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We propose a general-purpose semilocal/nonlocal exchange-correlation functional approximation, named
mBEEF-vdW. The exchange is a meta generalized gradient approximation, and the correlation is a semilocal and
nonlocal mixture, with the Rutgers-Chalmers approximation for van der Waals (vdW) forces. The functional is
fitted within the Bayesian error estimation functional (BEEF) framework [J. Wellendorff et al., Phys. Rev. B 85,
235149 (2012); J. Wellendorff et al., J. Chem. Phys. 140, 144107 (2014)]. We improve the previously used fitting
procedures by introducing a robust MM-estimator based loss function, reducing the sensitivity to outliers in the
datasets. To more reliably determine the optimal model complexity, we furthermore introduce a generalization
of the bootstrap 0.632 estimator with hierarchical bootstrap sampling and geometric mean estimator over the
training datasets. Using this estimator, we show that the robust loss function leads to a 10% improvement in
the estimated prediction error over the previously used least-squares loss function. The mBEEF-vdW functional
is benchmarked against popular density functional approximations over a wide range of datasets relevant for
heterogeneous catalysis, including datasets that were not used for its training. Overall, we find that mBEEF-vdW
has a higher general accuracy than competing popular functionals, and it is one of the best performing functionals
on chemisorption systems, surface energies, lattice constants, and dispersion. We also show the potential-energy
curve of graphene on the nickel(111) surface, where mBEEF-vdW matches the experimental binding length.
mBEEF-vdW is currently available in GPAW and other density functional theory codes through Libxc, version
3.0.0.

DOI: 10.1103/PhysRevB.93.235162

I. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT) [1,2] has
become a nearly ubiquitous tool in materials science [3].
KS-DFT provides a framework for how to approximate the
many-body problem by introducing the exchange-correlation
(XC) functional, for which the exact form is unknown. The
usefulness of KS-DFT therefore relies on finding good XC
functional approximations. This can be accomplished by
constraint satisfaction, using model systems, or empirically
by fitting to experiments or higher-accuracy computations [4].
The XC functional is, however, only useful if we can use it to
accurately predict material properties other than the systems
used for the fitting. For empirical functional development, it
is therefore necessary to use fitting methods that ensure such
transferability [5,6].

Fitting an empirical functional requires the following: (1)
choosing a proper model space, (2) gathering accurate and
descriptive training data, and (3) selecting the optimal model
within the model space that neither under- nor overfits the
training data [7]. An often ignored problem is how outliers
in the training data can influence the optimal model choice.
In this work, we will introduce a fitting procedure with robust
regression that is resilient to such outliers, and use it to produce
a high-performing XC functional for heterogeneous catalysis
studies.

*keld@stanford.edu; keld.lundgaard@gmail.com
†bligaard@slac.stanford.edu

When we apply KS-DFT predictions, we need to address
the unavoidable inaccuracy due to an approximative XC
functional. To this end, a framework for Bayesian error esti-
mating functionals (BEEFs) was developed, where a functional
ensemble would allow for error estimation [8]. Two BEEF
family functionals were later produced, named BEEF–van der
Waals (BEEF-vdW) [9] and meta-BEEF (mBEEF) [7]. These
were both optimized as general-purpose functionals for surface
science studies by fitting highly parameterized functional
forms to training datasets including bulk properties, gas-
phase molecular chemistry, and surface chemistry. The error
estimating capabilities of these functionals have since been
utilized in several surface science studies [10–13]. We here
refine the previously used fitting procedure and fit a functional
within an expanded exchange-correlation functional model
space.

The model space complexity of the XC functionals is com-
monly classified through a functional ladder, with increased
complexity at higher rungs [14]. At the lowest rung, only local
electron density is used in the XC functional; next, one includes
semilocal information, i.e., derivatives of the electron density;
and finally, fully nonlocal information is included, first for
the electron density and then for the wave functions. Higher
complexity leads to higher computational cost, but allows for
a more accurate functional, which can overcome the otherwise
inevitable compromises between describing different material
properties [7,15].

In this work, we focus on fitting on the semilocal meta-GGA
rung for exchange, which uses as ingredients the density,
the density gradient, and the Kohn-Sham kinetic energy
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density. For correlation, we will also consider the nonlocal
density-density overlap. Higher-rung functionals that use the
nonlocal exact exchange are so computationally demanding
that they become unfeasible for most heterogeneous catalysis
studies [16]. For recent advancements in the development of
meta-GGA functionals, both empirical and nonempirical, see
Refs. [6,17–26].

The BEEF-vdW [9] functional was fitted within semilocal
generalized gradient approximation (GGA) for exchange,
which depends on the electronic density and its derivative.
Its correlation was a fitted mixture of a local density approxi-
mation (LDA), semilocal GGA, and nonlocal correlation of
Rutgers-Chalmers approximation for van der Waals forces
[27,28]. The mBEEF [7] functional was fitted within the meta
generalized gradient approximation (MGGA) for its exchange,
which includes the kinetic energy density such that the model
can distinguish between different types of electron orbital
overlap [29], and it uses a GGA-type correlation.

A limited model space for the XC approximation means that
the XC functional creator will make compromises between the
accuracy of predicting different material properties [7]. For
the BEEF functionals, the compromises can be summarized as
follows. BEEF-vdW [9] has a high accuracy on chemisorption
systems compared to semilocal functionals and reasonable
accuracy on dispersion systems relative to other GGA-vdW
functionals. However, BEEF-vdW has a lower accuracy on
lattice constants and surface energies compared to the best
semilocal functionals, which is generally true for most GGA-
vdW functionals [9,30]. The mBEEF [7] functional has a high
accuracy on both chemisorption energies and lattice constants
relative to other semilocal functionals, and thereby overcomes
the limits of GGA-type exchange functionals. However, its
accuracy is limited on binding energies for systems where
long-range dispersion is important compared to GGA-vdW
functionals, which could be attributed to a lack of a van der
Waals correlation term. A BEEF functional that combines
the model spaces of BEEF-vdW and mBEEF is therefore a
logical step forward as such a functional should be able to
achieve a high accuracy on chemisorption, dispersion, and
lattice constants simultaneously.

In this work, we parametrize the XC functional model space
of MGGA exchange and correlation with nonlocal van der
Waals correction. Within this model space, we fit a functional
using a robust fitting procedure with a cost function using
a product of robust loss functions for the training datasets,
and regularization with a nonsmoothness penalty on the fitting
coefficients. For choosing the regularization strength, we use
a generalization of the bootstrap 0.632 estimating prediction
error with geometric mean over datasets and hierarchical
sampling. We name this functional mBEEF-vdW and we
propose that it is a computationally efficient and generally
applicable exchange-correlation functional for heterogeneous
catalysis.

The structure of the paper is the following. In Sec. II,
we present the methods used for fitting the mBEEF-vdW
functional including the parameter space, the training datasets,
and the model selection procedure. In Sec. III, we present
the optimization of the most important variables in the fitting
scheme. In Sec. IV, we present the mBEEF-vdW functional
form. In Sec. V, we benchmark mBEEF-vdW against popular

semilocal and nonlocal density functionals. Lastly, in Sec. VI,
we summarize, discuss, and conclude.

II. METHODS

A. Parameter space

For the parametrization of the exchange-correlation energy
functional, we use the flexible exchange energy parametriza-
tion introduced for mBEEF [7], while the correlation is
parameterized as a mixture of correlation functionals from
the literature, similar to what was done for fitting BEEF-vdW
[9].

Following the usual conventions [31], we write the ex-
change energy from the semilocal meta generalized gradient
approximation (MGGA) as an integral over the uniform
electron gas exchange energy density εUEG

x scaled with an
exchange enhancement factor Fx , hence

Ex =
∫

nεUEG
x (n)Fx(n,∇n,τ )dr, (1)

where n = n(r) is the local electron density, ∇n is the density
gradient, and τ = 1

2

∑
i,σ |∇�i,σ |2 is the semilocal kinetic

energy density, which is summed over spins σ and state labels i

for the KS eigenstates �i,σ . Atomic units are used throughout.
The enhancement factor’s parameters are made dimensionless
by introducing the reduced density gradient s = |∇n|/(2kF n)
with kF = (3π2n)

1
3 , and the reduced kinetic energy density

α = (τ − τW )/τUEG, where τW = |∇n|2/8n and τUEG =
(3/10)(3π2)

2
3 n

5
3 . With these definitions, the MGGA exchange

enhancement factor can be expressed as a function of s and α.
For our parametrization of the MGGA exchange enhance-

ment factor, we introduce the transformations ts and tα for s

and α, and expand Fx(ts ,tα) in products of one-dimensional
Legendre polynomials B of either ts or tα , similar to what was
done in Ref. [7]:

ts(s) = 2s2

q + s2
− 1, (2)

tα(α) = − (1 − α2)3

1 + α3 + α6
, (3)

Pmn = Bm(ts)Bn(tα), (4)

Fx(s,α) =
Ms−1∑
ms=0

Mα−1∑
mα=0

aMα ·ms+mα+1Pms,mα
, (5)

where ak is the kth fitting coefficient that we wish to find
with Mx = Ms · Mα , hence k ∈ {1,2, . . . ,Mx}. With the above
transformations, ts and tα are confined to the interval [−1, + 1]
on which the Legendre polynomials form an orthogonal basis.
For ts , we chose q = κ/μ = 0.804/(10/81) = 6.5124, such
that the s dependency in principle could fulfill the slowly
varying electron gas limit close to s = 0 [32]. We similarly
choose the transformation tα such that the second-order
gradient expansion can be fulfilled according to Ref. [33].

For the correlation energy, we use a parametrization given
by

Ec[n,∇n] = aLDAELDA
c + aslE

sl
c + anlE

nl
c , (6)
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where ELDA
c is the local Perdew-Wang correlation [34], Esl

c

is the semilocal (sl) correlation energy functional of either
Perdew-Burke-Ernzerhof (PBE) [35], PBEsol [36], vPBE [33],
or revised Tao-Perdew-Staroverov-Scuseria (revTPSS) [37],
and Enl

c is the nonlocal (nl) correlation energy from either
vdW-DF [28] or vdW-DF2 [27]. The correlation coefficients
take the indexes Mx + {1,2,3} in the coefficient vector a. The
parameter space for the correlation has thereby been expanded
compared to BEEF-vdW by the inclusion of a coefficient on
the term for nonlocal correlation and by using independent
fitting parameters on local and semilocal correlation [38].

B. Training datasets

We train the model on a subset of the datasets previously
introduced and used in earlier BEEF functional studies [7,9]:

RE42 42 reaction energies that represent gas-phase
chemistry [39].

CE27 27 chemisorption energies [7].

Sol54Ec Cohesive energies of 54 solids [7].

Sol58LC-dEc The derivatives of 58 cohesive energies with
respect to the crystal volumes around the
experimental equilibrium lattice constants, taken
from the Sol58LC dataset [7].

S22×5 Noncovalent interaction of the 22 intermolecular
interaction energies, with the interaction energies
of the relative distances of 0.9, 1.0, 1.2, 1.5, and
2.0 [40]. The reference values have been
corrected as in Ref. [9].

All DFT calculations were done in GPAW [41,42] and the
computational details are the same as those of Refs. [7,9].

C. Model selection

We seek the coefficient vector that gives the best performing
functional, i.e., neither under- nor overfit the training datasets.
The starting point for our fitting procedure is the least sum of
squares (LS), which we will extend to resolve its shortcomings.
With LS, we minimize the cost function C = (Xa − y)2, where
y is the target vector of length N , a is the coefficient vector
of length P , and X is the design matrix of size N × P . The
LS cost function should, in principle, be minimized by a =
(XT X)−1XT y. However, XT X can have eigenvalues close to
zero and this can lead to an overfit of the training data. The
instability can be handled by adding a second term to the cost
function, a so-called regularization term, which penalizes the
Euclidean norm of the coefficient vector. We can write the
cost function with a regularization as C = (Xa − y)2 + ω2a2,
where ω � 0 is a constant that scales the regularization penalty
[43]. This method is referred to as ridge regression and we will
refer to it as RR-LS for ridge regression with a least-sum-of-
squares loss function. We can write this cost function in the
form

C = L(a,D) + R(a,ω), (7)

where the loss term L provides a measure for how well the
model a performs on the training data D, and the regularization
term R is a measure for the model complexity [44,45].

The loss and regularization terms are balanced through the
regularization strength ω as we saw with RR-LS. To choose
the optimal regularization strength, we can use cross-validation
techniques to provide a measure for the transferable accuracy
of the model to systems that the model was not trained on, and
optimize for this measure [45].

The RR-LS method with its regularization is superior to
the LS method; however, there are a number of problems that
RR-LS cannot handle well: different scales of the training
data, weighing the penalty between different basis functions,
and outliers in the training data. To handle these problems,
we refine the RR-LS fitting procedure in the context of XC
fitting similar to the previous BEEF functional fitting studies,
but with some further advancements [7,9]. First, we will
introduce a cost function, where we use the geometric mean
to make compromises between how well we fit each training
dataset. Second, we introduce a regularization term, which uses
smoothness for penalizing the coefficients of the exchange
enhancement factor. Third, we present a new estimate for
the transferable accuracy of the fit, which we use to find
the regularization strength with a generalization of the 0.632
bootstrap estimator. Fourth, we employ a robust loss function
instead of LS to make the fit robust towards outliers in the
dataset. And fifth, we adjust the Bayesian error estimating
ensemble creation to account for the use of a robust loss
function. We introduce the third and fifth points to the present
study, whereas the first and second points are from Ref. [7].

1. Geometric mean loss function

The number of elements and the physical units in the
datasets vary. If we treat all data points equally and use
the sum of squared fitting errors over the training datasets,
we will skew the solution compromise towards the datasets
with more systems and larger absolute fitting errors unless
we add a normalization. We can, however, avoid the need
for a normalization if we use a geometric mean over the
training datasets instead of the arithmetic mean. Following the
procedure from mBEEF [7], we create an objective function
as a product over the loss functions for the datasets multiplied
by a regularization term given as


(a,ω,W) =
∏

i

Li(a)Wi · eR(a,ω), (8)

where the ith dataset has a loss function Li and a weight Wi

[46]. Compared to the form in mBEEF, we include a weighing
of the datasets similar to the fitting procedure for BEEF-vdW
[9], which allows us to tune the compromise between the
different datasets. The loss function term L could be LS or a
robust loss function, as we will show later.

However, we would like to bring the optimization problem
back to a linear form as this would allow for a simple
optimization strategy and would make the error estimation
method more straightforward. To this end, we will follow
the derivation in Ref. [7]. We can take the logarithm of

 without changing its minimum and, therefore, minimize
K = ln(
) = ∑

i Wi ln{Li(a)} + R(a,ω) instead of 
. Next,
we use the zero-gradient condition to find the minimum of K
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by solving

∂K

∂a
= 0 =

∑
i

Wi

∂ ln Li

∂a
+ ∂R

∂a
=

∑
i

Wi

∂Li

Li∂a
+ ∂R

∂a
,

(9)
where we have left out the dependencies of L and R on a and
ω. The zero-gradient condition of the RR-LS cost function
form in Eq. (7) is given by ∂C

∂a = ∂L
∂a + ∂R

∂a . Ignoring the dataset
weights, we see that the only difference between the solution to
RR-LS and Eq. (9) is the normalization by L. We can therefore
linearize our product cost function of Eq. (8) as

K̃(a; ω) =
∑

i

Wi

Li(a)

Li(a0)
+ R(a; ω) (10)

= L̃(a,a0) + R(a; ω), (11)

where the optimal solution a0 is estimated iteratively by
minimizing K̃ given a starting guess of a0. We are aware that
minimizing K̃ can result in a suboptimal solution if the cost
function of Eq. (8) has many local minima around a0; however,
this does not seem to be a practical problem for fitting our
functional as tests with different starting points resulted in the
same solution.

2. Regularization

We use a quadratic regularization term with a Tikhonov
transformation given as

R(a,ω) = [�(a − ap)]2, (12)

where ap is the origo for the regularization and �2 is the
Tikhonov matrix [44]. The Tikhonov matrix is uncoupled
between the basis functions for exchange and correlation, and
it takes the form

�2 = �2
x + λc/xIc + λI I, (13)

where �2
x is the Tikhonov matrix of the exchange basis

functions, Ic is an identity matrix over the correlation basis
functions with a scaling constant λc/x , and the identity matrix
I covers both correlation and exchange basis with a scaling
constant λI .

For the exchange part of the Tikhonov matrix �2
x , we find the

entries by calculating a two-dimensional smoothness measure,
which is given as an integral over the Laplacian ∇̃2 of the basis
functions P (ts ,tα), hence

∇̃2 = ∂2

∂t2
s

+ λα/s

∂2

∂t2
α

, (14)

�2
x,mnkl =

∫ 1

−1

∫ 1

−1
dts dtα∇̃2Pmn∇̃2Pkl, (15)

where λα/s scales the regularization penalty between poly-
nomials in ts and tα . Note that �2

x is zero for the zeroth-
and first-order terms, and the additional term λI I is therefore
included in Eq. (13) to prevent numerical instabilities.

3. Hierarchical 0.632 bootstrap prediction error estimator

To determine the optimal regularization strength ω and
compare different loss functions, we introduce a generalization
of Efron’s 0.632 bootstrap estimated prediction error (EPE)

[47]. We generalize the bootstrap sampling by sampling the
training datasets hierarchically and by using the geometric
mean over the training datasets in the bootstrap estimators.

a. The sampling procedure. We create a hierarchical
bootstrap sample b in two steps: first, we sample the training
datasets internally by randomly drawing with replacement,
and second, we randomly draw a collection of datasets with
replacement from the resampled training datasets. A bootstrap
sample b will therefore only have a subset of the original
training datasets, and each of these datasets will only have a
portion of their data points present. We have the same number
of training datasets in each sample, but these datasets vary in
size and the total number of data points in each sample will
therefore also vary.

b. The estimated prediction error. Following the original
bootstrap 0.632 procedure, we write the estimated prediction
error (EPE) as

EPE = √
0.368 err + 0.632 ERR, (16)

where err is the training error, which is the variance of the
prediction error for all training data, and ERR is the bootstrap
error, which measures the transferability through calculating
the variance of bootstrap sample predictions [45].

We define the training error (err) as the weighted geometric
mean of the mean squared error for each dataset, hence

err =
(∏

i

errWi

i

)1/
∑

i Wi

, erri = 1

Ni

(Xia − yi)
2, (17)

where a is the optimal model for all data, and i in Xi and
yi means that we take the design matrix and target vector
associated with the ith dataset.

We similarly generalize the leave-one-out bootstrap estima-
tor ERR with the geometric mean over the training datasets. For
each data point j of dataset i, we calculate the mean squared
error of the predictions from fitting to the bootstrap samples
b where the data point was not present; next, we calculate
the mean of these squared errors for each dataset; and finally,
we calculate the weighted geometric mean over the training
datasets, hence

ERR =
(∏

i

ERRWi

i

)1/
∑

i Wi

, (18)

ERRi = 1

Ni

∑
j

1

|C−(i,j )|
∑

b∈C−(i,j )

(xi,j ab − yi,j )2, (19)

where C−(i,j ) is the subset of bootstrap samples b of size
|C−(i,j )| without data point (i,j ), xi,j is the j th row of the
design matrix for dataset i, yi,j is the j th target value of dataset
i, and ab is the optimal solution for bootstrap sample b.

For a single dataset, the sampling method, ERR, err, and
EPE all reduce to the original bootstrap 0.632 formulation.

4. Robust loss function

Let us revisit the least-sum-of-squares (LS) optimization
criteria in the loss function. LS is the most popular loss function
mainly because of its computational simplicity, rather than
its optimal efficiency for regression problems with a normal
distributed noise [48]. However, LS is also very sensitive to
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outliers in the data. If we take a single training data point and
change it to an extreme value, the optimal model of LS can
become useless for reproducing the rest of the training data.
We might not even detect such outliers in the training data
because we evaluate whether data points are outliers using
a model influenced by the outliers, which creates a masking
effect [49].

We could instead use a robust estimator such as the least
median of squared residuals (LMS), which minimizes the
median of {r2

j , j = 1, . . . ,N}, where rj = xj a − yj is residual
for the j th data point [48]. Similar to LS, we find the scale
estimate of LMS by the square of this criteria, which is called
the median absolute deviation about zero. For the LMS, we
can arbitrarily change almost 50% of the training data and the
estimator will still provide a good scale estimate to the rest
of the data. We therefore say that the LMS has a breakdown
point of 50%, which is as good as you can do [50]. However,
the LMS loss function lacks a high normal efficient, meaning
that the estimate performs much worse than LS if we were to
fit data fully explained by our model space, but with a normal
distributed noise on the training data.

Other estimators have, however, been proven to achieve
both a high breakdown point and a high normal efficiency
[49]. One example is the MM-estimator, which we will use for
our loss function [51]. In the following, we will present the
MM-estimator and the S-estimator that is used as the first step
of the MM-estimator procedure, starting with the S-estimator
[52].

a. S-estimators. Both the LS and LMS estimators are
scale invariant. The S-estimator of scale is a family of
estimators where this is not the case, hence the name where
S stands for scale [52]. They were proposed on the basis
of the maximum likelihood estimators (M-estimators) [53].
For the M-estimators, we minimize

∑
j ρ(rj ), where ρ(t) is

a symmetric nonconstant function with a unique minimum
at zero and is nondecreasing with respect to |t |. LS is an
M-estimator with ρ = r2. For the S-estimator, we additionally
require that ρ is continuously differentiable, ρ(0) = 0, and that
there exists a constant k > 0 such that ρ is strictly increasing
in [0,k] and constant in [k,∞[.

A commonly used ρ-function that fulfills the S-estimator
requirements is the Tukey bisquare [49], which is defined as

ρbis(t) = min{1 − (1 − t2)3,1}. (20)

The saturation with respect to t makes the estimator robust
if the residuals are properly scaled, which is done by dividing
with an estimate for the scale σ̂ . The loss function for an
S-estimator can therefore be written as

L = 1

N

∑
j

ρ
( rj

σ̂

)
, (21)

for the scale estimate σ̂ that is found as the solution of

1

N

∑
j

ρ
( rj

σ̂

)
= δ, (22)

where δ determines the breakdown point of σ̂ . If there are more
than one σ̂ that solves this equation, then we take the smallest
of them [52]. A maximum breakdown point is obtained with

δ ≈ 0.5, with a correction that depends on the number of fitting
parameters compared to the size of the training dataset [49].

With S-estimators, it is possible to obtain either a high
breakdown point or a high efficiency, but not simultaneously
both. The S-estimator, however, provides a good starting point
for the MM-estimator, which can.

b. The MM-estimator. To simultaneously achieve a high
breakdown point and a high normal efficiency, we use the
MM-estimator where two M-estimators are used in serial
[51]. The first M-estimator ρ0 is chosen to have a high
breakdown point and the second ρ1 is chosen to have a high
efficiency. However, we constrain the second M-estimator ρ1

such that the breakdown point of ρ0 is retained by using the
scale of ρ0. The high efficiency of the second M-estimator is
obtained by introducing different normalization constants for
each M-estimator, given as ρ0(r) = ρ( r

c0σ̂
) and ρ1(r) = ρ( r

c1σ̂
).

To ensure a higher efficiency of ρ1 compared to ρ0, we
need ρ1 � ρ0 and therefore c1 � c0 [49]. We will use the
S-estimator Tukey bisquare ρbis for ρ in the MM-estimator,
and find the shared robust scale by solving Eq. (22).

c. Weighted normal equations. To solve the RR-LS-type
cost function with an S-estimator ρ-function, we can use the
iterative reweighting least squares (IRWLS) method [49]. We
first note that the solution of the RR-LS cost function can
be found in a closed form, given as a = (XTX + Iω2)

−1XT y
[44]. For the S-estimator loss function, we can create a similar
solution by introducing a weight on each system in the training
data [49,54]. These weights are calculated as

tj = rj

σ̂
, wj (tj ) = ρ ′(tj )

2tj
,

w = (w1, . . . ,wN ), W = diag(w), (23)

and are used to scale the design matrix and target vector
by X → WX and y → Wy. Differentiating the cost after the
transformations with respect to the coefficient vector a and
setting it equal to zero yields the solution

a = (XT WX + ω2I)−1XT Wy, (24)

which is a weighted version of the solution to the RR-LS cost
function. Since ρ and W (t) are decreasing functions of |t |,
observations with large residuals relative to the scale σ̂ will be
weighted down through W.

The weighted normal equation is solved through an iterative
procedure. Step 0: We initialize with a guess for a robust
solution coefficient vector. Step 1: For the coefficient vector,
we determine the IRWLS weights according to Eq. (23).
Step 2: We solve Eq. (24) and find a new coefficients vector.
Step 3: We check for convergence in the weights and terminate
if the procedure fulfills our convergence criteria or, if not, jump
back to step 1 [55]. For the S-estimator, we also determine the
scale estimate by solving Eq. (22) in step 1, whereas the scale
is fixed in ρ1 of the MM-estimator.

d. The Hessian. The Hessian for the cost function with
IRWLS weights is given as

Ĥ = X(XT WX + ω2I)−1XTW, (25)

and the corresponding number of effective parameters is found
as the trace of this Hessian, hence N̂eff = Tr(Ĥ) [45,54].
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e. Calculation procedure. We base our implementation
of the MM-estimator in our cost function on Ref. [54],
which provides a procedure with corrections for integrating
the MM-estimator loss function in a ridge-regression-type
cost function. To conform with the fitting compromise,
we introduce a bias term μ for each dataset, which we calculate
the residuals about, such that rj = yj − xj a + μ̂i for the ith
dataset. For each dataset, we estimate the location parameter
μ̂i and the scale estimate σ̂i simultaneously, using Huber’s
second method [56].

As the first step for making the MM-estimator, we need to
find the S-estimator of scale for each dataset. The IRWLS pro-
cedure for solving the S-estimator loss function, however, has
to be initiated with a good robust guess ainit for the coefficient
vector, i.e., a guess with a high breakdown point. To this end,
we take Ninit = 200 regular random bootstrap samples with
replacement from the training data and solve the regular RR-LS
cost function for each sample [57]. The regularization strength
has been determined before we initiate the MM-estimator
procedure, as we will describe later. If we have outliers in
the training data, then some of the bootstrap samples should
omit a part of or all of these outliers, and result in sensible
models. These starting guesses might not be robust enough if
the datasets were to be highly contaminated with large outliers,
but we do not expect that to be the case for our fitting problem.
For each guess, we calculate the S-estimator scales σ̂ for the
Tukey bisquare ρ-function through Eq. (22), where for the
ith training dataset we use δi = 0.5[1 − N̂eff /Tr(Wi)] and
normalize with ci,0 = 7.8464 − 34.6565 · δi + 75.2573 · δ2

i −
62.5880 · δ3

i [58]. This would, for example, yield c0 = 1.51
when δ = 0.5. From the Ninit solutions, we take the Nkeep =
25 with the lowest weighted geometric mean of the estimated
scales for the training datasets.

To find the scale estimate for the MM-estimator, we
introduce an S-estimator loss function, which we solve using
the IRWLS method for the Nkeep initial guesses. We label the
S-estimator loss function by SE, and it takes the form

Li,SE(a) = σ̂ 2
i

∑
j

ρbis

[
rj (a)

ci,0σ̂i

]
, (26)

where the σ̂ 2
i in the front of the summation is a normalization

factor introduced to make the loss function coincide with the
LS loss function when ρ(t) = t2. We update σ̂i and ci,0 in each
iteration of the IRWLS procedure according to the expressions
in the above paragraph. In the cost function, we scale ω

to match RR-LS with ω2
SE = ω2/3.43 [59]. We apply the

same scaling when using the MM-estimator loss functions. To
achieve consistent results, we converge the IRWLS procedures
to a fairly low tolerance of 5‰ on the average change and 10%
for the maximum change of the IRWLS weights [60].

From the Nkeep converged IRWLS solutions, we pick the
solution with the lowest weighted geometric mean of estimated
scales, which we call âSE with σ̂ SE . We use âSE as the initial
solution for the MM-estimator, while the scales for the second
step of the MM-estimator are found with the correction to σ̂ SE

given as

σ̂i,MM = σ̂i,SE

1 − [k1 + k2/Tr(Wi,SE)] · Neff /Tr(Wi,SE)
, (27)

where k1 = 1.29, k2 = −6.02, and Wi,SE is the part of the
converged SE IRWLS weights WSE that belongs to the ith
dataset [61]. The MM-estimator loss function is then given as

Li,MM (a) = σ̂ 2
i,MM

∑
j

ρbis

[
rj (a)

c1σ̂i,MM

]
, (28)

where we choose c1 = 3.44 as in Ref. [54] to provide a nominal
efficiency of 85% as a higher efficiency has been found to
introduce a bias. We solve the cost function with the MM-
estimator loss function using the IRWLS method similar to
that for the SE loss function, but where the scales are now kept
fixed.

f. Convergence of the regularization strength. For conver-
gence of the IRWLS weights with respect to the regularization
strength, we use the following procedure. Step 0: We initialize
with W = I. Step 1: We find the optimal regularization strength
by minimizing the EPE, where we have scaled all data points
with W in Eq. (10) with the LS loss function. Step 2: For
the optimal regularization strength, we solve with the MM-
estimator loss function, which gives us the IRWLS weights
that will make the LS loss function solve as the MM-estimator.
If the procedure has not converged, then we go back to step
1 and use the new weights to find the optimal regularization
strength again. We used a convergence tolerance of 10% on the
maximum residual change and 1% on average residual change
between the iterations. The procedure converged to fixed final
solution vector âMM and scales σ̂MM in 5–10 iterations [62].

D. Bayesian error estimation ensemble

As with previous BEEF functionals [7–9], we propose
an ensemble of functionals to be used for error estimation
of DFT predictions. We use a probability distribution P to
generate the ensemble of fluctuations δa around a0, defined as
P ∝ exp[−K̃(a)/τ ], where we have to set a “temperature” τ .
Practically, we choose τ such that the ensemble reproduces the
weighted geometric mean of the observed error for the fitted
datasets. To do this, we note that the unscaled, i.e., τ = 1,
average ensemble error for all fitted data points can be found
by yBEE =

√
Tr(XĤXT ). We label the root-mean-square error

for the observed error by RMSEobserved and for the Bayesian
error estimation by RMSEBEE . The temperature is then given
as

τ =
[(∏

i RMSEWi

observed,i

)1/
∑

Wi(∏
i RMSEWi

BEE,i

)1/
∑

Wi

]2

, (29)

where the index i is for the ith datasets. We define a scaled
inverse Hessian � that we use to create the ensemble functions
as

� = τ Ĥ−1, (30)

which has the eigenvalue decomposition �V = diag(u)V, with
the eigenvalues u on the diagonal of a square matrix with
zero nondiagonal elements and eigenvectors in the rows of the
matrix V. The ensemble functionals can then be generated as

δak = V · diag(
√

u) · rk, (31)

where rk is a Np long random vector of normal distributed
numbers (variance 1 and mean 0). For a single DFT energy, we
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can also find the average error estimate directly as
√

x�−1xT ,
where x is a vector with the basis function energies for the
converged calculation.

III. OPTIMIZING FUNCTIONAL APPROXIMATION

In the following, we show the performance sensitivity to
the most important parameters in the fitting methodology. We
set the weights Wi for the datasets to the following: 2 for
CE27 and RE42, 1 for Sol54Ec and Sol58LC, and 1

5 for each
S22 × 5 subset. The weights on S22 × 5 hence add up to 1,
which puts the full dataset on the level with Sol54Ec and
Sol58LC. The choices follow those made for BEEF-vdW in
Ref. [9], but with a higher weight on S22 × 5 because we want
to use the enlarged model space to improve prediction power
on dispersion dominated systems.

For the regularization, we use λα/s = 10 and λc/x = λI =
10−4 as those values seem to produce the lowest EPE. For
origo of the coefficients ap, we use Fx(s,α) = 1, αLDA = 0.5,
αsl = 0.5, and αnl = 1. We generate 500 hierarchical bootstrap
samples and reuse them for all regularization strengths, so that
the EPEs at different regularization strengths are comparable
[63].

A. Convergence of geometries and electronic densities

The XC functional can be optimized through a linear
fit because the total energy depends linearly on the fitting
parameters. However, this only holds if self-consistency of the
electronic density can be neglected. To address this issue, we
make two iterations of optimizing the geometries and densities
with subsequent functional fittings. In the first iteration, we
create the basis function energies for the fit using geometries
and densities from converged calculations with PBEsol [36].
We refer to the fit made on the PBEsol densities as release
candidate 1 (RC1) [64]. We then reoptimize all systems in
the training datasets with the RC1 functional and calculated
new energies for each basis function at the converged RC1
geometries and densities. For the final fit, we use the converged
densities to RC1. We refer to this fit as release candidate
2 (RC2) or mBEEF-vdW. We reoptimize all systems in the
training datasets again to the RC2 functional for the benchmark
of mBEEF-vdW. To assess self-consistency, we compare the
root-mean-square difference for each dataset between the
prediction on RC1 densities and the self-consistent result:
∼10% for Sol54Ec, <1% for the geometric mean of S22 × 5,
virtually zero for CE27, and 3% for RE42. We do not have
non-self-consistent predictions for the lattice parameters for
RC2 to compare with unfortunately.

B. Regularization strength

The effect of the regularization strength on the EPE is
shown in Fig. 1, where we find a minimum EPE at 9.8
effective parameters. The err does not change much from
around 8 effective parameters, indicating that overfitting will
not improve performance much. The ERR increases slightly
around the minimum and sharply upwards at around 13
effective parameters, indicating overfitting if we were to use
that many effective parameters. The high EPE, ERR, and err
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FIG. 1. Prediction error as a function of regularization strength.
We plot the estimated prediction error (EPE), the bootstrap error
estimation (ERR), and the training error (err) of the hierarchical
0.632 bootstrap method with weighted geometric mean. We display
the square root of the ERR and err to make them of the same units as
the EPE.

at few effective parameters shows that the performance is
drastically improved from the origo solution vector ap.

C. Correlation functions

In Table I, we show how different semilocal and nonlocal
correlation functionals affect the EPE, ERR, and err. The best
result was found with PBEsol and vdW-DF2, which has the
lowest err, ERR, and EPE, and also the lowest number of
effective parameters. We observe a spread in the EPE of about
20% between the different choices of correlation terms, and
vdW-DF2 nonlocal correlation performs better than vdW-DF
in all pairings. For vdW-DF2, one might propose that the
PBEsol correlation is favorable due to the PBEsol starting
geometries and densities. We cannot exclude that the starting
geometries and densities can play a role in what correlation
performs the best, but the geometries and densities of RC1
are significantly different from those made with PBEsol. The
starting choice therefore has a negligible effect.

It is noticed that the following pattern shows for EPE: PBE
> vPBE > PBEsol. These correlation functionals only differ
by the value of the parameter β: βPBE = 0.0667 > βvPBE >

TABLE I. Optimal EPE, ERR, and err when using different
semilocal and nonlocal correlation functionals.

Neff ERR err EPE

vdW-DF2+vPBE 10.0 256 144 222
vdW-DF2+revTPSS 12.5 272 149 235
vdW-DF2+PBEsol 9.7 249 139 215
vdW-DF2+PBE 10.1 258 146 223
vdW-DF+vPBE 11.7 298 156 255
vdW-DF+revTPSS 12.7 315 151 266
vdW-DF+PBEsol 11.9 316 152 268
vdW-DF+PBE 11.8 300 156 257
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FIG. 2. EPE as a function of the number of basis functions in the
expansion of the exchange enhancement function for the robust MM
and the LS loss functions. The optimal number of basis functions
are Ms,Mα = 5 for the MM loss function, with a 10% improvement
over the least-squares loss function minimum at Ms,Mα = 3. There
are only small variations between training error for the two loss
functions, but with the MM loss function slightly lower.

βPBEsol = 0.046. Therefore, it seems that a smaller value of β

might be able to increase the accuracy of the functional further.
It might even be fruitful to go all the way to the low-density
limit, β = 0.038, which has been used in the correlation term
of the functional SG4 [65].

D. Exchange basis size

Figure 2 shows how the number of basis functions for the
exchange expansion affects the EPE. The optimum number
of exchange parameters for the robust MM loss function is
Ms,Mα = 5, while for regular LS loss function it is Ms,Mα =
3. Comparing the lowest EPE of the MM and the LS loss
functions, we observe that using the MM estimator leads to a
reduction in EPE of 10%.

In Fig. 3, we show the training error and find that the spread
is smaller between the MM and LS loss functions, where MM
yields the lowest training error, but only by a small amount
[66].

We note that we used the full fitting procedure to determine
the optimal fits and the EPE for each basis size, and that
the EPE of MM and LS are directly comparable as only the
coefficient vectors are different in their respective estimations.

The MM method generally results in more effective
parameters than LS, and this could explain why it has a lower
err. With the LS loss function, the regularization strength
is increased to avoid overfitting as the only defense against
outliers. The MM estimator will weigh these outliers down and
will therefore not be affected by them. However, the difference
between the LS and MM loss functions is much larger for the
EPE, where we test the transferability of the fit to data outside
the training data. We reason that this is because the outliers
in the bootstrap sample do not provide a description of the
underlying model, which would be transferable to the training
data systems excluded in the sample. We therefore select more
transferable models by weighing down these outliers.

FIG. 3. Training error (err) as a function of the number of
exchange enhancement basis functions for the robust MM and the
least-squares (LS) loss functions. The MM loss function performs
better for all choices of basis sizes, but only by a small amount.

Outliers in the datasets

The IRWLS weight vector w tells us which systems the MM
loss function identifies as outliers. We can therefore compare
how affected each dataset is by their normalized sum of w
[67]. There are almost no outliers in the CE27 and RE42
datasets with

∑
w/Ni � 0.95 for both. For the two solids

datasets Sol54Ec and Sol58LC, we identify a larger number of
outliers with

∑
w/Ni equal to 0.69 and 0.65, respectively. The

S22 × 5 sub datasets also have a similar proportion of outliers,
with

∑
w/Ni ranging from 0.62 to 0.70. The outliers in the

S22 × 5 subdatasets are shared to a large extend between the
different binding lengths.

We can generally divide the cause of an outlier into three
categories: (1) Bad reference data due to inaccurate or error
prone experiments or reference computations. (2) Unfit model
systems for experiments due to, for example, not taking
into account dislocations, defects, or impurities in crystal
structure. (3) Model space deficiencies due to, for example,
self-interaction error, lack of spin-orbit coupling, convergence
issues, or too crude atomic core descriptions.

For the solids and chemisorption datasets, the outliers could
be caused by all three effects. However, for the S22 and RE42
datasets, the reference values are high-quality coupled cluster
with single, double, and partially triple excitation [CCSD(T)]
data, which we expect are much more accurate than our DFT
model. The outliers for these are therefore primarily due to a
limiting DFT model. For the latter, we would need to compare
to more sophisticated methods to determine what is the primary
cause of the outliers. Such an investigation is, however, beyond
the scope of this study.

IV. THE mBEEF-vdW FUNCTIONAL

For fitting the mBEEF-vdW functional, we used Ms =
Mα = 5, hence 25 exchange enhancement basis functions.
We therefore have a total of 28 fitting coefficients when
we include the three correlation coefficients. The correlation
basis functions are LDA, PBEsol, and the nonlocal part of
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FIG. 4. The exchange enhancement factor of mBEEF-vdW and
50 representative mBEEF-vdW ensemble functionals with reference
to a couple of popular semilocal exchange-correlation functionals.
We present cuts in the two-dimensional space of the reduced
density gradient, s, and the reduced kinetic energy density, α. The
cross section between the two cuts for, namely, α = 1 and s = 0
corresponds to the homogeneous electron gas. SCAN is found in
[21].

vdW-DF2. The parameters of the mBEEF-vdW functional
can be found in the Supplemental Material [68], but with
illustrations following here.

Figure 4 shows the exchange enhancement factor of the
mBEEF-vdW functional with a representative BEE ensemble
along common representative planes in the s,α space. The
functional parametrization cannot be defined as a composition
of a function of α and s independently, unlike MGGA
functionals such as MS0 and MS2. In Fig. 5, we therefore
include a three-dimensional (3D) visualization and observe
that the functional varies smoothly with s and α, which
was expected due to the restricted basis of the exchange
enhancement factor.

To complement the visual inspection, we here pro-
vide some relevant limits of the exchange enhancement

FIG. 5. The exchange enhancement factor of mBEEF-vdW as a
function of s and α.

factor: Fx(s = 0,α = 1) = 1.035, Fx(s = 0,α = 0) = 1.149,
Fx(s → ∞,α = 1) = 1.194, and Fx(s → ∞,α = 0) = 1.286
(maximum value). We observe that mBEEF-vdW breaks the
LDA limit (s = 0 and α = 1), but is close to MS0 in the
limits α = 0 and α → ∞ for s = 0 and for s → ∞,α = 1.
We note that the MS0 functional form was used to define
the basis functions transformation of the alpha space, which
could affect these limits. The recent MGGA functional, namely
the strongly constrained and appropriately normed (SCAN)
functional [21], deviates from mBEEF-vdW in all the previous
discussed limits.

For the correlation parameters of mBEEF-vdW, we find
the optimal coefficient: 0.41 ± 0.38 for LDA, 0.36 ± 0.40 for
PBEsol, and 0.89 ± 0.31 for vdW-DF2 nonlocal correlation,
where the ± intervals are the standard deviations of the BEE
ensemble for each coefficient. We note that the mBEEF-vdW
functional therefore does not fulfill the LDA limit of the
correlation functional, in contrast to the BEEF-vdW functional
[9]. The nonlocal coefficient on vdW-DF2 is about 90% of the
full value, which also is a departure from what is theoretically
justified for the LDA limit. The vdW-DF2 functional is,
however, also acting as a short-range functional, and if the
nonlocal coefficient had been 1, the mBEEF-vdW would have
too much semilocal correlation as it also includes short-range
correlation from PBEsol.

Figure 6 shows the enhancement factors of mBEEF-vdW
and the previous two BEEF functionals: BEEF-vdW and
mBEEF. We observe that all three functionals break the LDA
limit for the exchange enhancement (α = 1 and s = 0) by
a nearly identical amount, even when they are the results
of somewhat different fitting procedures, different training
data, and different model complexities. We also note that
mBEEF-vdW rises slower from the homogeneous electron gas
limit than mBEEF and BEEF-vdW, and mBEEF-vdW is also
smoother than mBEEF and BEEF-vdW.

BEE estimates. In Table II, we compare the root-mean-
square error (RMSE) of mBEEF-vdW with the Bayesian error
ensemble estimate for each training dataset. The BEE estimate
is found as the root-mean-square sum of the BEE estimates for
each system in the dataset. For CE27a, RE42, and S22x5, we
base this evaluation on the self-consistent mBEEF-vdW results
and BEE predictions, whereas for the two solids datasets
Sol54Ec and Sol58LC the results are non-self-consistent
predictions. The difference between the self-consistent and
non-self-consistent RMSE and BEE estimate is less than
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FIG. 6. The exchange enhancement factors of mBEEF-vdW,
mBEEF, and BEEF-vdW. We present cuts in the two-dimensional
space of the reduced density gradient, s, and the reduced kinetic
energy density, α.

10% for CE27a, S22 × 5, and RE42, and non-self-consistent
evaluation for the solids datasets should therefore suffice [69].

The estimated error is within a factor of two of the real error
for all datasets. For S22 × 5, we find that the error estimation
for mBEEF-vdW is much more accurate than with BEEF-

TABLE II. Comparing RMSE of mBEEF-vdW to its BEE error
estimate.

RMSE BEE RMSE/BEE

CE27a (eV) 0.25 0.42 0.59
RE42 (eV) 0.45 0.38 1.2
S22 × 5a (meV) 14.5 17.6 0.82
Sol54Ecoh (eV) 0.40 0.26 1.6
Sol58LC-dEc (eV/Å) 23.2 16.6 1.4

aGeometric mean over subsets.

vdW, where a threefold difference was found between its BEE
estimates and the actual error [70].

V. RESULTS

We benchmark mBEEF-vdW against popular lower-rung
XC functionals on the training datasets and two relevant
surface science test datasets. For the benchmarked datasets,
we illustrate the performance compromises with bivariate
analyses of several interesting dataset pairs. Lastly, we present
the test case of graphene on a nickel(111) surface to learn how
mBEEF-vdW deals with the interplay between chemisorption
and physisorption. This problem also provides an illustration
of how to use mBEEF-vdW’s Bayesian error estimating
ensemble.

In the Supplemental Material [68], we additionally provide
the results for finding the correct binding site for CO on late
transition metals, similarly to what was presented in Ref. [7].

A. Benchmark of mBEEF-vdW

Figure 7 shows a benchmark of the mBEEF-vdW func-
tional with popular or recent GGA, MGGA, and vdW-DF
density functionals on the mBEEF-vdW training datasets.
The following functionals are listed with citations. GGA
type: PBEsol [36], PBE [35], RPBE [71]; MGGA type:
TPSS [31], revTPSS [37], oTPSS [72], MS0 [33], MS2 [29];
GGA-vdW type: vdW-DF [28], vdW-DF2 [27], optB88-vdW
[73], optPBE-vdW [73], C09-vdW [74]. The first panel ranks
the functionals according to the geometric mean (GM) of the
root-mean-square error (RMSE) for the five datasets’ statistics
relative to mBEEF-vdW. The other panels show the RMSE
for the considered functionals on each training dataset. For
S22 × 5, we show the geometric mean of RMSE over its five
subsets.

The mBEEF-vdW functional is the highest ranked func-
tional, as we expected because it is trained on these datasets and
has the most advanced model space. The other highly ranked
functionals are the two previous BEEF family functionals
mBEEF and BEEF-vdW, the optimized vdW-DF functionals
optB88-vdW and optPBE-vdW, and the MS family functionals
MS2 and MS0.

The mBEEF-vdW’s RMSE for CE27a, Sol58LC, and
S22 × 5 is among the lowest for all functionals tested, while it
has a relative modest accuracy on Sol54Ec and RE42 compared
to the other functionals. For the absorption energies of CE27a,
mBEEF-vdW has a matching performance to the BEEF family
functionals and RPBE. For the lattice constants of Sol58LC,
mBEEF-vdW has the lowest prediction error of all functionals
tested, even surpassing PBEsol and the MS functionals. For the
dispersion systems in S22 × 5, the performance of mBEEF-
vdW is at a level compared to the optimized vdW functionals
of optB88-vdW and optPBE-vdW.

Figure 8 shows a benchmark on the SE30 datasets for
surface energies of 30 systems and BM32 for bulk moduli of
32 systems as described in Ref. [7]. We note that optB88-vdW
is not present for SE30 because we were not able to converge
its electronic density. We observe that mBEEF-vdW has the
lowest RMSE on the SE30 dataset of all the functionals
tested and performs moderately well on the BM32 dataset.
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FIG. 7. Benchmark of mBEEF-vdW against popular or recent GGA (blue), MGGA (green), and vdW-DF (red) density functionals in terms
of root-mean-square error (RMSE) on the training datasets. The first panel ranks the tested density functionals according to the geometric mean
of the five datasets. All results have been obtained self-consistently.

The results on these datasets indicate that the performance of
mBEEF-vdW is transferable to systems that it was not trained
on.

Bivariate analysis

Figure 9 shows chemisorption energies (CE27a) versus sur-
face energies (SE30), and we observe that mBEEF-vdW is able
to achieve a high accuracy of both properties simultaneously,
unlike most other tested functionals. The functional rungs
clearly stand out as reported in Ref. [7], and the expanded
model space of mBEEF-vdW is therefore a likely explanation
for its higher accuracy.

Figure 10 shows chemisorption energies (CE27a) versus
dispersion energies (S22 × 5), and we observe that the
mBEEF-vdW is able to achieve a high relative accuracy on
both. The GGA-vdW density functionals generally improve
over the GGA functionals along the dispersion axis, but still
make a trade-off between the accuracy on these two datasets.

FIG. 8. Benchmark on the datasets SE30 with 30 surface energies
and BM32 with bulk modulus of 32 systems. For both datasets, we
show the root-mean-square error. The functionals are ranked by the
performance on SE30.

FIG. 9. Bivariate analysis of chemisorption and surface energies,
given by the datasets CE27a and SE30. The lines are linear first-order
fits to the functional of the same color.

FIG. 10. Bivariate analysis of chemisorption and dispersion,
given by the datasets CE27a and S22 × 5.
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FIG. 11. Bivariate analysis of lattice constants and surface ener-
gies, given by the datasets Sol58LC and SE30.

vdW-DF2 performs reasonably well on both properties, but
with a lower accuracy on both compared to mBEEF-vdW.

Figure 11 shows lattice constants (Sol58LC) versus surface
energies (SE30), and we can clearly see that there is a high
correlation between the two properties. In Fig. 12, we can
similarly observe a high correlation between lattice constants
(Sol58LC) and bulk moduli (BM32). The high correlation
between the Sol58LC and SE30 datasets suggests that mBEEF-
vdW has a high accuracy on the surface energies dataset
because it has a high accuracy on lattice constants.

In the Supplemental Material [68], we additionally show
the following bivariate plots: BM32 and RE42, S22 × 5 and
RE42, Sol58LC and RE42, S22 × 5 and SE30, CE27a and
Sol54Ec, and CE27a and RE42. With the last two bivariate
plots, we can attribute mBEEF-vdW’s modest description
of cohesive energies and reaction energies to the model
compromise. The benchmarked functionals form a frontier on
these properties, but with a few functionals that are inferior
on both properties including mBEEF-vdW. We attribute the
compromises the fit has to do to the other material properties
in the training datasets.

FIG. 12. Bivariate analysis of lattice constants and bulk moduli,
given by the datasets Sol58LC and BM32.
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FIG. 13. Potential-energy curves for graphene adsorption on
Ni(111) surface. The gray area indicates the region spanned by the
estimated standard deviations along the mBEEF-vdW’s potential-
energy curve. Inset shows the distribution of predicted binding length
for 10.000 mBEEF-vdW BEE ensemble functionals. Random phase
approximation data from Ref. [75].

B. Graphene adsorption on Ni(111)

Figure 13 show the potential-energy curve for graphene on
the nickel (111) surface, which we can use to qualify how
well the mBEEF-vdW balances covalent and vdW forces.
This system has been investigated in numerous computational
studies [76–84] and it is experimentally known that graphene
forms a (1 × 1) overlay on the Ni(111) surface with a
graphene–metal distance of d = 2.1 Å [85].

We find a graphene–metal distance for mBEEF-vdW of
2.10 Å, in agreement with the experimental results. A number
of other functionals reproduce the experimental binding length
as well, including the MGGA functionals TPSS and revTPSS,
and the vdW-DF functional C09-vdW.

Results from the more computationally expensive random
phase approximation (RPA) method have indicated the pres-
ence of a minimum in the potential-energy curve due to
physisorption at d = 3.0–3.5 Å. This is also observed with
the optimized vdW-DF functionals optB88-vdW and optPBE-
vdW, as well as the MGGA functional M06L [75,83,84]. The
potential-energy curve for mBEEF-vdW does not include a
physisorption minimum, but we can use the BEE ensemble to
estimate the likelihood for such a minima for the functionals in
the Bayesian error estimating ensemble of mBEEF-vdW. In the
inset of Fig. 13, we present the result of such an investigation.
Most of the ensemble functionals predict a binding distance
around 2.1 Å, but with a heavy tail of about 10% of the
ensemble functionals that predicts binding distances longer
than 2.5 Å. These longer binding lengths are mostly between
3.2 Å and 3.8 Å, which match the physisorption minimum
mentioned earlier.

235162-12



mBEEF-vdW: ROBUST FITTING OF ERROR ESTIMATION . . . PHYSICAL REVIEW B 93, 235162 (2016)

VI. SUMMARY, DISCUSSION, AND CONCLUSION

We presented the exchange-correlation functional mBEEF-
vdW, a Bayesian error estimating functional for applications
in particular in heterogeneous catalysis studies. We achieved
improvements over previous BEEF functionals by fitting
mBEEF-vdW with a parametrization of the MGGA-vdW-type
functional space and by improving the fitting procedure. To im-
prove the fitting procedure, we introduced a robust regression
loss function, which makes the fit resilient to outliers in the
training datasets. We used this loss function in a cost function
with weighted geometric mean over loss functions for multiple
datasets to make an explicit compromise between different
material properties. The model complexity was controlled by
a regularization with a nonsmoothness penalty of the exchange
enhancement basis functions. To better find the optimal model
complexity, we furthermore introduced a generalized bootstrap
0.632 error prediction estimator. The generalization uses a
hierarchical bootstrap sampling of the training datasets and
the geometric mean over these datasets in its error prediction
estimator, thereby making the cross validation more resilient to
correlations in the training datasets. The robust MM-estimator
loss function resulted in a 10% improvement of the estimated
prediction error over the standard least-sum-of-squares loss
function.

The mBEEF-vdW functional was trained and bench-
marked on datasets of relevance to heterogeneous catalysis.
This benchmark showed that the mBEEF-vdW functional
is simultaneously one of the most accurate functionals for
chemisorption on surfaces, dispersion energies, and lattice
constants for the popular density functionals tested in this
study. The benchmark included two validation datasets for
surface energies and bulk moduli. For surface energies, the
mBEEF-vdW was the best performing of all tested functionals
and it also had a good performance on the bulk moduli dataset.
We lastly tested mBEEF-vdW on the case of graphene ad-
sorbed on the nickel(111) surface, where it correctly predicted
the experimental binding length, unlike the previous BEEF
functionals and most of the tested XC functionals.

Following the methodology from previous BEE function-
als, we provide a functional ensemble to estimate calculation
uncertainty due to the exchange-correlation functional approx-
imation. The ensemble for the mBEEF-vdW functional was
scaled to reproduce the observed training set errors, with a
scaling that takes the robust loss function into account. We
found that the RMS sum of the error estimates for the training
datasets are all within a multiple of two of the real RMSE.
To illustrate the use of the ensemble, we applied it to the
graphene on nickel case. Here the BEEF ensemble estimates
the likelihood of the existence of a physisorbed binding state
to about 10%, which is interesting as several other functionals
including RPA found the existence of such a physisorption
minimum in the potential-energy curve.

The optimized exchange enhancement factor of mBEEF-
vdW was found to slightly break the LDA limit, similar to
what was found for previous BEEF family functionals. The
exchange enhancement factor of mBEEF-vdW fulfills the tight
Lieb-Oxford bound, and it is close to MS0 [33] for the limit
of single electron orbitals.

The computational cost of the mBEEF-vdW is higher than
GGA functionals because of its use of MGGA exchange and
the vdW-DF2 correlation term. However, the computational
increase due to the vdW nonlocal correlation part is usually
small due to the efficient implementation scheme of Ref. [86],
and MGGA exchange similarly does not add much additional
computational cost. We have not experienced any additional
computational difficulties, including convergence issues, for
mBEEF-vdW compared to MGGA functionals and GGA-vdW
functionals. We therefore suggest that, with proper implemen-
tation, the small added computational cost of mBEEF-vdW is
outweighed by its increased accuracy for most purposes.

Our benchmark was restricted to only a subset of available
XC functionals. We therefore note that there are a number of
other good functionals available to the DFT users. Further
benchmarks will determine how mBEEF-vdW compare to
these. We also do not benchmark on a number of structural
properties, such as bonding lengths and vibration frequencies,
which should be taken into account in future studies. The
training datasets could be expanded such that these and other
material properties are better accounted for.

It has been postulated that the nonlocality of MGGAs makes
it possible to describe excitonic effects in semiconductors [87].
However, for this it is required that |∂Fx/∂α| is large in the
relevant region for solids (α ≈ 1 and s < 3). In Ref. [87], they
found that VS98 was able to do this, while TPSS, which has
a much smaller α dependence, was not. In Fig. 4, we see that
|∂Fx/∂α| of mBEEF-vdW is much larger than that of TPSS.
One would therefore expect mBEEF-vdW to behave better
than TPSS for describing excitonic effects in semiconductors.
However, further studies are required in order to know how
mBEEF-vdW compares to VS98 with respect to this property.

For semilocal functionals, the XC energy can be evaluated
exactly as a sum of the XC functional evaluated on the pseu-
dodensity plus projector augmented wave (PAW) corrections
for each atom. However, for a nonlocal functional such as
mBEEF-vdW, the PAW correction has not been implemented
in GPAW and the results may therefore be sensitive to the
details of the PAW dataset such as cutoff radius and choice
of pseudocore density—with a PAW correction, this would
not be the case. Had a full implementation of nonlocal vdW
been used for this work, the resulting mBEEF-vdW functional
might have been slightly different.

The mBEEF-vdW is available for GPAW and other DFT
codes through the Libxc [88] library in its version 3.0.0 release.
We are in the process of implementing the functional in VASP

[89–92] and QUANTUM ESPRESSO [93], and we plan to report
any differences between the codes.

For training and validation of mBEEF-vdW, we only
included a limited number of datasets of high relevance to
heterogeneous catalysis, and as such there are a number
of material properties that were not covered, which could
be of interest to potential users; for example, molecular
bond lengths, vibration frequencies, and barrier heights.
We suggest that future benchmark should include these. In
addition, for future studies, we think it would be beneficial
to expand and improve the current training and validation
datasets by, for example, using the dispersion dataset S66 × 8
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instead of S22 × 5 [94], including more solid-state systems
[95], and reevaluate the chemisorption dataset [96]. For
developing more accurate BEEF functionals, we also need
to address the self-interaction error. This could be done by
either introducing (screened) exact exchange or by using a
self-interaction correction scheme, such as Hubbard+U or
SIC [97,98].

We propose the mBEEF-vdW functional as a well-suited
lower-rung XC functional for heterogeneous catalysis studies.
Furthermore, we propose that the machine-learning procedure

introduced here could lead to more accurate empirical XC
functionals in the future.
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D. G. Truhlar, and F. Illas, J. Chem. Theory Comput. 10, 3832
(2014).

[96] J. Wellendorff, T. L. Silbaugh, D. Garcia-Pintos, J. K. Nørskov,
T. Bligaard, F. Studt, and C. T. Campbell, Surf. Sci. 640, 36
(2015).

[97] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[98] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B

44, 943 (1991).
[99] J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and

L. A. Curtiss, J. Chem. Phys. 90, 5622 (1989).
[100] L. A. Curtiss, K. Raghavachari, G. W. Trucks, P. C. Redfern,

and J. A. Pople, J. Chem. Phys. 94, 7221 (1991).
[101] S. Seabold and J. Perktold, in Proceedings of the 9th Python in

Science Conference, edited by Stéfan van der Walt and Jarrod
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