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Impact of doping on the density of states and the mobility in organic semiconductors
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We experimentally investigated conductivity and mobility of poly(3-hexylthiophene) (P3HT) doped with
tetrafluorotetracyanoquinodimethane (F4TCNQ) for various relative doping concentrations ranging from ultralow
(10−5) to high (10−1) and various active layer thicknesses. Although the measured conductivity monotonously
increases with increasing doping concentration, the mobilities decrease, in agreement with previously published
work. Additionally, we developed a simple yet quantitative model to rationalize the results on basis of a
modification of the density of states (DOS) by the Coulomb potentials of ionized dopants. The DOS was
integrated in a three-dimensional (3D) hopping formalism in which parameters such as energetic disorder,
intersite distance, energy level difference, and temperature were varied. We compared predictions of our model
as well as those of a previously developed model to kinetic Monte Carlo (MC) modeling and found that only
the former model accurately reproduces the mobility of MC modeling in a large part of the parameter space.
Importantly, both our model and MC simulations are in good agreement with experiments; the crucial ingredient
to both is the formation of a deep trap tail in the Gaussian DOS with increasing doping concentration.
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I. INTRODUCTION

Molecular doping is an effective way to greatly increase the
conductivity of organic semiconductors, which is more and
more used in applications such as light emitting diodes, solar
cells, and thermoelectric generators [1–5]. It has been found
that a conductivity increase of four orders of magnitude or
more can be achieved for various polymer/molecular dopant
systems [6–8]. In a number of papers, a formal description
of this behavior is presented, but convergence regarding the
preferred formalism has not yet been reached [9–14]. A focus
of research thus far has been to explain the nonmonotonic
dependence of the carrier mobility on the dopant concentra-
tion, which is consistently observed in experiments. Poly(3-
hexylthiophene) (P3HT) has been the key model system for
investigating the effect of molecular doping. The evolution of
the conductivity with increasing doping consistently exhibits
a roughly log-linear behavior, with two distinct regimes
characterized by a difference in inclination. Experimentally, it
has been found that the hole mobility decreases with increasing
doping level at low to moderate doping, before increasing
steeply at higher doping levels, such that the conductivity
increases sublinearly at first and superlinearly at higher doping
levels. Both conductivity and mobility exhibit a maximum at
around 20% dopant concentration, and a third regime may be
defined beyond that level in which mobility and conductivity
rapidly decrease [7,8]. Additionally, the magnitude of the
mobility depends strongly on the regio-regularity of P3HT and
has been found to increase over several orders of magnitude
with crystallinity [15]. However, the nonmonotony of the
mobility remains. In a first attempt to theoretically treat
this effect of doping on the mobility in disordered organic
semiconductors, Arkhipov et al. assumed that ions introduced
by doping act as Coulombic traps that sit deep in the tail of
the density of states (DOS) of the intrinsic system [11,12].
Upon adding dopant ions, shallow hopping sites are converted
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into deep sites, thereby broadening the tail of the DOS
and decreasing the mobility. Simultaneously, the number of
additional charge carriers increases with doping, which results
in a sublinear increase of conductivity. At higher doping levels,
the Coulomb potentials of the individual doping-induced traps
start to overlap, thus smoothing out the energy landscape with
every added dopant ion, thereby making it easier for a carrier
to escape the trap. This circumstance in combination with
the filling of the low-mobility tail states by the additional
doping-induced free charges leads, in this model, to the
increase of the conductivity at high doping ratios. This model
aims to describe both the field and temperature dependence
of the mobility as well as the nonmonotonous behavior of the
mobility upon molecular doping and has been successfully
fitted to experiments by Pingel et al. [16] and Pingel and
Neher [17].

Intriguingly, Zhang and Blom [13] and Maennig et al. [9]
could accurately describe the concentration, field, and tem-
perature dependencies of the p-type conductivity in tetrafluo-
rotetracyanoquinodimethane (F4TCNQ)-doped organic semi-
conductors on the basis of models that do not account for
modification of the DOS by the potential of the ionized
dopants and that therefore predict a monotonous increase of
the mobility with doping concentration due to state filling
effects. These models were extended by Schmechel [10] and
later Tietze et al. [18,19] by phenomenological inclusion
of dopant-induced trap levels inside the bandgap. None of
these models has been benchmarked against numerically exact
kinetic Monte Carlo (MC) or similar calculations.

Here, we give a simple yet quantitative analysis of the
impact of doping on the hole mobility in organic disordered
semiconductors, based on a new model that assumes a
doping-induced modification of the intrinsic Gaussian DOS.
This model accurately reproduces the mobility of kinetic
MC modeling in a large part of the parameter space, in
contrast to the model by Arkhipov et al. [11,12]. In addition,
the experimental mobility of P3HT doped by F4TCNQ was
investigated by varying the doping concentration from ultralow
(10−5) to high (10−1); the results, showing a nonmonotonic
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concentration dependence of the mobility, are found to be
in good agreement with the new model and MC modeling.
Finally, we found that the accurate measurement of the doping-
induced Ohmic conductivity in diode-type devices requires a
minimum film thickness that depends on concentration.

Above, and in the following, we follow literature convention
to use the term doping for all guest (F4TCNQ) concentrations,
even though, strictly spoken, this is incorrect. At guest
concentrations around and above 10−1, transport between
guest sites becomes relevant, and the system should rather
be considered a blend with transport dominated by the merged
DOS of both materials.

II. RESULTS AND DISCUSSION

A. Model description

In this paper, two simple analytical models for the conduc-
tivity σ and mobility µ are compared with brute force kinetic
MC simulations. All simulations are based on a hopping
formalism that takes the specific shape of the density of single
particle states g(E) as input along with physical parameters.

The hopping formalism is based on the Mott-Martens model
as described by Coehoorn et al. [20] and that was previously
used to calculate the transfer characteristics of field effect
transistors [21,22]. In this model, the conductivity is calculated
from a Miller-Abrahams-type expression

σ = σ0 exp

(
−2αR∗ − E∗ − EF

kBT

)
, (1)

with σ0 being a conductivity prefactor. The conductivity
determining hops are assumed to take place over a distance
R∗ and to go from the Fermi energy EF to an energy E∗. R∗
and E∗ are related through the DOS g(E) as

BC = 4

3
π (R∗)3

∫ E∗

EF

g(E)dE, (2)

where BC = 2.8 is the critical number of bonds on the
percolating network. For variable range hopping systems,
the conductivity is obtained by maximizing Eq. (1) under
the condition set by Eq. (2). As nearest-neighbor hopping
models are found to give an excellent description of the charge
transport in disordered organic semiconductors [20,23], we
shall benchmark our models to a kinetic MC model based on
nearest-neighbor hopping that will be described below. In this
case, R∗ = aNN, it is more appropriate to drop Eq. (2) and
assume hops take place to a fixed critical energy Ecrit. For
a purely Gaussian DOS of width σDOS and Millar Abrahams
hopping on a cubic lattice, Cottaar et al. have shown that
Ecrit = −0.491σDOS below the center of the DOS [24]. Here,
we assume that this relation also holds for densities of states
that are perturbed by the presence of ionic species, i.e.,
E∗ = Ecrit. For the asymmetric DOS derived below, E∗ is
calculated with respect to the DOS maximum.

Both analytical models are based on the idea that the
original Gaussian DOS

gi(E) = Ni√
2πσDOS

exp

(
− (E − Ei)2

2σ 2
DOS

)
, (3)

with Ni being the total DOS and Ei being the central highest
occupied molecular orbital (HOMO) or lowest unoccupied
molecular orbital (LUMO) energy of the considered band,
is extended towards low energies by the attractive Coulomb
potential of ionized dopants.

The first analytical model (model I) follows the work of
Arkhipov et al. in Ref. [12]. This model was recently used
by Pingel and Neher to successfully interpret the concen-
tration dependence of the conductivity of F4TCNQ-doped
poly 3-hexylthiophene (P3HT) [17]. For completeness, the
key expressions will be given here. The randomly dispersed
ionized dopants give rise to a correlated potential landscape of
Coulomb traps separated by barriers of height �. It is assumed
that (i) every Coulomb trap can be replaced by a single deep
localized state nearest to the ionized dopant and (ii) the energy
of this site is a sum of the intrinsic disorder energy and the
barrier � [12]. The DOS then becomes

g(E) = Ni − Nd

Ni

gi(E) + Nd

Ni

gi

(
E + q2

4πε0a
+ Um

)
, (4)

with Nd being the doping density. As a is the typical distance
between the dopant ion and the trapped charge carrier, the
second term between brackets can be associated with the bind-
ing energy, Ebinding, between the dopant ion and the charge
carrier. Um is the maximum of the net potential formed by the
overlapping Coulomb potentials of neighboring dopant ions in
the presence of an externally applied electrostatic field [12].
Qualitatively, Eq. (4) describes the DOS of a doped organic
semiconductor as a slightly reduced intrinsic DOS gi(E) plus
a smaller, downward shifted copy of gi(E). The magnitude of
this copy is proportional to the doping concentration; its down-
ward shift gets smaller with increasing doping concentration
and electric field. Hence, the doping-induced traps get more
abundant but shallower with increasing doping concentration.

The second analytical model (model II) employs a DOS
that was obtained by Arkhipov et al. by statistical evaluation
of all possible separation distances between a charge and the
nearest dopant ion [11]. Using the probability distribution to
find the nearest doping ion at a distance r to weigh the Coulomb
interaction, EC(r) = −q2/4πε0εrr leads to the following
energy distribution function in the doped material [11],

g(E) = A

∫ 0

−∞

dEc

E4
C

exp

(
A

3E3
C

)
gi(E − EC), (5)

with A = 4πq6Nd

(4πε0εr )3 and εr being the relative dielectric constant
of the semiconductor, here taken as 3.6. In its original shape,
Eq. (5) cannot account for energy level differences between
the dopant and the semiconductor, �E = Ed − Ei with Ed

being the relevant energy level of the dopant. Defining E1 =
EC(N−1/3

i ) as the Coulomb energy, one lattice constant away
from the ionized dopant we write for the DOS

g(E) = Ni − Nd

Ni

A

∫ 0

E1

dEc

E4
C

exp

(
A

3E3
C

)
gi(E − EC)

+Nd

Ni

A

∫ E1

−∞

dEc

E4
C

exp

(
A

3E3
C

)
gi(E−�E − EC).

(6)

235203-2



IMPACT OF DOPING ON THE DENSITY OF STATES AND . . . PHYSICAL REVIEW B 93, 235203 (2016)

Qualitatively, Eq. (6) implies that within a radius aNN =
N

−1/3
i from the dopant, the original semiconductor is replaced

by an (effective) dopant, consisting of an energy level at Ed and
an ion. For simplicity, the disorder in the dopant site energies is
assumed to be equal to that of the semiconductor. The on-site
Coulomb binding energy EC(0) will in actual devices be of
the order of −0.5 . . . −1 eV, which is easily implemented by
setting the lower limit of the integral in the second term in
Eq. (6) to EC(0).

The kinetic MC model has been extensively described
before [25,26]. In brief, it accounts for nearest-neighbor
hopping with Miller-Abrahams rates, c.f. Eq. (1), on a simple
cubic lattice with lattice constant aNN. Site energies are
randomly drawn from a purely Gaussian DOS and corrected
for external fields and the Coulomb interactions with all
charged (electronic and ionic) particles. Coulomb interactions
are exactly accounted for and updated upon every move of
an electronic charge. The modification of the Gaussian DOS
by the ionic charges is therefore exactly accounted for instead
of through the approximations [Eq. (4) or (6)]. The on-site
charge-ion Coulomb interaction EC(0) is truncated at −0.5 eV
in analogy with the exciton binding energy.

For quantitative comparison with the kinetic MC model,
the conductivity prefactor σ0 in Eq. (1) is calculated from the
Einstein relation as

σ0 = nμ0 = n
a2

NNν0

6kBT
, (7)

with ν0 as the attempt-to-hop frequency and n as the charge car-
rier density that is set equal to the doping concentration Nd−,
i.e., full integer charge transfer (CT) is assumed [8,17,27]. For
both the analytical models and MC, mobilities are calculated
from conductivities by dividing by the dopant concentration,
giving the mean mobility for all available charges.

In the standard parameter set that is used unless indicated
otherwise, the attempt to hop frequency ν0 = 1e-11 s−1;
intersite distance aNN = 1.8 nm; Gaussian disorder σDOS =
0.075 eV; temperature T = 300 K; energy level difference
�E = 0; Ebinding = −EC(0) = 0.5 eV.

B. Hole mobility

In Fig. 1, the hole mobility calculated from model I for
various values of the energetic disorder σDOS is compared to
the results of the MC simulation. While the aforementioned
nonmonotony of the mobility over the relevant doping range is
present in both cases, model I deviates significantly from the
exact MC simulation. Also, when varying other parameters like
the HOMO-LUMO difference (�E) and the intersite distance
(aNN), it was found that the mobility calculated from model
I was inconsistent with MC modeling, as shown in Figs. S1
and S2 in the Supplemental Material [28]. The reason that this
model fails will be discussed in a later section.

It is important to note that the failure of model I is not due to
the hopping model [Eqs. (1)–(3)]. To this end, we calculated
mobilities vs free charge concentration for a wide range of
parameters from both Eq. (1) and MC. By free, we mean
charges that are not accompanied by an ion, so the intrinsic
DOS [Eq. (3)] is used. The results in Figs. S4–S7 in the

-1

FIG. 1. Hole mobility from model I (solid lines) and MC (dots)
using the standard parameter set. Energetic disorder is σDOS =
0.05 eV (black), 0.075 eV (red), and 0.1 eV (blue).

Supplemental Material [28] show almost exact correspondence
between the two.

We noticed that it is possible to reproduce the mobilities
generated by MC by freely varying the parameters in model I,
as shown in Fig. S3 (Supplemental Material [28]) but that the
parameters extracted from this procedure deviate significantly
from those used as input in the MC calculations. Model I
may therefore give erroneous and/or misleading results when
applied to real experiments.

In Fig. 2, the hole mobility calculated from model II and the
MC simulation are plotted against doping concentration and
parametric in energetic disorder, HOMO-LUMO difference,
intersite distance, and temperature. The MC data set shown
in Fig. 2 is the same as in Fig. 1. We consistently found that
model II quite accurately reproduces the mobility of the MC
modeling in a large part of the parameter space.

Figure 2(a) shows the hole mobility dependence on doping
concentration for different values of the intrinsic energetic
disorder. It is well known that the mobility decreases as disor-
der increases [20,23]. However, at high doping concentration
the width of the DOS, and thereby the disorder, is dominated
by the aforementioned broadening due to dopant ions, and
the dependence of the mobility on intrinsic disorder can be
expected to become reduced or to even vanish entirely. As
can be seen in Fig. 2(a), this effect is quite well reproduced
in both model II and the MC simulation. Also, the previously
described nonmonotony of the mobility is well reproduced in
Fig. 2(a), where the hole mobility decreases between a doping
ratio of 10−6 to 10−2, before increasing at around 10−1 for both
model II and the MC modeling. It is noteworthy that while the
mobility decreases by almost two orders of magnitude for the
smallest disorder, it only decreases by about a factor of 2 for
the largest disorder. This behavior can be explained by the fact
that in the low to medium doping regime where dopant ions
broaden the DOS towards the tail of the intrinsic DOS, the
broadening due to doping is less relevant for an intrinsic DOS
that is already relatively broad.
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FIG. 2. Dependence of hole mobility on doping concentration from model II (solid lines) and MC (dots) for different parameters: (a)
energetic disorder: σDOS = 0.05 eV (black), 0.075 eV (red), and 0.1 eV (blue); (b) energy level difference: �E = −0.2 eV (black), 0 eV (red),
and 0.3 eV (blue); (c) intersite distance aNN = 1.0 nm (black), 1.8 nm (red), and 3.0 nm (blue); (d) temperature: T = 200 K, 225 K, 250 K,
275 K, 300 K, 320 K, and 340 K.

Figure 2(b) shows the doping dependence of the hole
mobility for various energy level differences �E between
the HOMO of the host material and the LUMO of the dopant
material. Here, �E > 0 means that the host material’s HOMO
is above the dopant’s LUMO, which allows electrons to easily
transfer to the dopant, thereby increasing the hole density
in the host material and enhancing mobility. In the opposite
case, when the host material’s HOMO is below the dopant’s
LUMO (�E < 0), it becomes harder for electrons to transfer
to the dopant. Therefore, the hole mobility at �E = 0.3 eV
is highest among the three situations. The nonmonotonous
relationship between mobility and doping concentration is
observed regardless of the energy difference. Irrespective of
�E, model II accurately reproduces the MC modeling.

The hole mobility dependence on doping concentration for
different intersite distances is shown in Fig. 2(c). Clearly there
are large discrepancies between model II and MC simulations,
with the notable exception of the line corresponding to an
intersite distance of 1.8 nm. We believe this to be due to
the correlations between the site energies due to the long-
range nature of the Coulomb potential that are ignored in
Eqs. (5) and (6), as pointed out by Arkhipov [11]. Especially

at shorter intersite distances, when the Coulomb energy is large
compared to the other energy scales in the system, it may be
expected that ignoring these correlations leads to a significant
overestimation of the effect of the ionic potentials and thus
to an underestimation of the mobility. For comparison, for
intersite distances aNN = 1.0 nm, 1.8 nm, and 3.0 nm, one has
E1 ≈ 0.40 eV, 0.22 eV, and 0.13 eV, respectively. Luckily, in
previous papers, we found that an intersite distance aNN =
1.8 nm gives an accurate description of many phenomena in
organic semiconductor devices [25,26].

In organic semiconductors, temperature is known to have
a considerable influence on the mobility, and its effect for the
present case is shown in Fig. 2(d). As expected, increasing the
temperature results in an increase of the hole mobility between
200 K to 340 K. Inspecting the deviations between the model
II outcomes and MC simulations at the lowest temperatures,
we notice a striking similarity with the deviation at longer
intersite distance in Fig. 2(c) (blue line and symbols). This
might point at a similar underlying cause, correlation effects
being neglected in the present simplified model. Speculating,
the results in Figs. 2(c) and 2(d) hint at a criterion of the
shape E1/(σ 2/kBT ) ≈ 1 for cancelation of errors related to
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ignoring correlation effects. For comparison, at T = 300 and
200 K, one has σ 2/kBT ≈ 0.22 eV and 0.33 eV, respectively.
A further analysis of correlation effects is postponed for a
future work.

Summarizing the observations in Fig. 2, we see that our
simple model II provides a rather accurate description of the
numerically exact MC calculations in a significant and relevant
part of the parameter space. In particular, the nonmonotonic
dependence of mobility on doping concentration is a robust
observation.

C. Charge carrier positions

Before turning to the charge distribution in energy space,
it is interesting to briefly inspect the spatial distribution of
the charge carriers with respect to the doping ions. In Fig. 3,
we plotted the fraction of charges that sit at the position of a
dopant ion; that sit one site away from a dopant, which we will
refer to as the CT position [29]; and that are free, i.e., sitting
elsewhere. Beyond a concentration ∼10−2, the free fraction
decreases steeply for the simple statistical reason that there
are hardly any sites left in the system that are not a dopant or a
CT site. However, also at lower concentrations, the fraction of

free charges decreases with increasing dopant concentration.
This trend seems opposite to one of the key assumptions
in model I, namely that the increased overlap between the
Coulomb potentials of neighboring dopants smoothes out the
total potential, facilitating escape from the Coulomb traps and
thereby increasing the mobility. We suspect, however, that
this effect is still operational but counteracted by the fact
that with increasing concentration the time between escape
from one Coulomb trap and capture by another also decreases:
Although the time spent at an individual dopant site during a
specific event goes down with doping concentration, the total
time spent at dopant sites in general goes up.

Even though our simulations assume that all dopants
produce a charge carrier, one can loosely define a doping
efficiency from the data in Fig. 3, e.g., as the fraction of free
charges or the fraction not sitting at a dopant site. Irrespective
of the precise definition, this doping efficiency is substantially
below unity in a large fraction of the parameter space.

D. Density of states

In order to further understand the differences between
analytical models I and II, we compare the corresponding

FIG. 3. Fraction of carrier charges at various positions: at dopant ions (solid lines), at CT position (dashed lines) and free (dots) vs doping
concentration from MC for the same parameters as Fig. 2. (a) Energetic disorder: σDOS = 0.05 eV (black), 0.075 eV (red), and 0.1 eV (blue);
(b) energy level difference: �E = −0.2 eV (black), 0 eV (red), and 0.3 eV (blue); (c) intersite distance: aNN = 1.0 nm (black), 1.8 nm (red),
and 3.0 nm (blue); (d) temperature: T = 200 K, 225 K, 250 K, 275 K, 300 K, 320 K, and 340 K.

235203-5



GUANGZHENG ZUO, HASSAN ABDALLA, AND MARTIJN KEMERINK PHYSICAL REVIEW B 93, 235203 (2016)

. . . . . . . .

FIG. 4. DOS for different doping concentrations from (a) model I [Eq. (4), solid lines]; (b) model II [Eq. (6), solid lines], and MC (dashed
lines) with the standard parameter set. The insets show the full energy scale.

approximate densities of states with the numerically exact
DOS that is extracted from the MC simulation by a simple
counting and binning procedure. The results are plotted in
Fig. 4. Fermi levels are calculated separately in the three
different models.

The key assumption in model I is that the Coulomb potential
of each ion gives rise to a single trap site that shifts the original
site energy by a certain amount that is equal for all dopants
(but depends on concentration and field). Hence, they form
a second Gaussian trap DOS distribution and do not affect
the main intrinsic peak in the DOS distribution apart from a
trivial downscaling. Neither the width of the intrinsic DOS
nor the width of the trap DOS is assumed to depend on doping
concentration. This is at odds with the actual DOS, as obtained
from MC. As the critical hop in our transport model takes place
between the Fermi energy and a state that sits roughly σDOS /2
below the center of the main peak, the shape of the low-energy
half of the main DOS peak is critical; deviations below EF

only matter when they lead to an erroneous position of EF .
Hence, on the basis of the deviating shape of the DOS, as
predicted by Eq. (3), it may be expected that only at the lowest
concentration (10−5) the mobility prediction of model I will
be accurate; at higher concentrations, the underestimation of
the actual DOS width will lead to an overestimation of the
mobility. The red line in Fig. 1 shows that this indeed is the
case.

In model II, the ionic Coulomb potentials have the double
effect on the DOS of adding a deep tail and to broadening
the main peak. Both effects can also be seen in the MC
simulations in Fig. 4(b); only for concentrations above ∼10−3

do deviations between the two become appreciable, in qual-
itative agreement with the trends in the mobility, c.f. the red
lines and symbols in Fig. 2. The agreement and deviations in
DOS shape at lower and higher concentrations, respectively,
rationalize the consistent agreement and deviations between
model II and the MC simulations at these limits. The roughly
exponential shape of the dopant-induced tail states is likely
the reason for the apparent success of mobility models that
phenomenologically include an exponential or broad Gaussian
tail of dopant-induced states [10,18,19]. Finally, we note that
the strongest increase in effective width of the DOS occurs
at the highest doping concentrations, in line with the results

reported by Mityashin et al. on basis of a more detailed
atomistic model [14].

E. Experiments

Hole-only devices were fabricated based on F4TCNQ
(LUMO: −5.24 eV) [30] doped P3HT (HOMO: −5.0 eV) [31].
To not obscure subtle yet important deviations from a strictly
linear increase of the conductivity with doping concentration,
we divided the measured Ohmic conductivity by the nominal
doping concentration, giving an observable with the dimension
of a mobility. Importantly, this mobility is directly comparable
with the one from the simulations discussed above. In the
case of integer CT with (nearly) unity efficiency, as has been
observed for the P3HT:F4TCNQ system [8,17,27], this is the
actual mobility averaged over all charge carriers.

In order to avoid thickness-affected conductivities, we have
investigated devices with various thickness of active layers. In

-1

FIG. 5. Hole conductivity of P3HT vs F4TCNQ concentration
for different film thicknesses (symbols, solid lines connect the data
points, thicknesses: 50 nm, 150 nm, 265 nm, 360 nm, and 2.5 µm).
The dotted line is a manual spline through the data.
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Fig. 5, the conductivity measured for P3HT is plotted against
F4TCNQ dopant concentration for various film thicknesses.
Remarkably, the conductivity is especially sensitive to thick-
ness in the ultralow doping range around 10−5, the conductivity
of thin films (50 nm) being more than two orders of magnitude
higher than that of thick films (2.5 µm). It has previously
been shown that diffusion of carriers from Ohmic contacts
into the material creates a zone of increased conductivity
close to the contacts [32]. For very thin films, this zone of
extrinsic carriers fills a significant portion of the film leading
to a greatly increased conductivity, as seen in Fig. 5. As a
consequence, the conductivity remains relatively independent
of doping concentration until the density of doping-induced
charge carriers has surpassed the thickness dependent density
of carriers injected from the contacts, at which point a steep,
and thickness independent, increase is observed. Finally, the
fact that the conductivity of undoped P3HT is a little bit higher
than that of the low doped films is attributed to the Coulomb
trap formation by dopant ions, which is extensively discussed
above.

We have used the trend line in Fig. 5 to calculate
the thickness-independent hole mobilities shown in Fig. 6.
The mobility calculated from model II (lines) with �E =
0.2-0.3 eV shows excellent agreement with the experimen-
tal data in the low doping regime from 10−5 to ∼10−3

where, as anticipated, the mobility slowly decreases with
doping concentration. It should be stressed that no fitting
was done to match the shape of the model curves to the
experiment—only the attempt to hop frequency ν0 was set to
the reasonable value of 5×109 s−1 to scale the absolute values.
Otherwise, the model parameters have been chosen according
to values commonly reported in literature for this type of
system.

At high doping concentrations, the experimentally observed
hole mobility decreases more strongly with an increasing
amount of dopant. We believe this to be due to aggregation

-1

FIG. 6. Ohmic mobility dependence on F4TCNQ concentration
from experiments (black dots) and calculated from model II (solid
lines) with different energy level differences (�E = 0, 0.1, 0.2, 0.3,
0.4, and 0.5 eV). For P3HT:F4TCNQ �E ≈ 0.24 eV.

of F4TCNQ, setting in at concentrations around 10−2 [7]. In
this context, dopant aggregation may be expected to have
two effects on charge transport. First, it may destroy the
crystalline morphology of the P3HT film, which can decrease
the mobility. Secondl, it reduces the effective number of
dopants, assuming an F4TCNQ complex can only be singly
ionized.

III. CONCLUSIONS

The hole mobility of p-type doped organic disordered
semiconductors has been systematically analyzed by means
of two analytical models, differing in the effect that the
introduction of doping has on the intrinsic DOS distribution.
While model I assumes that dopants create a second Gaussian
DOS separate from the intrinsic DOS, model II assumes that
doping causes a gradual broadening and the development of
tail states. We compared both models to kinetic MC modeling
of the same material as well as to measurements of F4TCNQ-
doped P3HT films. We find that model II accurately reproduces
the doping dependence of mobility from MC modeling in a
large part of the parameter space, while model I fails to do
so. Furthermore, model II and MC modeling are in good
agreement with experimental data, with some deviation in
the high doping regime due to F4TCNQ aggregation. In our
diode-type devices, the conductivity is very sensitive to the
thickness of the active layer, especially at ultralow doping
regime, owing to additional charges diffusing in from Ohmic
contacts.
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APPENDIX: EXPERIMENTS AND METHODS

1. Materials

Poly(3-hexylthiophene-2,5-diyl) (rr−P3HT, Mr=166.3/
repeat unit) and 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoqui-
nodimethane(F4TCNQ, Mr = 276.15/repeatunit) were
purchased from Sigma-Aldrich. F4TCNQ was dissolved in
o-DCB to make different solutions with concentrations from
1 mg ml−1 to 10−4 mg ml−1. P3HT was dissolved in chloro-
form (CF) and added to the solution of F4TCNQ to get a doping
range from 10−5 to 10−1 (molar ratio). At the same time, we
changed the concentration of P3HT in CF and the spin-coat
speed used for the deposition of the active layer to get different
thicknesses.

2. Device fabrication and measurement

Hole-only devices were fabricated with following structure:
ITO/PEDOT:PSS (4083, 40 nm)/P3HT : F4TCNQ/Mo2O3

(5 nm)/Al (90 nm). The active layers were spin-coated
on the top of PEDOT:PSS film, and the thickness was
50 nm to 2.5 µm, as measured with a Dektak surface
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profilometer. After that, the Al-contact was evaporated under
the pressure of 1×10−6 mbar. The current-density vs voltage
curves of all devices were measured in ambient air with a
Keithley 2400.

Kinetic MC calculations were performed at doping con-
centrations of 10−5, 10−4, 10−3, 10−2, and 10−1 on boxes

containing (100×100×100), (50×50×40), (20×20×25),
(10×10×10), and (10×10×10) sites, respectively. Other data
points where generated by linear interpolation. For each
concentration, results where averaged over at least 10 random
configurations. Typically 107 hopping events where considered
in each configuration to assure steady state had been reached.
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