage Vgate applied
between the � = −1 and the � = 0 layers and a bias voltage
between the � = N + 1 and the � = 0 layers, we obtain a
Thomas-Fermi functional

� = 1

2

N+1∑
�,�′=1

n�

⎛
⎝min(�,�′)∑

k=0

e2dk

ε0ε̄k

⎞
⎠n�′ −

N+1∑
�=0

n�eφ
imp
�

− eVgate

N+1∑
�=0

n� + eVbias

N+1∑
�=0

�

N + 1
n�, (A6)

where

eφ
imp
� =

N+1∑
�′=0

min(�,�′)∑
k=1

e2dk

ε0ε̄k

n
imp
�′ (A7)

is the potential created by the charged impurities. The Hartree
potential felt by electrons in layer � is then given by

V H
� = − ∂�

∂n�

= Vgate − Vbias
�

N + 1
n� + eφ

imp
�

−
N+1∑
�′=0

⎛
⎝min(�,�′)∑

k=0

e2dk

ε0ε̄k

⎞
⎠n�′ , � = 0, . . . ,N + 1. (A8)

Now, we assume that the vertical current flowing between
the two graphene layers is small enough, such that we can
assume that these are in a near-equilibrium state. Furthermore,
we employ the Thomas-Fermi approximation, in which the
local Fermi level for each layer is given by εF,� = V H

� , where
εF,� is a function of the local carrier density. This together
with Eq. (A8) becomes a system of nonlinear equations in the
carrier density/local Fermi level.

It can be checked that due to the large band gap of h-BN,
most charge density will be accumulated in the graphene
layers. As such, we approximate n� = 0, for � = 1, . . . ,N ,
and therefore the N + 2 equations are reduced to two

εF,bg = eVgate − (nbg + ntg)C−1
t + eφ

imp
bg , (A9)

εF,tg = eVgate − eVbias − ntgC
−1
t − nbgC

−1
b + eφ

imp
tg , (A10)

where the capacitances are given by (taking into account the
series capacitances of a h-BN/SiO2 spacer with dh-BN the
h-BN thickness and dSiO2 the SiO2 thickness)

C−1
b = e2d0

ε0ε̄0
= e2dSiO2

ε0ε̄SiO2

+ e2dh-BN

ε0ε̄h-BN
,

C−1
t =

N+1∑
�=0

e2d�

ε0ε̄�

(A11)

= e2dSiO2

ε0ε̄SiO2

+ e2dh-BN

ε0ε̄h-BN
+ e2d

ε0ε̄h-BN
, (A12)

and d is the distance between the two graphene layers.
The terms eφ

imp
bg/tg are the potentials induced by the charged

Vgate � �40 V

Vgate � 0 V

Vgate � 40 V

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5

�0.4

�0.2

0.0

0.2

0.4

Vbias �eV�

F
�e

V
�

FIG. 12. Computed Fermi levels for the bottom and top graphene
layers as a function of bias voltage for different gate voltages obtained
by solving Eqs. (A9) and (A10). We assume that the following
parameters dSiO2 = 285 nm, dh-BN = 40 nm for the thickness of the
back-gate dielectric, with out-of-plane dielectric constants ε̄SiO2 =
3.9 and ε̄h-BN = 5.09 [35]. We assumed that the distance between
the two graphene layers is separated by four monolayers of h-BN,
which corresponds to a distance between the graphene layers of
d � 1.6 nm.

impurities in the bottom/top graphene layer that can be tuned
to account for intrinsic doping of the graphene layers (acting
as an offset in the measurement of Vgate and Vbias). We finally
point out that in the case where the h-BN layers have no charge
carrier, then the Hartree potential within the h-BN slab is given
from Eq. (A8) in terms of εF,bg/tg as

V H
� = εF,tg − eφ

imp
tg + eφ

imp
�

− �

N + 1

(
εF,tg + eVbias − εF,bg − eφ

imp
tg + eφ

imp
bg

)
(A13)

which in the absence of impurities reduces to the expression
given in Sec. II A. The solutions of Eqs. (A9) and (A10) for a
particular device are shown in Fig. 12.

APPENDIX B: INTERLAYER HOPPING HAMILTONIAN
BETWEEN NONCOMMENSURATE LAYERS

We describe the graphene/boron nitride coupling using the
general theory of coupling between noncommensurate layers
of Refs. [22,39]. We wish to describe the coupling between two
2D crystals, labeled as � and �′, with Bravais lattices spanned
by {a1,�,a2,�} and {a1,�′ ,a2,�′ }, respectively. In a tight-binding
representation, the interlayer hopping between layers � and �′
can be written as

T�,�′ = −
∑

n,a,m,b

t(Rn,a,�,Rm,b,�′ )c†n,a,�cm,b,�′ , (B1)

where the indices n,m run over Bravais lattice sites, a,b

run over orbitals/sublattice sites, c
†
n,α,� creates an electron

state in layer � at position Rn,a,� = n1a1,� + n2a2,� + τ a,�,

and orbital/sublattice a, with τ a,� a sublattice vector, and
t(Rn,a,�,Rm,b,�′ ) are hopping terms. Assuming that the hopping
t(Rn,a,�,Rm,b,�′ ) only depends on Rn,a,� − Rm,b,�′ , it is possible
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to write it in Fourier components as [39]

t(Rn,a,�,Rm,b,�′ ) = √Acell,�Acell,�′

×
∫

d2q
(2π )2

t
�,�′
a,b (q)eiq·(Rn,a,�−Rm,b,�′ ),

where Acell,�/�′ is the area of the unit cell of layer �/�′. If we
express c

†
n,a,� and cm,b,�′ in a Bloch basis

c
†
n,a,� = 1√

N�

∑
k

e−ik·Rn,a,� c
†
k,a,�, (B2)

c
†
m,b,�′ = 1√

N�′

∑
k

e−ik·Rm,b,�′ c
†
k,b,�′ , (B3)

where N�/�′ is the number of unit cells in layer �/�′, such that
N�Acell,� = N�′Acell,�′ , the interlayer Hamiltonian becomes

T�,�′ = −
∑
k,Gn,�

k′ ,G
m,�′

eiτ a,�·Gn,� t
�,�′
a,b (k + Gn,�)

× e−iτ b,�′ ·Gm,�′ c
†
k,a,�ck′,b,�′δk+Gn,�,k′+Gm,�′ , (B4)

where Gn,�/�′ are reciprocal lattice vectors of the 2D crystal
�/�′. The Kronecker δ imposes that in an interlayer hopping
process, momentum is conserved modulo any combination of
reciprocal lattice vectors of both layers. In general, t�,�

′
a,b (q) will

decay for large values of |q|, and therefore only the processes
with smallest |k + Gn,�| need be considered.

We now specialize to the case where �′ is a graphene
layer and � is a boron-nitride layer. The graphene unit
cell contains two carbon atoms in the unit cell, A and B,
while boron nitride contains one boron atom, B, and one
nitrogen atom, N, in the unit cell (see Fig. 1). We will
focus on low-energy states, which lie close to the Dirac
points ±K g of the graphene layer. Considering only the
three most relevant processes coupling the graphene and
boron-nitride layers, we must consider processes involv-
ing Gn,g = 0,b2,g,−b1,g and Gn,h-BN = 0,b2,h-BN,−b1,h-BN for
states close to the K g point and processes involving Gn,g =
0,−b2,g,b1,g and Gn,h-BN = 0,−b2,h-BN,b1,h-BN for states close
to the −K g point. It is also assumed that the momentum
dependence of t

�,�′
a,b (k) is weak such that we can approx-

imate t
�,�′
a,b (k + K± + Gn,g) � t

�,�′
a,b (K ), setting t

h-BN,g
B,A (K ) =

t
h-BN,g
B,B (K ) = tB,C and t

h-BN,g
N,A (K ) = t

h-BN,g
N,B (K ) = tN,C.

In order to describe the coupling between the bottom and top
graphene layers to a slab formed by N h-BN monolayers, we
notice that the products of unit-cell basis vectors and reciprocal
lattice vectors that appear in Eq. (B4) can be written for the
bottom graphene layer as τ h-BN,B1 · Gn,h-BN = τ bg,A · Gn,bg =
0 and τ h-BN,N1 · Gn,h-BN = τ bg,B · Gn,bg = ±n2π/3 (for states
close to ±K g point). For the coupling between the top
graphene layer and the N thh-BN layer, one must consider
separately the cases when the h-BN slab is formed by an
even or odd number of layers. For an odd number of layers,
in the N th layer the boron and nitrogen atoms occupy the
same positions as in the first layer and therefore we still
have τ h-BN,BN · Gn,h-BN = τ tg,A · Gn,tg = 0 and τ h-BN,NN ·
Gn,h-BN = τ tg,B · Gn,tg = ±n2π/3. If we have an even number
of h-BN layers, then in the N th layer, the boron and nitrogen

atoms switch positions compared to the first layer, and
one obtains instead τ h-BN,NN · Gn,h-BN = τ tg,A · Gn,tg = 0 and
τ h-BN,BN · Gn,h-BN = τ tg,B · Gn,tg = ±n2π/3 ∓ n2π/3. With
these approximations, one obtains Eq. (5) of the main text.

APPENDIX C: ANALYTIC EXPRESSION FOR THE
TUNNELING DENSITY OF STATES

In this Appendix, we provide an analytic expression for
Eq. (40). First, we notice that Eq. (40) can be written in the
graphene sublattice basis as

TDoSn,m(ωbg,ωtg)

=
∫

d2k
(2π )2

tr
[
Rn

− 2π
3

· Abg,k(ωbg) · Rn
2π
3

· J · Rm

− 2π
3

· Atg,k+Qn,m,T (ωtg) · Rm
2π
3

· J
]
, (C1)

where tr{. . .} is the trace over graphene sublattice indices, J
is a 2 × 2 matrix of ones, and we have written the spectral
function in the sublattice basis as

Abg/tg,k(ω) = i
[
Gk,θbg/tg (ω+

bg/tg) − Gk,θbg/tg (ω−
bg/tg)

]
, (C2)

where the graphene retarded/advanced electron Green´s func-
tion in the sublattice space is given by

Gk,θ (ω±
bg/tg) = ω±

bg/tgId + vF �k · σ θ

(ω±
bg/tg)2 − (vF �)2|k|2 , (C3)

with σ θ = (cos θσx − sin θσy, sin θσx + cos θσy). In the limit
of an infinite electron lifetime, we have ω±

bg/tg = ωbg/tg ±
i0+. In the presence of perturbations that induce a
momentum-independent self-energy that is diagonal in
the sublattice basis (such as short-range diagonal dis-
order or scattering by in-plane optical phonons), we
make the replacement ω±

bg/tg → ωbg/tg − Re�bg/tg(ωbg/tg) ±
iγbg/tg(ωbg/tg), where γbg/tg(ωbg/tg) = −Im�R

bg/tg(ωbg/tg) is the
broadening factor. In the presence of the external metallic
contacts and disorder/phonon scattering, we obtain γbg/tg =
(�b/t + �e-ph,bg/tg)/2 . In terms of Green’s functions, and
noticing that the matrices Rn

± 2π
3

perform a rotation of the

electronic Green’s functions, TDoSn,m(ω) can be written as

TDoSn,m(ωbg,ωtg) = i2
∑

s,s ′=±1

∫
d2k

(2π )2
ss ′

× tr
[
Gk,θbg+n 2π

3

(
ωs

bg

) · J

· Gk+Qn,m,θtg+m 2π
3

(
ωs ′

tg

) · J
]
. (C4)

Performing the trace over the sublattice degrees of freedom
we get

TDoSn,m(ωbg,ωtg) = i2
∑

s,s ′=±1

∫
d2k

(2π )2
ss ′ 2

(
ωs

bg+vF �k· K̂ bg,n

)
(
ωs

bg

)2−(vF �)2|k|2

× 2
(
ωs ′

tg + vF �(k + Qn,m) · K̂ tg,m

)
(
ωs ′

tg

)2 − (vF �)2|k + Qn,m|2
.

(C5)
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The advantage of this form, with respect to Eq. (40), is that Eq. (C5) is analytic in k and, as such, contour integration methods
can be used to compute the integrals. In order to make analytic progress, in the first term of the previous expression we take the
limit γbg → 0, such that ωs ′

bg → ωbg = ω + εF,bg and

i
∑
s=±1

s
ωs

bg + vF �k · K̂ bg,n(
ωs

bg

)2 − (vF �)2|k|2
→ 2π

ωbg + vF �k · K̂ bg,n

2vF �|k|
∑
s=±1

sδ(ωbg − svF �|k|) (C6)

We use the δ function to perform the integration over |k|, obtaining

TDoSn,m(ωbg,ωtg) � i
ωbg

(vF �)2

∫
dθk

2π

(
ωbg + vF �k · K̂ bg,n

vF �|k|

)∣∣∣∣∣
|k|= |ωbg |

vF �

∑
s ′=±1

s ′ 2
(
ωs ′

tg + vF �(k + Qn,m) · K̂ tg,m

)
(
ωs ′

tg

)2 − (vF �)2|k + Qn,m|2
. (C7)

The remaining integration over the angular variable θk can be performed using contour integration methods. Performing a change
of variables z = eiθk such that

cos θk = z + z−1

2
, (C8)

sin θk = z − z−1

2i
, (C9)

Eq. (C7) can be written as an integral over the z variable around the unit circle in the complex plane

TDoSn,m(ωbg,ωtg) � i
ωbg

(vF �)2 |z|=1
dz

2πi

1

z

(
ωbg + vF �|k|( z+z−1

2 K̂x
bg,n + z−z−1

2i
K̂

y

bg,n

)
vF �|k|

)∣∣∣∣∣
|k|= |ωbg |

vF �

×
∑

s ′=±1

s ′ 2
[
ωs ′

tg + vF �|k|( z+z−1

2 K̂x
tg,m + z−z−1

2i
K̂

y
tg,m

)+ vF �Qn,m · K̂ bg,m

]
(
ωs ′

tg

)2 − |k|2 − |Qn,m|2 − 2vF �|k||Qn,m|( z+z−1

2 cos θQn,m
+ z−z−1

2i
sin θQn,m

) , (C10)

with θQn,m
the angle of the vector Qn,m with the reference x axis. The integrand has a double pole at z = 0 and two simple poles

at z = eiθQm,n ws
≷,tg, with

ws
≷,tg = Cs

tg ∓ iSs
tg, (C11)

Cs
tg =

(
ωtg + siγtg

)2 − (vF �)2(|Qn,m|2 + |k|2)

2(vF �)2|Qn,m||k| , (C12)

Ss
tg = sgn

[
ω2

tg − γ 2
tg − (vF �)2(|Qn,m|2 + |k|2)

]
i

√(
Cs

tg

)2 − 1, (C13)

defined such that |w<,tg| < 1 and w>,tg = w−1
<,tg. The contour integration around the unit circle can be performed analytically

collecting the residues at z = eiθ±Qn,m ws
<,tg and z = 0. Notice that we have made the approximation γbg → 0. In general, both γbg

and γtg will be nonzero. The simplest way to take this into account is to symmetrize Eq. (C5) with respect to the bottom and the
top graphene layers and then taking the limit γbg → 0 in the first term and γtg → 0 in the second. The final symmetrized result
is given by

TDoSn,m(ωbg,ωtg) � ωbg

(vF �)3|Qn,m|

×
[

−1

S+
tg

(
ω+

tg + |ωbg|
(
C+

tgX
tg
n,m + S+

tgY
tg
n,m

)+ vF �Qn,m · K̂ tg,m

|ωbg|

)(
ωbg + |ωbg|

(
C+

tgX
bg
n,m + S+

tgY
bg
n,m

)
|ωbg|

)

+ 1

S−
tg

(
ω−

tg + |ωbg|
(
C−

tgX
tg
n,m + S−

tgY
tg
n,m

)+ vF �Qn,m · K̂ tg,m

|ωbg|

)(
ωbg + |ωbg|

(
C−

tgX
bg
n,m + S−

tgY
bg
n,m

)
|ωbg|

)

+ 2γtg
(
X

bg
n,m + iY

bg
n,m

)
vF �|Qn,m|

(
vF �|Qn,m| + ωtg

(
X

tg
n,m + iY

tg
n,m

)
|ωbg|

)]∣∣∣∣∣
|k|=|ωbg|/(vF �)

+ 1

2

ωtg

(vF �)3|Qn,m|

×
[

−1

S+
bg

(
ω+

bg − |ωtg|
(
C+

bgX
bg
n,m + S+

bgY
bg
n,m

)− vF �Qn,m · K̂ bg,n

|ωtg|

)(
ωtg − |ωtg|

(
C+

bgX
tg
n,m + S+

bgY
tg
n,m

)
|ωtg|

)

+ 1

S−
bg

(
ω−

bg − |ωtg|
(
C−

bgX
bg
n,m + S−

bgY
bg
n,m

)− vF �Qn,m · K̂ bg,n

|ωtg|

)(
ωtg − |ωtg|

(
C−

bgX
tg
n,m + S−

bgY
tg
n,m

)
|ωtg|

)
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+ 2γbg
(−X

tg
n,m − iY

tg
n,m

)
vF �|Qn,m|

(
vF �|Qn,m| − ωbg

(
X

bg
n,m + iY

bg
n,m

)
|ωtg|

)]∣∣∣∣∣
|k|=|ωtg|/(vF �)

, (C14)

where we have introduced the quantities

X
bg
n,m = Q̂n,m · K̂ bg,n, Y

bg
n,m = Q̂n,m × K̂ bg,n,

X
tg
n,m = Q̂n,m · K̂ tg,m, Y

tg
n,m = Q̂n,m × K̂ tg,m,

(C15)

and the quantities C±
tg and S±

tg given by Eqs. (C12) and (C13) with the replacements ωtg → ωbg and γtg → γbg. It was checked
that Eq. (C14) provides a very good approximation to the numeric evaluation of Eq. (C5) when both γbg and γtg are nonzero, if
the broadening function for each layer is assumed to be the sum of the broadening factors of both layers, i.e., performing the
replacement γbg,γtg → γbg + γtg.

In the limit of infinite electron lifetime in both layers γbg/tg → 0, we obtain

Cs
tg = ω2

tg − ω2
bg − (vF �)2|Qn,m|2

2(vF �)|Qn,m||ωbg| , (C16)

Ss
tg = −s sgn(ωtg)

√
1 − (Cs

tg

)2
, (C17)

and Ss
bg/Cs

bg are obtained by replacing ωbg ↔ ωtg, and TDoSn,m(ωbg,ωtg) simplifies to

TDoSn,m(ωbg,ωtg) = ωtg

(vF �)3|Qn,m|

×
[

−1

S+
tg

(
ωtg + |ωbg|

(
C+

tgX
tg
n,m + S+

tgY
tg
n,m

)+ vF �Qn,m · K̂ tg,m

|ωbg|

)(
ωbg + |ωbg|

(
C+

tgX
bg
n,m + S+

tgY
bg
n,m

)
|ωbg|

)

+ 1

S−
tg

(
ωtg + |ωbg|

(
C−

tgX
tg
n,m + S−

tgY
tg
n,m

)+ vF �Qn,m · K̂ tg,m

|ωbg|

)(
ωbg + |ωbg|

(
C−

tgX
bg
n,m + S−

tgY
bg
n,m

)
|ωbg|

)]
.

(C18)

We notice that, in this limit, TDoSn,m(ωbg,ωtg) is only nonzero when 4(vF �)2|Qn,m|2ω2
bg > (ω2

tg − ω2
bg − (vF �)2|Qn,m|2)

2
.

We finally study how the spinorial character of graphene’s wave function manifests in the form of TDoSn,m(ωbg,ωtg). If we
set the wave-function overlap factors ϒ

bg/tg,n

k,λ to 1 in Eq. (40), then instead of Eq. (C5) we would obtain

TDoSscalar
n,m (ωbg,ωtg) = i2

∑
s,s ′=±1

∫
d2k

(2π )2 ss ′ 2ωs
bg(

ωs
bg

)2 − (vF �)2|k|2
2ωs ′

tg(
ωs ′

tg

)2 − (vF �)2|k + Qn,m|2
. (C19)

In order to evaluate TDoSscalar
n,m (ωbg,ωtg), we proceed as previously. the only difference is that when performing the integration

over the unit circle in the complex variable z, there is no double pole at z = 0, and the contour integration only collects the
contribution from z = eiθ±Qm,n ws

<,tg/bg. Symmetrizing the result, this leads to

TDoSscalar
n,m (ωbg,ωtg) = 1

(vF �)3|Qn,m|
1

2

[(
ω−

tg

S−
tg

− ω+
tg

S+
tg

)
+
(

ω−
bg

S−
bg

− ω+
bg

S+
bg

)]
. (C20)

APPENDIX D: RESONANT IMPURITIES
WITHIN THE SCBA

We consider the effect of resonant impurities, such as
vacancies, in the properties of graphene. We focus on these
kinds of impurities due to the possibility for analytical progress
and due to the fact that this model for impurities correctly
predicts a transport lifetime in graphene that depends on
the Fermi energy as τtr(εF ) ∝ εF [34]. Resonances due to
short-range disorder cannot be taken into account by treating
them within a Gaussian approximation. A way to overcome
this limitation is to employ the T matrix, which properly
takes into account multiple scatterings by the same impurity
in the limit of low-impurity concentration. Using the T matrix

within the noncrossing approximation, the self-consistent Born
approximation (SCBA) for the Green’s function of an isolated
graphene layer reads as

G0,R
k (ω) = G0,R

k (ω) + G0,R
k (ω) · �R

imp(ω) · G0,R
k (ω), (D1)

where matrices have indices in the sublattice space, a bar
denotes disorder averaging, and �R

imp(ω) = nimpTR(ω) is the
impurity self-energy, where nimp is the impurity concentration
(number of impurities by graphene unit cell) and TR(ω)
is the T matrix for a single δ-like impurity with strength
u. For an impurity potential diagonal in the sublattice ba-
sis, the T matrix is also diagonal with equal components,
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given by

T R(ω) = u

1 − uGR
1 (ω)

=
u → ∞ − 1

GR
1 (ω)

, (D2)

where we have taken the limit u → ∞ in order to describe
vacancies and defined

GR
1 (ω) =

∫
d2k

(2π )2

[
G

0,R
k (ω)

]A
A
. (D3)

In the Dirac cone approximation, the graphene Green’s
function in the sublattice basis and taking into account a finite
electron life (induced by the metallic contact) is given by[

G
0,R
k (ω)

]a
b

= 1

ω − λvF �|k| + iγc − �R(ω)

× 1

2

[
δa

b + λ
k
|k| · σ a

b

]
, (D4)

with a, b indices running over the A,B sublattice sites and γc

is the lifetime induced by the metallic contacts γc = �bg/tg/2
(assuming the metallic contacts couple equally to all graphene
states and do not spoil translational invariance of graphene).
For resonant impurities, the self-energy is momentum inde-
pendent. Writing it as �R

imp(ω) = �imp(ω) − iγimp(ω), we can
evaluate GR

1 (ω) analytically, obtaining

GR
1 (ω) = g1[ω − �imp(ω),γimp(ω) + γc]

4π (vF �)2

− i
g2[ω − �imp(ω),γimp(ω) + γc]

4π (vF �)2 , (D5)

where the functions g1 and g2 are given by

g1(ω,η) = − ω

2

[
ln g

(
(�E − ω)2 + η2

ω2 + η2

)
+ (ω → −ω)

]

+ η

[
arctan

(
�E − ω

η

)
+ arctan

(
ω

η

)

− (ω → −ω)

]
, (D6)

g2(ω,η) = η

2

[
ln

(
(�E − ω)2 + η2

ω2 + η2

)
+ (ω → −ω)

]

+ ω

[
arctan

(
�E − ω

η

)
+ arctan

(
ω

η

)

− (ω → −ω)

]
(D7)

with �E � vF �(4π/(
√

3a2
g))

1/2
a high-energy cutoff. In terms

of g1 and g2, the self-energy is given by

�imp(ω) = −λimp
g1(ω′,γ ′)

g2
1(ω′,γ ′) + g2

2(ω′,γ ′)
, (D8)

γimp(ω) = λimp
g2(ω′,γ ′)

g2
1(ω′,γ ′) + g2

2(ω′,γ ′)
, (D9)

where we have defined ω′ = ω − �imp(ω), γ ′ = γc + γimp(ω),
and λimp = 4π (vF �)2nimp is a constant characterizing the
scattering by resonant disorder. Equations (D6)–(D9) form

Re, nimp� 10�4

Im, nimp� 10�4

Re, nimp� 2 10�4

Im, nimp� 2 10�4

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5

�0.04

�0.02

0.00

0.02

0.04

�eV�

SC
B

A
�
�
�e

V
�

FIG. 13. Real and (minus) imaginary parts of the retarded self-
energy for graphene electrons due to resonant impurities treated
within the SCBA, for two different impurity concentrations (number
of impurities per graphene unit cell).

a set of equations that can be easily solved. The solution for
self-energy is shown in Fig. 13.

APPENDIX E: GRAPHENE ELECTRON SELF-ENERGY
DUE TO IN-PLANE OPTICAL PHONONS

Electron-phonon interaction in graphene can be modeled
by starting from a nearest-neighbor tight-binding Hamiltonian
for the electrons and assuming that the lattice distortions due
to phonons lead to a modulation of hopping integrals [63]. For
graphene longitudinal and transverse in-plane phonons close
to the � point and electrons close to the K point, the obtained
electron-phonon interaction Hamiltonian is given by

Hg,e-ph = g
g
�O√
N

∑
k,q

ζ=LO,TO

c†k+q,g(�σ × �εq,ζ )ck,gφq,ζ , (E1)

whereas

g
g
�O = 3

2

(
− d ln t

d ln aCC

)
t

aCC

√
�

μgω
g
�O

(E2)

is the electron-phonon coupling constant, with
−d ln t/d ln aCC � 3 [56,57] describing the change in the
nearest-neighbor hopping t , with the distance aCC = ag/

√
3;

μg = mC/2 is the reduced mass of the phonon mode,
with mC the carbon atom mass; and ω

g
�O is the phonon

dispersion for the longitudinal/transverse in-plane optical
phonon mode (which are degenerate at � and assume we
approximate them as dispersionless). The polarization vectors
for the longitudinal and transverse modes can be written as
�εq,LO = (1,0) and �εq,TO = (0,1). With these approximations
we obtain the momentum-independent electron-phonon
interaction matrices

Mg
LO = −g

g
�Oσy, (E3)

Mg
TO = g

g
�Oσx. (E4)

Assuming the graphene layer is in thermal equilibrium and to
lowest order in the electron-phonon interaction, the self-energy

235403-20



MULTIPLE NEGATIVE DIFFERENTIAL CONDUCTANCE . . . PHYSICAL REVIEW B 93, 235403 (2016)
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FIG. 14. Real and (minus) imaginary parts of the self-energy for
graphene electrons due to scattering by in-plane optical phonons for
two different temperatures for doped graphene with εF = 0.3 eV. The
zero of energy corresponds to the Dirac point. The dashed vertical
line marks ω = εF and the dotted lines mark ω = εF ± ω

g
�O.

is diagonal in sublattice space and given by

�R
ph(ω) = Acell

(
g

g
�O

)2
×
∑
λ,s

∫
d2q

(2π )2 s
1 + b

(
sω

g
�O

)− f (εq,λ − εF)

ω − εq,λ − sω
g
�O + i0+ .

(E5)

The imaginary part can be computed for pristine graphene at
finite temperature as

− Im�R
ph(ω) = (gg

�O

)2[
1 + b

(
ω

g
�O

)− f
(
ω − ω

g
�O − εF

)]
× Acell

∣∣ω − ω
g
�O

∣∣
2(vF �)2 + (gg

�O

)2[
b
(
ω

g
�O

)

− f
(
ω + ω

g
�O − εF

)]Acell

∣∣ω + ω
g
�O

∣∣
2(vF �)2 , (E6)

where ω and the Fermi energy εF are both measured from the
Dirac cone. From this, the real part can be efficiently obtained
using the Kramers-Kronig relation

Re�R
ph(ω) = −

∫
dν

π

Im�R
ph(ω − ν) − Im�R

ph(ω + ν)

ν
.

(E7)
The computed self-energy is shown in Fig. 14.

APPENDIX F: VERTEX CORRECTIONS
FOR RESONANT IMPURITIES

In this Appendix, we provide an alternative derivation of
Eq. (63), for the vertical current in a graphene/h-BN/graphene
device taking into account disorder in the graphene layers,
employing approach (B). Instead of describing disorder as an
interaction, we will start from Eq. (33) and perform disorder
averages of it. Just as in Appendix D, we will consider
scattering by resonant disorder. This model will both serve as
a concrete example for elastic scattering of the general results
present in Sec. IV regarding the equivalences of approaches
(A) and (B) and will also show the formal equivalence between
the contributions to the current arising from Eq. (28) and vertex

� 	

TR

TA

TR

TA

dc

b a

dc

b a

dc

b a

d' c'

b'a'

FIG. 15. Diagrammatic representation of the Bethe-Salpeter
equation (F6).

corrections. Just as in Sec. III, we will assume for simplicity
that the external metallic contacts couple to all graphene states
and that graphene electronic states are still well described by
Bloch states. With these approximations, we write

�b/t = �b/t Ibg/tg. (F1)

Performing an averaging of Eq. (33) with respect to disorder
in the bottom and top graphene layers, assuming that these
are uncorrelated, and to lowest order in the graphene/h-BN
coupling, we obtain

T = �b�tTr
[
G0,A

bg · Ibg · G0,R
bg · T bg,tg (F2)

· G0,R
tg · I tg · G0,A

tg · T tg,bg
]
. (F3)

The disorder averaged product of Green’s functions is not
just the product of average Green’s function, as the averaging
procedure establishes correlations between the two functions.
From now on, we will employ a notation where an upper
indice represents an outgoing electronic state and a lower
indice represents an incoming state, with repeated indices
being summed over. With this convention, the average of the
product of two Green’s functions, in sublattice space, can be
written as (suppressing the frequency argument and the bg/tg
indices)[

G
0,A
k

]a
b
δb

c

[
G

R,0
k

]c
d

= [G0,A
k

]a
b
δb

c

[
G

R,0
k

]c
d

+[G0,A
k

]a
a′�

a′ c′ ′
b′ d ′

[
GAR

2

]b′ c

b c′δ
b
c

× [G0,R
k

]d ′

d
, (F4)

where the second terms are vertex corrections, we define the
quantity

[
GAR

2

]a c

b d
=
∫

d2 p

(2π )2

[
GA

p

]a
b

[
GR

p

]c
d
, (F5)

and �a c
b d is a four-point function, which obeys a Bethe-

Salpeter equation (see Fig. 15)

�a c
b d = Ua c

b d + Ua′ c
b d ′
[
GAR

2

]b′ d ′

a′ c′�
a c′
b′ d, (F6)

where Ua c
b d is an irreducible four-point function, which within

the T matrix and noncrossing approximation for resonant
impurities is given by

Ua c
b d = nimp

∣∣T R
imp

∣∣2δa
bδ

c
d . (F7)

The quantity [GAR
2 ]

a c

b d
can be evaluated analytically

yielding[
GAR

2

]a c

b d
= L1(ω′,γ ′)δa

bδ
c
d + L2(ω′,γ ′) 1

2σ a
b · σ c

d , (F8)
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where

L1(ω,η) = 1

8π (vF �)2

(
1

η
g2(ω,η) + 1

ω
g1(ω,η)

)
, (F9)

L2(ω,η) = 1

8π (vF �)2

(
1

η
g2(ω,η) − 1

ω
g1(ω,η)

)
, (F10)

with the functions g1 and g2 defined by Eqs. (D6) and (D7) and
where we have written ω′ = ω − �imp and γ ′ = γimp + γc as
in Appendix. D. The Bethe-Salpeter equation for �a c

b d is now
a simple problem of linear algebra. Solving Eq. (F6) yields the
nonzero components of �a c

b d in the sublattice basis

�A A
A A =�B B

B B

= nimp|T R|2(1−L1nimp|T R|2)

[1−(L1−L2)nimp|T R|2][1−(L1 + L2)nimp|T R|2]
,

(F11)

�A B
A B = �B A

B A = nimp|T R|2
1−L1nimp|T R|2 , (F12)

�A B
B A =�B A

A B

= L2n
2
imp|T R|4

[1−(L1−L2)nimp|T R|2][1−(L1 + L2)nimp|T R|2]
,

(F13)

where we have omitted the frequency arguments of L1/2. Using

the fact that [GAR
2 ]

b′ b

b c′ = [L1(ω) + L2(ω)]δb′
c′, the vertex

correction contribution in Eq. (F4) can be written as

�a′ c′ ′
b′ d ′

[
GAR

2

]b′ c

b c′ = nimp|T R|2(L1 + L2)

1 − (L1 + L2)nimp|T R|2 δc
b. (F14)

Expressing T R and L1/2 in terms of g1 and g2, and using
Eqs. (D9) it can be seen that the quantity (L1 + L2)nimp|T R|2
can be written as the ratio

(L1 + L2)nimp|T R|2 = γimp

γimp + γc
. (F15)

Therefore, Eq. (F4) can be written as[
G

0,A
k

]a
b

[
G

R,0
k

]b
d

= [G0,A
k

]a
b

[
G

R,0
k

]b
d

+ γimp

γc

[
G

0,A
k

]a
b

[
G

R,0
k

]b
d
. (F16)

Therefore, the product of a retarded and an advanced Green’s
function is related to the spectral function as[

G
0,A
k (ω)

]a
b

[
G

R,0
k (ω)

]b
d

= 1

γimp + γc

[
A0

k(ω)
]a

b
(F17)

and, therefore, the contributions from vertex corrections (inco-
herent contributions) due to impurities add to the contribution
coming from the product of two average Green’s functions
(coherent contribution), in such a way that Eq. (F2) reduces to
Eq. (34) of the main text. This result is a particular case of the
more general discussion of Sec. IV A 1, which is not limited
to elastic scattering.
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