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We carry out an improved ab initio calculation of surface second-harmonic generation (SSHG) from the
Si(111)(1×1):H surface. This calculation includes three new features in one formulation: (i) the scissors
correction, (ii) the contribution of the nonlocal part of the pseudopotentials, and (iii) the inclusion of a cut
function to extract the surface response, all within the independent particle approximation. We apply these
improvements on the Si(111)(1×1):H surface and compare with various experimental spectra from several
different sources. We also revisit the three-layer model for the SSHG yield and demonstrate that it provides
more accurate results over several, more common, two-layer models. We demonstrate the importance of using
properly relaxed coordinates for the theoretical calculations. We conclude that this approach to the calculation of
the second-harmonic spectra is versatile and accurate within this level of approximation. This well-characterized
surface offers an excellent platform for comparison with theory and allows us to offer this study as an efficient
benchmark for this type of calculation.
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I. INTRODUCTION

Surface second-harmonic generation (SSHG) has been
shown to be an effective, nondestructive, and noninvasive
probe to study surface and interface properties [1–10]. SSHG
experiments are now very cost effective and popular because
they provide easy access to buried interfaces and nanostruc-
tures, and interest in these techniques continues to increase
with the advent of ultrathin and bidimensional materials
[11,12]. The high surface sensitivity of SSHG spectroscopy
is due to the fact that within the dipole approximation the bulk
second-harmonic generation in centrosymmetric materials is
identically zero. The SHG process can occur only at the surface
where the inversion symmetry is broken.

There are several theoretical formalisms that describe the
SHG process for surfaces with different approximations and
varying levels of difficulty [9,13–19]. In this paper, we focus
on a recent approach developed by us in Ref. [20]. It includes
three features not previously found in a single formulation:
(i) the scissors correction, (ii) the contribution of the nonlocal
part of the pseudopotentials, and (iii) the cut function used to
extract the surface response, all within the independent particle
approximation. The inclusion of these three contributions
opens the possibility to study SSHG with more versatility
and accuracy than was previously available at this level of
approximation. We also use the three-layer model for the
SSHG yield, which considers that the SH conversion takes
place in a thin layer just below the surface that lies under the
vacuum region and above the bulk of the material. Validating
these improvements is difficult, however, without experimental
data for comparison.

SSHG experiments focusing on semiconductor surfaces
are available, but they are often reported over very limited
energy ranges and lacking units and scale for the intensity.
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This lack of comprehensive experimental data has made
comparison between theory and experiment difficult. However,
the Si(111)(1×1):H surface offers some respite in this area.
This surface can be prepared to a high degree of structural
quality and has been experimentally characterized with SHG
to a great degree of accuracy [16,21]. The added H saturates the
surface Si dangling bonds and eliminates any surface-related
electronic states in the band gap. We consider that this surface
represents an ideal benchmark for ab initio SSHG studies.
More specifically, SSHG from the Si(111)(1×1):H surface
was treated in detail in Ref. [16], and their approach yielded
good qualitative results. However, the expressions presented
for the nonlinear susceptibility tensor, χ(−2ω; ω,ω), which
is required for the SSHG yield, are derived in the velocity
gauge. This method incorrectly implements the scissors
quasiparticle correction and diverges for low energies [22].
They also propose a two-layer model for SSHG which does
not accurately represent the real physical process for surfaces.
We consider that the theoretical and computational aspects of
this subject have evolved considerably since then, making this
topic ripe for revision.

In this paper, we present a comparison between theory and
experiment by presenting the improved theoretical calculations
against experimental SSHG spectra from several sources,
namely, Refs. [16,21,23,24], with two-photon energies ranging
from 2.5 to 5 eV covering both the E1 and E2 critical
point transitions for bulk Si. These SHG experiments were
carried out with different polarizations of incoming and
outgoing beams which are taken into account in the theoretical
analysis. We find that the formalism compares favorably with
experiment and permits insight into the physics behind SSHG.
In spite of the advances mentioned, our treatment neglects
local field and excitonic effects that are challenging from both
a theoretical and a computational standpoint. This topic merits
further review and may prove to be crucial for more accurate
SSHG theory.
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This paper is organized as follows. In Sec. II, we present the
relevant equations and theory that describe the SSHG yield. In
Sec. III, we present the components of the nonlinear second-
order susceptibility tensor, χ (−2ω; ω,ω), which are needed
to calculate the SSHG yield. We describe our methodology
and final parameters for these calculations in Sec. IV. In
Sec. V, we show the results of the comparison between our
improved formalism with the experimental spectra for the
Si(111)(1×1):H surface. Finally, in Sec. VI, we present our
conclusions and final remarks.

II. SSHG YIELD

We will briefly describe the three-layer model for the SSHG
yield in this section. We mention that the formulas presented
in Ref. [16], where the three-layer model was introduced
for the first time, have some minor mistakes that have been
corrected in Ref. [25]. These revised formulas are what we
use in this paper and are presented below. We assume that the
fundamental electric field at 1ω induces the second-harmonic
conversion in a thin layer just below the surface described by
a surface dielectric function, ε�(ω). This layer is below the
vacuum region and above the material bulk that is described
by the bulk dielectric function, εb(ω), as depicted in Fig. 1. In
this surface layer, the nonlinear polarization

Pa(2ω) = χ abc(−2ω; ω,ω)Eb(ω)Ec(ω) (1)

produces the SSHG that radiates into the vacuum where the
measurements take place. In Eq. (1), E(ω) is the fundamental
electric field, and there is a sum over the repeated Cartesian
indices. In this model, the SSHG yield is given by [25]

RiF = ω2

2ε0c3 cos2 θ

∣∣��
iF r�

iF

∣∣2
, (2)

where θ is the angle of incidence, c is the speed of light,
and ε0 is the vacuum permittivity. The i subscript denotes
the incoming 1ω photon polarization and can be either p or s.
Analogously, the F subscript is the polarization of the outgoing
2ω photon, which we represent with capital letters as either
P or S. Equation (2) is written in the meter-kilogram-second
(MKS) system of units, although the calculated SSHG yield is
reported in cm2/W.

FIG. 1. Representation of the three-layer model for SSHG.
Vacuum is on top with εv = 1; the layer with nonlinear polarization
Pa(2ω) = χ abc(−2ω; ω,ω)Eb(ω)Ec(ω) is characterized with ε�(ω)
and the bulk is characterized with εb(ω). In the dipole approximation,
the bulk does not radiate second harmonic.

The ��
iF term contains the Fresnel factors for each polar-

ization case, and they are given by

��
pP = T v�

p (ω)T �b
p (ω)√

ε�(ω)ε�(2ω)
√

εb(2ω)

[
tv�
p (ω)t�bp (ω)

ε�(ω)
√

εb(ω)

]2

,

��
pS = T v�

s (ω)T �b
s (ω)√

ε�(ω)

[
tv�
p (ω)t�bp (ω)

ε�(ω)
√

εb(ω)

]2

,

��
sP = T v�

p (ω)T �b
p (ω)√

ε�(ω)ε�(2ω)
√

εb(2ω)

[
tv�
s (ω)t�bs (ω)

]2
,

where ε�(ω) is the average value of the layer dielectric function,
and the v� and �b superscripts denote either the vacuum-layer
or layer-bulk interfaces. The required Fresnel factors are [26]

tαβ
p (ω) = 2kα(ω)

√
εα(ω)εβ(ω)

kα(ω)εβ(ω) + kβ(ω)εα(ω)
,

tαβ
s (ω) = 2kα(ω)

kα(ω) + kβ(ω)
,

where kα(ω) = [εα(ω) − sin2 θ ]1/2 is the magnitude of the
wave-vector perpendicular to the surface divided by ω/c, and
εv(ω) = 1. The Fresnel factors denoted with capital T can
be expressed as T

αβ

i (ω) = t
αβ

i (2ω), where i can be either s

or p polarization, and αβ can be either the vacuum-layer or
layer-bulk interface. For the remainder of this section, terms
represented with capital letters will be evaluated at 2ω. We
shall also omit the (ω) and (2ω) dependence on some terms
for ease of notation.

The three-layer model described here can be reduced to
the two-layer model [26–28], that had been traditionally used
to study the SSHG yield. For this reduction, we consider
that P(2ω) is evaluated in the vacuum region, while the
fundamental fields are evaluated in the bulk region. To do
this, we take the 2ω radiations factors for vacuum by taking
� = v [thus ε�(2ω) = 1, T �v

i = 1, and T �b
i = T vb

i ] and the
fundamental field inside medium b by taking � = b [thus
ε�(ω) = εb(ω), tv�

i = tvb
i , and t�bi = 1]. This reduces Eq. (2)

to the equivalent expression in Refs. [26,27]. Since P(2ω) is
evaluated in the vacuum we label this model as the two-layer-
vacuum model.

A third possibility that we consider is to take both P(2ω)
and the fundamental fields inside the bulk of the material.
The three-layer model can be reduced by taking � = b, thus
ε�(2ω) = εb(2ω), T v�

i = T b�
i , T �b

i = 1, and ε�(ω) = εb(ω),
tv�
i = tvb

i , and t�bi = 1. In this case, P(2ω) is evaluated in the
bulk, thus we label this model as the two-layer-bulk model. We
will compare all three of these models in subsequent sections
to determine which one more accurately describes the SSHG
yield. We summarize these models in Table I.

The Si(111)(1×1):H surface is in symmetry group C3v and
has the following nonzero components [27] of the nonlinear
susceptibility tensor, χ (−2ω; ω,ω):

χzzz ≡ χ⊥⊥⊥,

χzxx = χzyy ≡ χ⊥‖‖,

χxxz = χyyz ≡ χ‖‖⊥,

χxxx = −χxyy = −χyyx ≡ χ‖‖‖.
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TABLE I. Summary of SSHG yield models. “Label” is the name
used in subsequent figures, while the remaining columns show in
which medium we will consider the specified quantity. � is the thin
layer below the surface of the material, v is the vacuum region, and b

is the bulk region of the material. Note that the “vacuum” or “bulk”
tag in the label refers to the layer in which P(2ω) is evaluated.

Label P(2ω) E(ω)

Three-layer � �

Two-layer-vacuum v b

Two-layer-bulk b b

We have chosen the x and y axes along the [112] and [110]
directions. The (−2ω; ω,ω) term has been omitted for ease of
notation. These tensor components will be given in Sec. III.
We are interested in RpP , RpS , and RsP for our comparison
with experiment, so we write the remaining terms of Eq. (2)
as

r�
pP = εb(2ω) sin θ

[
ε2
b(ω) sin2 θ χ⊥⊥⊥ + ε2

� (ω)k2
b χ⊥‖‖

]
− ε�(ω)ε�(2ω)kbKb[2 sin θεb(ω) χ‖‖⊥
+ ε�(ω)kb χ‖‖‖ cos 3φ], (3)

r�
pS = −ε2

� (ω)k2
b χ‖‖‖ sin 3φ, (4)

r�
sP = εb(2ω) sin θ χ⊥‖‖ + ε�(2ω)Kb χ‖‖‖ cos 3φ. (5)

We note that the above treatment is strictly valid within
the dipole approximation, and we assume that the bulk
quadrupolar SHG response is negligible compared to the
dipolar contribution, as reported in the experimental works
of Refs. [5,27,29–32]. As such, RsS ≈ 0.

III. NONLINEAR SUSCEPTIBILITY TENSOR

Our revised formulation is derived using the length gauge
formalism, in the independent particle approximation, and
includes (i) the scissors correction, (ii) the contribution of the
nonlocal part of the pseudopotential, and (iii) the cut function
[20]. We define our electron velocity operator to include these
new contributions as

v� ≡ v + vnl + vS ≡ vLDA + vS,

with

v = p
me

, vnl = 1

i�
[r,V nl],

vS = 1

i�
[r,S], vLDA ≡ v + vnl,

where p is the momentum operator, me is the mass of the
electron, r is the position operator, vnl is the contribution
from the nonlocal part of the pseudopotential (V nl), and vS

originates from the scissor operator (S).
The approach we use to study the surface of a semi-

infinite semiconductor crystal is as follows. Instead of using
a semi-infinite system, we replace it with a supercell that
consists of a finite slab of atomic layers and a vacuum region.
This supercell is repeated to form a full three-dimensional
crystalline structure. A convenient way to accomplish the
separation of the SH signal of either surface is to introduce
a cut function, C(z), which is usually taken to be unity over
one half of the slab and zero over the other half [9]. In this case
C(z) will give the contribution of the side of the slab for which
C(z) = 1. We denote this case as the half slab of the material.

Operators denoted with a calligraphic letter are understood
to be layered operators that include the cut function, C(z). We
find that all operators can be converted to their calligraphic
counterpart as follows [20]:

V� = C(z)v� + v�C(z)

2
.

In this way we establish our complete layered velocity
operator,

V� = VLDA + VS = V + Vnl + VS,

which is used to find its matrix elements in the usual way,

V�
mn(k) =

∫
d3r ψ∗

mk(r)V�ψnk(r),

where ψnk(r) = 〈r|nk〉 are the real-space representations of
the Bloch states |nk〉 labeled by the band index n and the
crystal momentum k. The band index n can take the value v

(c) for valence (conduction) states. The last remaining term is
the position operator, which can be calculated directly from
the velocity operator,

rnm(k) = v�
nm(k)

iω�
nm(k)

= vLDA
nm (k)

iωLDA
nm (k)

n /∈ Dm,

where Dm are all the possible degenerate m states. The matrix
elements of rnm(k) are identical using either the local-density
approximation (LDA) or scissored Hamiltonian [20], thus
negating the need to label them. Of course, it is more
convenient to calculate them through vLDA

nm (k), which includes
only the contribution of vnl

nm(k).
Using the expressions described above, we write the

nonlinear susceptibility tensor in terms of the velocity and
position operators as follows [20]:

Im
[
χ abc

e,ω

] = π |e|3
2�2

∫
d3k

8π3

∑
vc

∑
q �=(v,c)

1

ω�
cv

[
Im

[
V�,a

qc

{
rb
cvr

c
vq

}]
(
2ω�

cv − ω�
cq

) − Im
[
V�,a

vq

{
rc
qcr

b
cv

}]
(
2ω�

cv − ω�
qv

)
]
δ
(
ω�

cv − ω
)
, (6a)

Im
[
χ abc

i,ω

] = π |e|3
2�2

∫
d3k

8π3

∑
cv

1(
ω�

cv

)2

[
Re

[{
rb
cv

(
V�,a

vc

)
;kc

}] + Re
[
V�,a

vc

{
rb
cv�

c
cv

}]
ω�

cv

]
δ
(
ω�

cv − ω
)
, (6b)
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Im
[
χ abc

e,2ω

] = −π |e|3
2�2

∫
d3k

8π3

∑
vc

4

ω�
cv

⎡
⎣∑

v′ �=v

Im
[
V�,a

vc

{
rb
cv′r

c
v′v

}]
2ω�

cv′ − ω�
cv

−
∑
c′ �=c

Im
[
V�,a

vc

{
rc
cc′r

b
c′v

}]
2ω�

c′v − ω�
cv

⎤
⎦δ

(
ω�

cv − 2ω
)
, (6c)

Im
[
χ abc

i,2ω

] = π |e|3
2�2

∫
d3k

8π3

∑
vc

4(
ω�

cv

)2

[
Re

[
V�,a

vc

{(
rb
cv

)
;kc

}] − 2Re
[
V�,a

vc

{
rb
cv�

c
cv

}]
ω�

cv

]
δ
(
ω�

cv − 2ω
)
, (6d)

where ω�
nm(k) ≡ ω�

n (k) − ω�
m(k). The scissor-shifted ener-

gies, ω�
n (k), are given by

ω�
n (k) = ωLDA

n (k) + (1 − fn)�,

where �� is the rigid (k-independent) energy correction to be
applied, and fn is the occupation number of the Bloch state
|nk〉. These integrals are to be taken over the three-dimensional
k space. The k points are used for the linear analytic tetrahe-
dron method for evaluating the three-dimensional Brillouin-
zone integrals [33]. Note that the Brillouin zone for the slab
geometry collapses to a two-dimensional zone, with only one
k point along the z axis. The interband, intraband, 1ω, and
2ω contributions have been split in Eq. (6). The real part of
each contribution can be obtained through a Kramers-Kronig
transformation [34] and χ abc(−2ω; ω,ω) = χ abc

e,ω + χ abc
e,2ω +

χ abc
i,ω + χ abc

i,2ω. These equations fulfill the required permutation
symmetry, so χ abc = χ acb. The number of atomic layers in
the slab must be high enough in order to give converged
results for χ abc(−2ω; ω,ω). If we take C(z) = 1 over the entire
slab, the layered matrix elements V�

nm become bulklike v�
nm

matrix elements, and Eq. (6) is equivalent to the expressions
in Ref. [22], valid for bulk semiconductors. As it is mandatory
to use C(z) = 1 for one half of the slab, the susceptibility
is normalized to the half slab. However, the χ abc(−2ω; ω,ω)
presented in Sec. V are surface susceptibilities normalized to
the surface plane. They are then independent of the height of
the material slab. Note that the χ abc(−2ω; ω,ω) components
entering in RiF [Eq. (2)] are always surface susceptibilities,
and are calculated in pm2/V.

We must also calculate the bulk and surface dielectric
functions, εb(ω) and ε�(ω). For this, we follow the method
presented in Ref. [35]. For the bulk, the tensor components are
equal in all three directions due to the cubic symmetry:

εb(ω) = εxx
b (ω) = ε

yy

b (ω) = εzz
b (ω).

For the purpose of this calculation, we introduce the average
value for the surface dielectric function, ε�(ω). This entails
that εxx

� (ω) = ε
yy

� (ω) ≈ εzz
� (ω), since symmetry is broken in

the zz direction because of the surface. We find the average in
the conventional way,

ε�(ω) = εxx
� (ω) + ε

yy

� (ω) + εzz
� (ω)

3
,

and use that quantity in the equations for the SSHG yield. In
order to obtain a result which does not depend on the size of the
vacuum region [36], we have normalized the surface dielectric
function to the volume of the slab, instead of the volume of the
supercell. We remark that we could calculate εab

half slab(ω) using
C(z) = 1 for the upper half of our slab and normalize to the

volume of the half slab. Nevertheless, εab
� (ω) and εab

half slab(ω)
give the same result [36–38].

IV. METHOD

We constructed the Si(111)(1×1):H surface with the experi-
mental lattice constant of 5.43 Å, and then performed structural
optimizations with the ABINIT [39,40] code. The structures
were relaxed until the Cartesian force components were less
than 5 meV/Å, yielding a final Si-H bond distance of 1.50 Å.
The energy cutoff used was 20 Ha, and we used Troullier-
Martin LDA pseudopotentials [41]. The resulting atomic
positions are in good agreement with previous theoretical
studies [16,42–45], as well as the experimental value for the
Si-H distance [46].

We also evaluated the number of layers required for
convergence and settled on a slab with 48 atomic Si planes. The
geometric optimizations mentioned above are therefore carried
out on slabs of 48 atomic layers without fixing any atoms to
the bulk positions. We extract the surface susceptibilities from
only half of the slab. This encompasses 24 layers of Si and the
single layer of H that terminates the top surface. The vacuum
size is equivalent to one-quarter the size of the slab, avoiding
the effects produced by possible wave-function tunneling from
the contiguous surfaces of the full crystal formed by the
repeated supercell scheme [35].

The electronic wave functions, ψnk(r), were also calculated
with the ABINIT code using a plane-wave basis set with an
energy cutoff of 15 hartrees. χ abc(−2ω; ω,ω) was properly
converged with 576 k points in the irreducible Brillouin zone,
which are equivalent to 1250 k points if we disregard symmetry
relations. The contribution of Vnl in Eq. (6) was carried out
using the DP [47] code with a basis set of 3000 plane waves.
Convergence for the number of bands was achieved at 200,
which includes 97 occupied bands and 103 unoccupied bands.

All spectra were produced using a scissors value of 0.7 eV
in the χ abc(−2ω; ω,ω) and ε�(ω) calculations. This value was
obtained from Ref. [48], in which the authors carry out a G0W0

calculation on this surface for increasing numbers of layers.
They calculated the LDA and G0W0 band gaps, and found that
the difference between the two tends towards ∼0.7 eV as more
layers are added, culminating in a value of 0.68 eV for bulk Si.
This calculation is completely ab initio, so we choose 0.7 eV
as a very reasonable value for the scissors correction.

Our method of calculation is as follows. We first calculated
εb(ω), ε�(ω), and then χ abc(−2ω; ω,ω) from Eq. (6). We used
these for the Fresnel factors and in Eqs. (3)–(5), and finally
those into Eq. (2) to obtain the theoretical SSHG yield for
different polarizations that can then be compared with the
experimental data. All results for χ abc(−2ω; ω,ω) and RiF

are broadened with a Gaussian broadening with a standard
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deviation of σ = 0.075 eV. This value is chosen such that the
theoretical calculation adequately represents the experimental
spectrum line shape.

V. RESULTS

In this section, we present our theoretical results compared
with the appropriate experimental data. For full details on these
experiments, see Refs. [16,21,23,24]. This analysis provides
information on the physics behind the SSHG yield and how it
is affected by a variety of factors.

A. Calculating χ(−2ω; ω,ω) using relaxed atomic positions

The pioneering work presented in Ref. [16] showed the
effect of artificially moving the atomic position on the resulting
SSHG spectra. In this section, we address the more practical
and relevant case of atomic relaxation. More precisely, we
compare the fully relaxed structure described in Sec. IV with
an unrelaxed structure where all the Si atoms are at the ideal
bulk positions. Note that in both cases the Si-H bond distance
is the same: 1.5 Å.

We compare the calculated χ‖‖‖(−2ω; ω,ω) with exper-
imental data for this surface taken from Ref. [23]. These
data provide an excellent point of comparison as they were
presented in absolute units and were measured at a very
low temperature of 80 K. We used both relaxed (as detailed
in Sec. IV) and unrelaxed atomic positions to calculate
the nonlinear susceptibility tensor. The calculation with the
unrelaxed coordinates was done with the same parameters
mentioned above.

We can see from Fig. 2 that the relaxed coordinates have a
peak position that is very slightly blueshifted with respect to
the experimental peak near 1.7 eV. In contrast, the unrelaxed
coordinates have a peak that is redshifted close to 0.05 eV from
experiment. There is also a feature between 1.5 and 1.6 eV that
appears in the relaxed spectrum that coincides partially with
the experimental data. It is important to note that these data
were taken at low temperature (80 K); this further favors the
comparison, as the theory neglects the effects of temperature.
We can also see from Ref. [23] that the peaks in the spectrum

0

0.2

0.4

0.6

0.8

1

2 2.4 2.8 3.2 3.6 4

|χ
|(

10
6
×

p
m

2 /
V

)

Two-photon energy (eV)

Relaxed (×2)
Unrelaxed (×2)

Experiment

FIG. 2. Comparison of χ‖‖‖(−2ω; ω,ω) calculated using relaxed
and unrelaxed atomic positions, with the experimental data presented
in Ref. [23]. Theoretical curves are broadened with σ = 0.075 eV.
Experimental data were taken at 80 K.

redshift as the temperature increases. Intensity for both the
relaxed and unrelaxed curves are roughly half the intensity
of the experimental spectrum. We have converted the units of
the experimental data from centimeter-gram-second (CGS) to
MKS units for easier comparison.

Therefore, the most accurate theoretical results are given
by using relaxed atomic positions for the calculation of
χ (−2ω; ω,ω). Although this process can be very time con-
suming for large numbers of atoms, we consider it a crucial
step. From a numerical standpoint, this further demonstrates
that SSHG is very sensitive to the surface atomic positions.
In particular, our results show that a correct value of the Si-H
bond length is not enough to obtain the most accurate SSHG
spectra, and that a full relaxation of the structure is required.
Additionally, the theory may coincide better with experiments
that are conducted under very low-temperature conditions.

B. Calculated R pS compared to experiment

All calculations presented from this point on were done
using the relaxed atomic positions described in previous
sections. We now move on to the theoretical SSHG yield
compared with experiment. We first compare the calculated
RpS spectra with room-temperature experimental data from
Ref. [16]. We adhere to the experimental setup by taking an
angle of incidence θ = 65◦ and an azimuthal angle of φ = 30◦
with respect to the x axis. This azimuthal angle maximizes
rpS , as shown in Eq. (4). In Fig. 3, we see that all three
models reproduce the line shape of the experimental spectrum
which includes the peaks corresponding to both the E1 (3.4 eV)
and E2 (4.3 eV) critical points of bulk silicon, and a smaller
feature at around 3.8 eV. The calculated E1 and E2 peaks are
redshifted by 0.1 and 0.06 eV, respectively, compared with the
experimental peaks.

The main issue to address here is the discrepancy between
the intensity of the E1 peak. In the theoretical curves, the
peaks differ only slightly in overall intensity. Conversely, the
experimental E1 peak is significantly smaller than the E2 peak.
This may be due to the effects of oxidation on the surface.
Reference [24] features similar data to those of Ref. [16] but
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Experimental data are taken from Ref. [16], measured at room
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focuses on the effects of surface oxidation. We can see that as
time passes during the experiment the surface becomes more
oxidized, and the E1 peak diminishes substantially, as shown
by the experimental data taken 5 h after initial H termination.
This may be enough time to slightly reduce the E1 peak
intensity, as can be observed here.

In Fig. 4, we compare the theoreticalRpS with experimental
data from Ref. [21]; these data, however, only encompass
the E1 peaks and were obtained at room temperature. We
consider an angle of incidence θ = 45◦ and an azimuthal
angle φ = 30◦ to match these experimental conditions. As
in the previous comparison, the E1 peak is slightly redshifted
compared to experiment. The intensity of the theoretical yield
is smaller than the experimental yield for all three models. The
measurements presented in Ref. [21] were taken very shortly
after the surface had been prepared, and the surface itself
was prepared with a high degree of quality and measured at
room temperature. Peak position compared to theory is slightly
improved under these conditions. As before, the three-layer
model is closer in intensity to the experimental spectrum.

We show in Fig. 2 that our calculation for χ‖‖‖(−2ω; ω,ω)
coincides with the measurement taken at a low temperature of
80 K. It is well known that temperature causes shifting in the
peak position of SSHG spectra [49]. As RpS only depends on
this component [see Eq. (4)], the position of the theoretical
peak should be correct in Figs. 3 and 4. We deduce that the
difference in peak position stems from the higher temperature
at which the experiments were measured.

Both the two-layer-vacuum and two-layer-bulk models are
identical and roughly three times smaller than the experiment.
We can see from Eq. (4) that RpS only has 1ω terms [ε�(ω)
and kb]. For both of these models, the fundamental fields are
evaluated in the bulk, which means that the only change to
Eq. (4) is that ε�(ω) → εb(ω). Additionally, ��

pS also remains
identical between the two models and has no 2ω terms in the
denominator. Therefore, rpS is identical between these two
models. Ultimately, the intensity of the three-layer model is
the closest to the experiment.

Per Eq. (4), the intensity of RpS depends only on χ‖‖‖,
which is not affected by local-field effects [50]. These effects
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FIG. 5. Calculated results for RpS for the different levels of
approximation proposed in this paper. All curves were calculated
using the three-layer model. We take θ = 65◦ for this plot. See text
for full details. All curves are broadened with σ = 0.075 eV.

are neglected in this calculation, butRpS maintains an accurate
line shape and provides a good quantitative description of the
experimental SSHG yield. We note that both the calculated
and experimental spectra show two-photon resonances at the
energies corresponding to the critical point transitions of bulk
Si. We also see that the SSHG yield drops rapidly to zero below
E1, which is consistent with the absence of surface states due
to the H saturation on the surface. This observation holds true
for all three polarization cases studied here.

Lastly, in Fig. 5 we provide an overview of the different
levels of approximation proposed in this paper. All curves here
were calculated using the three-layer model. The long dashed
line depicts the effect of excluding the contribution from the
nonlocal part of the pseudopotentials. This is consistent with
the results reported in Ref. [20], where the exclusion of this
term increases the intensity of the components of χ (−2ω; ω,ω)
by approximately 15 to 20%. We also notice that the E1 peak
is larger than the E2 peak, contrasting with the experiment,
where the E1 peak is smaller than E2. Lastly, the thin solid
line depicts the full calculation with a scissors value of �� = 0.
We notice that the spectrum is almost rigidly redshifted as this
H-saturated surface has no electronic surface states [20]. Thus,
this demonstrates the importance of including the scissors
correction to accurately reproduce the experimental spectrum.
In summary, the inclusion of the contribution from the nonlocal
part of the pseudopotentials and the scissors operator on top of
the three-layer model produces spectra with a line shape and
intensity that compare favorably with the experimental data.

C. Calculated Rs P compared to experiment

Next, we analyze and compare the calculated RsP spectra
with experimental data from Ref. [16]. We again adhere to
the experimental setup by taking an angle of incidence θ =
65◦ and an azimuthal angle φ = 30◦. From Fig. 6, we can
immediately appreciate that the overall intensity of RsP is one
order of magnitude lower than RpS . The experimental data
are far noisier than in the other cases but we can still discern
the E1 and E2 peaks. As with our previous comparisons, the
three-layer model is the closest match in both intensity and line
shape to the experimental spectrum. It produces a curve that is
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Experimental data are taken from Ref. [16], measured at room
temperature.

very close to the experimental intensity with good proportional
heights for the calculated E1 and E2 peaks. In contrast, the two-
layer-vacuum model is 100 times more intense than experiment
and produces an enlarged E2 peak. The two-layer-bulk model
is ten times smaller with a very similar line shape to the three-
layer model.

The differences between the two-layer-vacuum and two-
layer-bulk models are not derived from Eq. (5), as the
εb(2ω) does not change and the second term vanishes for
this azimuthal angle of φ = 30. However, ��

sP does cause
a significant change in the intensity as there is an ε�(2ω)
term in the denominator. This will become εv(2ω) = 1 for the
two-layer-vacuum model, and εb(2ω) in the bulk model. This
accounts for the significant difference between the intensity of
the two models, while the line shape remains mostly consistent.

At higher energies, the theoretical curve is blueshifted
as compared to the experiment. We consider that the likely
explanation for this is the inclusion of the scissor operator,
which does not adequately correct the transitions occurring at
these higher energies. A full GW calculation would be well
suited for this task, but is beyond the scope of this paper.

D. Calculated R pP compared to experiment

We present RpP compared to experimental data from
Ref. [16] in Fig. 7. We note that peak position for the three-
layer model is similar to experiment with the overall intensity
being only two times larger. The E2 peak is blueshifted by
around 0.3 eV, and the yield does not go to zero after 4.75 eV.
The two-layer-vacuum model produces a spectrum with peak
positions that are close to the experiment, but are 40 times more
intense. The calculated E2 peak is similar, but the E1 peak lacks
the sharpness present in the experiment. The two-layer-bulk
model is very close to the line shape of the three-layer model,
but with eight times less intensity. From Eq. (3), we see that
RpP has several 2ω terms that will change between models;
this will have a deep effect on the line shape. Additionally,
��

pP also has ε�(2ω) in the denominator, and so we have a
significant difference in both line shape and intensity between
the two-layer-vacuum and the other two models. Again, as in

0

0.5

1

1.5

2

2.5 3 3.5 4 4.5 5

R
p
P

(1
0−

20
×

cm
2 /

W
)

Two-photon energy (eV)

3-layer (×0.5)
2-layer-vacuum (×1/40)

2-layer-bulk (×4)
Experiment

FIG. 7. Comparison between theoretical models (see Table I) and
experiment for RpP , for θ = 65◦. We use a scissors value of �� =
0.7 eV. All theoretical curves are broadened with σ = 0.075 eV.
Experimental data are taken from Ref. [16], measured at room
temperature.

the previous sections for RpS and RsP , the three-layer model
is the closest in intensity to the experiment. Additionally,
Ref. [49] shows that low-temperature measurements of RpP

will blueshift the spectrum away from room-temperature
measurements such as those shown in Figs. 7 and 8, and
towards our theoretical results.

Reviewing Eq. (3), we see that RpP is by far the most
involved calculation, since it includes all four nonzero com-
ponents. In particular, χ⊥⊥⊥ and χ‖‖⊥ include out-of-plane
incoming fields. These are affected by local-field effects [50],
that reveal the inhomogeneities in the material, which are by
far more prevalent perpendicular to the surface than in the
surface plane. This can be evidenced for Si, as reflectance
anisotropy spectroscopy measurements are well described by
ab initio calculations neglecting local-field effects [51,52]. It
is therefore expected that the out-of-plane components will
be more sensitive to the inclusion of local fields. These will
not change the transition energies, only their relative weights
of the resonant peaks [50], but including these effects is
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challenging to compute [36], and beyond the scope of this
paper. We speculate that RpP requires the proper inclusion of
these effects in order to accurately describe the experimental
peaks.

In Fig. 8 we compare to Ref. [21]. The three-layer model
is, as before, close to the experiment in both peak position
and intensity. Intensity is almost the same as the experimental
value. This provides a more compelling argument against the
two-layer-vacuum model than Fig. 7. The two-layer-vacuum
model is 20 times more intense and blueshifted by around
0.1 eV. As mentioned before, this surface is of very high quality
with measurements taken shortly after surface preparation. As
before, the two-layer-bulk model is intermediate between the
other two models in both intensity and line shape. Under these
conditions, the three-layer model very accurately reproduces
the E1 peak over the two-layer-vacuum and two-layer-bulk
models.

Lastly, for linear optics and SHG, GW transition energies
are needed. Doing a Bethe-Salpeter calculation for SSHG will
improve the position and the amplitude of the peaks, but is far
beyond current capabilities [53]. We did not adjust the value of
the scissors shift, as we want to keep our calculation at the ab
initio level. We remark again that the choice of �� = 0.7 eV
for the scissors shift comes from a GW calculation [48]. As
explained in Fig. 5, the lack of surface states causes an almost
rigid shift of the spectra by applying the scissors correction.
We have checked that it is not possible to have a single scissors
value that can reproduce the energy positions of both the E1

and the E2 peaks. Of course, the experimental temperature at
which the spectra is measured should be taken into account
in a more complete formulation. However, we have restricted
our calculation to T = 0 K.

VI. CONCLUSIONS

We have presented ab initio LDA calculations for SSHG
that are in good quantitative agreement with experimental
SSHG spectra for the Si(111)(1×1):H surface. These cal-
culations include contributions not previously considered in
a single formulation, to wit, (i) the scissors correction, (ii)
the contribution of the nonlocal part of the pseudopotentials,
and (iii) the cut function used to extract the surface response,
all within the independent particle approximation. We also
revised the three-layer model for the SSHG yield where the
nonlinear polarization, P(2ω), and the fundamental fields

are taken within a small layer � below the surface of the
material. This model reproduces key spectral features and
yields an intensity closer to the experiment for all cases of
RiF. We consider it an upgrade over the much reviewed
two-layer model [26], and it comes with very little added
computational expense. Additionally, we have compared these
two models with another definition of the two-layer model,
where both P(2ω) and the fundamental fields are considered
inside the bulk of the material. We found that this model
yields an intensity lower than the three-layer model, but far
closer than the two-layer-vacuum model. Line shape is very
similar between the three-layer and two-layer-bulk models.
Therefore, we consider that the three-layer model offers the
closest comparison to experiment, while the two-layer-bulk
model offers a reasonable compromise between the three-layer
and two-layer-vacuum models.

This study affords us an interesting view of both the
theoretical and experimental aspects of SSHG studies. On
the theoretical side, we have shown the importance of using
relaxed atomic positions to more accurately calculate the
nonlinear susceptibility tensor. The intensity of these spectra is
greatly improved when compared to previous works [16]. We
also postulate that the lack of local-field effects in the theory
is a serious shortcoming, but in this case it only affects two of
the χ(−2ω; ω,ω) components.

Concerning the experiments, we show that surface prepa-
ration and quality are important for better results. The
approach for calculating the SSHG yield presented here finds
closer agreement with surfaces that are freshly prepared with
little or no oxidation, and with measurements taken at low
temperatures.

Overall, this framework for calculating χ (−2ω; ω,ω) and
R focused on the well-known Si(111)(1×1):H surface pro-
vides a compelling benchmark for SSHG studies. We are
confident that this work can be applied directly to many other
surfaces of interest.
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Catholique de Louvain, Corning, Inc., and other contributors
(http://www.abinit.org).

[41] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[42] E. Kaxiras and J. D. Joannopoulos, Phys. Rev. B 37, 8842 (1988).
[43] F. Jona, W. A. Thompson, and P. M. Marcus, Phys. Rev. B 52,

8226 (1995).
[44] D. R. Alfonso, C. Noguez, D. A. Drabold, and S. E. Ulloa, Phys.

Rev. B 54, 8028 (1996).
[45] F. Cargnoni, C. Gatti, E. May, and D. Narducci, J. Chem. Phys.

112, 887 (2000).
[46] R. C. Weast, M. J. Astle, and W. H. Beyer, CRC Handbook of

Chemistry and Physics (CRC, Boca Raton, 1988), Vol. 69.
[47] V. Olevano, L. Reining, and F. Sottile, http://dp-code.org.
[48] Y. Li and G. Galli, Phys. Rev. B 82, 045321 (2010).
[49] J. I. Dadap, Z. Xu, X. F. Hu, M. C. Downer, N. M. Russell, J. G.

Ekerdt, and O. A. Aktsipetrov, Phys. Rev. B 56, 13367 (1997).
[50] N. Tancogne-Dejean, Ph.D. thesis, Ecole Polytechnique, 2015,

https://pastel.archives-ouvertes.fr/tel-01235611.
[51] M. Palummo, G. Onida, R. Del Sole, and B. S. Mendoza, Phys.

Rev. B 60, 2522 (1999).
[52] K. Gaál-Nagy, A. Incze, G. Onida, Y. Borensztein, N.

Witkowski, O. Pluchery, F. Fuchs, F. Bechstedt, and R. Del
Sole, Phys. Rev. B 79, 045312 (2009).

[53] The size of the excitonic Hamiltonian scales as (N3
k × Nv ×

Nc)2, where Nk is the total number of k points, and Nv and Nc are
the number of valence and conduction states, respectively. For
these values, the size of the Hamiltonian for the Si(111)(1×1):H
surface of this paper would be over 1 petabyte, which far exceeds
conventional computing capabilities.

235304-9

http://dx.doi.org/10.1103/PhysRevB.63.125303
http://dx.doi.org/10.1103/PhysRevB.63.125303
http://dx.doi.org/10.1103/PhysRevB.63.125303
http://dx.doi.org/10.1103/PhysRevB.63.125303
http://dx.doi.org/10.1103/PhysRevB.63.205406
http://dx.doi.org/10.1103/PhysRevB.63.205406
http://dx.doi.org/10.1103/PhysRevB.63.205406
http://dx.doi.org/10.1103/PhysRevB.63.205406
http://dx.doi.org/10.1103/PhysRevB.66.195329
http://dx.doi.org/10.1103/PhysRevB.66.195329
http://dx.doi.org/10.1103/PhysRevB.66.195329
http://dx.doi.org/10.1103/PhysRevB.66.195329
http://dx.doi.org/10.1103/PhysRevB.66.195338
http://dx.doi.org/10.1103/PhysRevB.66.195338
http://dx.doi.org/10.1103/PhysRevB.66.195338
http://dx.doi.org/10.1103/PhysRevB.66.195338
http://dx.doi.org/10.1103/PhysRevB.89.235410
http://dx.doi.org/10.1103/PhysRevB.89.235410
http://dx.doi.org/10.1103/PhysRevB.89.235410
http://dx.doi.org/10.1103/PhysRevB.89.235410
http://dx.doi.org/10.1103/PhysRevB.91.075302
http://dx.doi.org/10.1103/PhysRevB.91.075302
http://dx.doi.org/10.1103/PhysRevB.91.075302
http://dx.doi.org/10.1103/PhysRevB.91.075302
http://dx.doi.org/10.1016/S0039-6028(01)01161-X
http://dx.doi.org/10.1016/S0039-6028(01)01161-X
http://dx.doi.org/10.1016/S0039-6028(01)01161-X
http://dx.doi.org/10.1016/S0039-6028(01)01161-X
http://dx.doi.org/10.1103/PhysRevB.80.155205
http://dx.doi.org/10.1103/PhysRevB.80.155205
http://dx.doi.org/10.1103/PhysRevB.80.155205
http://dx.doi.org/10.1103/PhysRevB.80.155205
http://dx.doi.org/10.1007/BF01567209
http://dx.doi.org/10.1007/BF01567209
http://dx.doi.org/10.1007/BF01567209
http://dx.doi.org/10.1007/BF01567209
http://dx.doi.org/10.1103/PhysRevLett.93.097402
http://dx.doi.org/10.1103/PhysRevLett.93.097402
http://dx.doi.org/10.1103/PhysRevLett.93.097402
http://dx.doi.org/10.1103/PhysRevLett.93.097402
http://arxiv.org/abs/arXiv:1604.07722
http://dx.doi.org/10.1364/JOSAB.5.000660
http://dx.doi.org/10.1364/JOSAB.5.000660
http://dx.doi.org/10.1364/JOSAB.5.000660
http://dx.doi.org/10.1364/JOSAB.5.000660
http://dx.doi.org/10.1103/PhysRevB.35.1129
http://dx.doi.org/10.1103/PhysRevB.35.1129
http://dx.doi.org/10.1103/PhysRevB.35.1129
http://dx.doi.org/10.1103/PhysRevB.35.1129
http://dx.doi.org/10.1103/PhysRev.128.606
http://dx.doi.org/10.1103/PhysRev.128.606
http://dx.doi.org/10.1103/PhysRev.128.606
http://dx.doi.org/10.1103/PhysRev.128.606
http://dx.doi.org/10.1116/1.589415
http://dx.doi.org/10.1116/1.589415
http://dx.doi.org/10.1116/1.589415
http://dx.doi.org/10.1116/1.589415
http://dx.doi.org/10.1103/PhysRevB.38.7985
http://dx.doi.org/10.1103/PhysRevB.38.7985
http://dx.doi.org/10.1103/PhysRevB.38.7985
http://dx.doi.org/10.1103/PhysRevB.38.7985
http://dx.doi.org/10.1007/s003400050622
http://dx.doi.org/10.1007/s003400050622
http://dx.doi.org/10.1007/s003400050622
http://dx.doi.org/10.1007/s003400050622
http://dx.doi.org/10.1103/PhysRevB.72.045223
http://dx.doi.org/10.1103/PhysRevB.72.045223
http://dx.doi.org/10.1103/PhysRevB.72.045223
http://dx.doi.org/10.1103/PhysRevB.72.045223
http://dx.doi.org/10.1103/PhysRevB.90.035212
http://dx.doi.org/10.1103/PhysRevB.90.035212
http://dx.doi.org/10.1103/PhysRevB.90.035212
http://dx.doi.org/10.1103/PhysRevB.90.035212
http://dx.doi.org/10.1103/PhysRevB.74.075318
http://dx.doi.org/10.1103/PhysRevB.74.075318
http://dx.doi.org/10.1103/PhysRevB.74.075318
http://dx.doi.org/10.1103/PhysRevB.74.075318
http://dx.doi.org/10.1103/PhysRevB.92.245308
http://dx.doi.org/10.1103/PhysRevB.92.245308
http://dx.doi.org/10.1103/PhysRevB.92.245308
http://dx.doi.org/10.1103/PhysRevB.92.245308
http://dx.doi.org/10.1103/PhysRevB.68.035405
http://dx.doi.org/10.1103/PhysRevB.68.035405
http://dx.doi.org/10.1103/PhysRevB.68.035405
http://dx.doi.org/10.1103/PhysRevB.68.035405
http://dx.doi.org/10.1103/PhysRevB.68.041310
http://dx.doi.org/10.1103/PhysRevB.68.041310
http://dx.doi.org/10.1103/PhysRevB.68.041310
http://dx.doi.org/10.1103/PhysRevB.68.041310
http://dx.doi.org/10.1016/j.cpc.2009.07.007
http://dx.doi.org/10.1016/j.cpc.2009.07.007
http://dx.doi.org/10.1016/j.cpc.2009.07.007
http://dx.doi.org/10.1016/j.cpc.2009.07.007
http://www.abinit.org
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.37.8842
http://dx.doi.org/10.1103/PhysRevB.37.8842
http://dx.doi.org/10.1103/PhysRevB.37.8842
http://dx.doi.org/10.1103/PhysRevB.37.8842
http://dx.doi.org/10.1103/PhysRevB.52.8226
http://dx.doi.org/10.1103/PhysRevB.52.8226
http://dx.doi.org/10.1103/PhysRevB.52.8226
http://dx.doi.org/10.1103/PhysRevB.52.8226
http://dx.doi.org/10.1103/PhysRevB.54.8028
http://dx.doi.org/10.1103/PhysRevB.54.8028
http://dx.doi.org/10.1103/PhysRevB.54.8028
http://dx.doi.org/10.1103/PhysRevB.54.8028
http://dx.doi.org/10.1063/1.480616
http://dx.doi.org/10.1063/1.480616
http://dx.doi.org/10.1063/1.480616
http://dx.doi.org/10.1063/1.480616
http://dp-code.org
http://dx.doi.org/10.1103/PhysRevB.82.045321
http://dx.doi.org/10.1103/PhysRevB.82.045321
http://dx.doi.org/10.1103/PhysRevB.82.045321
http://dx.doi.org/10.1103/PhysRevB.82.045321
http://dx.doi.org/10.1103/PhysRevB.56.13367
http://dx.doi.org/10.1103/PhysRevB.56.13367
http://dx.doi.org/10.1103/PhysRevB.56.13367
http://dx.doi.org/10.1103/PhysRevB.56.13367
https://pastel.archives-ouvertes.fr/tel-01235611
http://dx.doi.org/10.1103/PhysRevB.60.2522
http://dx.doi.org/10.1103/PhysRevB.60.2522
http://dx.doi.org/10.1103/PhysRevB.60.2522
http://dx.doi.org/10.1103/PhysRevB.60.2522
http://dx.doi.org/10.1103/PhysRevB.79.045312
http://dx.doi.org/10.1103/PhysRevB.79.045312
http://dx.doi.org/10.1103/PhysRevB.79.045312
http://dx.doi.org/10.1103/PhysRevB.79.045312



