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Slow convergence to effective medium in finite discrete metamaterials
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It is known that metamaterial properties may differ significantly from the predictions of effective-medium
theory. In many cases this is due to the finite size and discrete structure, which cannot be neglected in practical
samples with a relatively small amount of elements. We analyze the response of finite discrete metamaterial
objects of a spherical shape and demonstrate the role of boundary effects in these structures, pointing out an
interplay between the size of the structure and the dissipation. We conclude that the discrepancy between the
actual resonance frequency of a sphere and the effective-medium prediction is inversely proportional to the size
of the sphere.
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I. INTRODUCTION

Reliable calculation of effective parameters is a very impor-
tant subject for metamaterials [1]. By exercising due caution
and taking spatial dispersion properly into account [2,3],
the problem of homogenization can be solved in a variety
of scenarios [4–17]. However, in practical samples oriented
towards metamaterial devices [18,19], it often happens that
the number of individual structural elements (“meta-atoms”) is
too small to make an effective-medium description consistent.

One of the key reasons for the failure of the effective-
medium treatment in finite structures is the boundary
effect [4,20], enhanced through strong mutual interaction
between the elements [6,21], which leads to additional sur-
face excitations or spatial resonances [22]. In conventional
materials surface effects are rarely noticeable in the bulk
response. On the contrary, typical metamaterials are analogous
to “atomic clusters” rather than to a bulk material. Such effects
are particularly pronounced in metamaterials assembled from
densely packed resonators, such as split rings of various
kinds [23].

Another reason, specific for artificial structures, is that a
unit cell may be split into separate subsystems (responsive to
a particular polarization), spatially displaced with respect to
each other. This is the case, for example, in the metamaterial
lens [24] suggested for use in magnetic resonance imaging
(MRI) [25]. In that structure, there are three sets of rings
symmetrically oriented along orthogonal axes in order to make
the overall response isotropic. A unit cell therefore comprises
three orthogonal rings, which features translational symmetry
in the bulk, but not at the boundaries of the structure. The
need to make the overall macroscopic sample symmetric leads
to an ambiguity at the surface, with two possible ways for
assembling the boundary, which we call a “flat” and a “ragged”
surface [26]. The two ways for terminating the boundary are
already known to impose noticeable differences in practical
application, for example, making it possible [27] to improve
the imaging resolution generally affected by the discrete
structure [28].

As was found earlier [26], the response of the cubic samples
of such metamaterials (cubic shape is implicitly suggested
by the cubic structure of the unit cell), shows a significant
difference between the two types of boundary structures

(Fig. 1), manifested by drastic differences in the frequency
dependence of the magnetic polarizability. Both alternatives
also deviated from the properties of an effective medium
corresponding to the homogenized response of the bulk of
such a metamaterial [29]; quite remarkably, the ragged surface

FIG. 1. Top: Two boundary geometries (flat and ragged) possible
for the same unit cell, illustrated with cubic samples. Bottom: Overall
appearance of a spherical sample, obtained by a spherical truncation
of a cube with 20 unit cells along each axis. The three mutually
orthogonal sets of rings are shown with different colors.
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showed much more similarity to the effective medium than the
flat surface. At the same time, we emphasize that for a cubic
shape there is no analytical solution and, moreover, influence
of the boundary layers is entangled with the effect of sharp
edges and corners which may lead to a complicated response
even in homogeneous samples [30]. It is also essential that the
structures we are concerned with are finite in three dimensions.
The resulting boundary effects here are different from those
observed on the surface of bulk metamaterials [31].

II. MAGNETIC POLARIZABILITY OF DISCRETE
SPHERICAL SAMPLES

In light of the above background, we find it instructive to
analyze the properties of finite discrete metamaterial samples
of a simple shape, whereby the ideal choice is a sphere.
Spherical geometry, however, imposes a different problem as
the rectangular unit cell cannot be smoothly accommodated
within a spherical boundary, so the surface layer has some
raggedness. However, the boundary improves with increasing
the size of the sphere.

We have considered a series of metamaterial samples
having a cubic lattice, truncated to a shape as close to a
sphere as possible for a given size. Whereas for small spheres
with just a few unit cells along the diameter the shape is
remarkably ragged, larger spheres look reasonably smooth
overall (Fig. 1); approximation to the spherical shape can
be further appreciated by rotating the structure using the
interactive MATLAB R© figure (Supplemental Material A [32]).
The largest sphere we considered contains around 19 000 rings.

Without any loss of generality, we assume the established
practical parameters for the resonators, corresponding to
capacitance-loaded rings used in MRI lenses [24] with a
ring radius of r = 0.49 cm, self-inductance of L = 13.5 nH,
resistance of R = 0.0465 �, and capacitance of C = 470 pF,
so the individual resonance of a single ring thus occurs at
63.3 MHz. An array of these rings has a lattice constant
of a = 1.5 cm, which is about 300 times smaller than the
free-space wavelength of 4.5–5 m in the frequency range of
interest, and the entire largest sample we considered is then 13
times smaller than the free-space wavelength.

We employ the exact analysis of discrete systems [33],
which constitutes in solving the entire system of impedance
equations explicitly taking all the mutual interactions within
the sample into account. For a given excitation frequency, we
find the currents induced in all the resonators and then calculate
the frequency dependence of the magnetic polarizability for
quasispherical samples of different sizes. The results are shown
in Figs. 2(a)–2(d) for increasing size, measured as the number
of unit cells across the diameter; for ease of perception, the
entire set is split into four groups, and the frequency span
shown is adjusted so as to highlight the range where some
difference is observed. To keep the article concise, we only
show the imaginary part of the polarizability, whereas the real
part is presented in the Supplemental Material B [32]. Each
plot also shows the theoretical calculation of the magnetic
polarizability,

α = 3(μ − 1)/(μ + 2), (1)

FIG. 2. Frequency dependence of the imaginary part of magnetic polarizability of the quasispherical metamaterial samples obtained either
from ragged (a)–(d) or flat (e)–(h) configurations. The sizes of the spheres from 8 to 22 (23) unit cells per diameter are indicated by the
numbers in the insets. The grey curve in the background shows the polarizability Im α (identical across all panels) theoretically calculated for
a homogeneous sphere with the effective permeability corresponding to the considered metamaterial. The vertical scale is the same across the
subplots, however, the horizontal scale varies as best suited to zoom into the details of the spectra for comparison.
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FIG. 3. The same as Fig. 2, but the resistance of the rings is assumed to be ten times smaller here. The horizontal scale varies as best suited
to zoom in to the details of the spectra for comparison.

of the equivalent homogeneous sphere with the permeabil-
ity μ calculated for the corresponding unit-cell parameters
according to Ref. [6] as

μ(ω) = 1 −
(

a3

π2r3

[
iZ(ω)

ωμ0r
+ �

]
+ 1

3

)−1

, (2)

where Z(ω) = R − iωL + i/(ωC) is the self-impedance of
the resonator and �(a,r) is a dimensionless lattice sum
accounting for mutual impedance between resonators [6]; for
the geometry considered here, � ≈ −0.06.

Note that Eq. (2) was derived for a uniaxial lattice with
all the rings oriented in one direction, whereas the lattice
considered here is isotropic. However, in a bulk material,
mutual interactions between orthogonal rings are effectively
canceled out [29], so Eq. (2) is valid for each of the diagonal
components of the permeability tensor. At the same time,
the expression derived for the isotropic lattice within the
nearest-neighbor approximation [29] is less accurate and
would equivalently correspond to about a 10% difference in
�, implying a resonance shift, noticeable in the scale of Fig. 2.

Analyzing Figs. 2(a)–2(d), we can observe that the cal-
culated polarizability approaches the theoretical prediction
as the size increases and the results for the spheres of size
14 and larger appear similar to each other. Even so, there
is still a difference between large discrete spheres and the
homogeneous one, which is discussed in Sec. III.

For a more complete picture, we assess the role of
surface elements in providing the observed deviation from
the continuous model as was pointed out to be quite essential
for cubic samples [26]. For this purpose, we calculate the
spectra for the flat configuration where the initial cubes, prior
to spherical truncation, had the terminating rings lying flat on

their surfaces. Upon spherical truncation of the shape, patches
of such flat surface rings remain on the six sides of the resulting
sphere, making a significant part for a sphere of size 8 (54
rings out of total 768, making up 7%), however rather a small
fraction for size 23 (192 out of 18 912, making up 1%). The
results for such cubes, presented in Figs. 2(e)–2(h), show a
visible difference to those in panels (a)–(d), particularly for
smaller sizes; for larger sizes, the results also tend to converge
to the effective-medium prediction, although showing a greater
discrepancy as outlined in Sec. III.

The difference between these two configurations, which are
identical in the bulk and only differ at the surface, implies that
the discrepancy with the theory can be attributed to the rings at
the boundary; note that the boundary does not form a perfect
spherical surface but a corrugated one with the spherical
approximation becoming increasingly good with size.

Further insight into the role of boundaries and surface exci-
tations can be provided by studying a low-loss system (Fig. 3).
As was pointed out earlier, decreasing dissipation does not nec-
essarily improve the performance of a practical device—for ex-
ample, a good subwavelength resolution of a metamaterial lens
cannot be achieved when the resistance of the resonators is very
small [28]. This effect is due to the enhancement of surface
excitation and additional modes which can propagate better
across the sample in a low-loss environment and affect strongly
the observable macroscopic characteristics. We should there-
fore expect that much larger samples are required to eliminate
the surface effects in a low-loss case. To assess this trend, we
present the polarizability for the same set of spheres as in Fig. 2
but having a ten times smaller resistance of R = 4.65 m�.

The results, presented in Fig. 3 (see Supplemental Material
C for the real part [32]), confirm that the convergence towards
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the effective-medium prediction (also corrected to account for
the low dissipation) is less straightforward in this situation.
The low-loss spectra demonstrate a number of additional
resonances revealing a rich variety of modes. For the ragged
case, panels (a)–(d), some spectra (sizes 14, 16, 18, 19, and 21)
show a trend towards the theoretical curve but not a reliable one
(see the outbreaks for sizes 15, 17, 20 or 22), and the frequency
shift is still remarkable. In the flat case, panels (e)–(h), even
the largest sizes we could calculate are showing additional res-
onance peaks, indicating a stronger influence of surface modes
than in the ragged structure. We believe that a much larger size
is required to reach a reasonable agreement at low dissipation.

III. CONVERGENCE TOWARDS EFFECTIVE MEDIUM

From the depicted spectra, it may not be obvious whether
the resonances of the discrete spheres eventually converge
to the prediction of the effective-medium theory (EMT). A
quantitative insight into such convergence is offered by the
analysis of the frequency shift between the resonances νN in
the discrete sample of a given size N and the resonance ν0

calculated with EMT (which does not depend on size). For the
clearest picture, we start with the calculations performed for
spheres of a uniaxial metamaterial where all the rings, while
centered in a cubic lattice, have the same orientation (in other
words, where only one of the three subsets of an isotropic
structure is present). In this case, the polarizability spectra
(see Supplemental Material D [32]) show little distinction from
each other as the size increases, but there is still a shift from the
effective-medium result. The resonance frequency shift shows
a convincing fit (see Supplemental Material D3 [32]) with
inverse proportionality to the number N of unit cells across
the diameter of the sphere,

ν(N ) = ν0(1 − ζ/N), (3)

with the dimensionless coefficient ζ = 0.0186 for the uniaxial
case. The convergence is shown in Fig. 4. We then apply the

FIG. 4. Resonance frequency νN of the magnetic polarizability
of the discrete spherical samples, depending on their size (symbols),
and the corresponding best fits to Eq. (3) (lines) for the case of the
uniaxial structure (blue circles, solid line), the ragged isotropic lattice
(red crosses, dashed-dotted line), and the flat isotropic lattice (green
squares, dashed line). Theoretical frequency of the resonance ν0 is
shown by a black horizontal dash.

same procedure to a uniaxial sample with ten times lower
dissipation. Even though the positions of the resonance of the
discrete samples of various sizes show a markedly stronger
discrepancy (see Supplemental Material D4 [32]), the best fit to
Eq. (3) yields a similar coefficient ζ = 0.0181. This empirical
dependence supports the idea that the boundary elements are
the cause of the observed discrepancies if we notice that the
ratio of the boundary to the bulk scales as 1/N .

Applying the same analysis to the results on the samples of
isotropic structure, we still obtain good fits for Eq. (3), Fig. 4.
For the ragged design, ζ = 0.0175, which is even a slightly
faster convergence to EMT than in the uniaxial case. For the
flat design, the coefficient is noticeably larger ζ = 0.0291,
implying a slower convergence, as we also concluded from
the appearance of the corresponding spectra.

Although we will need to develop different computational
procedures to calculate much larger samples, at this stage we
feel confident that eventually the difference between a discrete
sphere and a continuous one can be eliminated, however this
is a slow process with convergence inversely proportional to
the size of the sample.

On the other hand, the low-loss data presented in Fig. 3,
show remarkable deviation from the effective-medium theory.
In these cases, fitting their potential convergence to the EMT
resonance is not as convincing as in the previous cases.
The best fits to Eq. (3) are shown in Fig. 5, but the data,
particularly in the case of a flat geometry, may well fit to
a different functional dependence. Nevertheless, we believe
that the convergence must be governed by the same equation.
With low dissipation, the presented sizes are still too small to
demonstrate such a trend.

IV. DISCUSSION

Although the presented results suggest that surface ele-
ments play an essential role in the overall response, their
explicit influence is not readily visualized. An insight is
provided by looking into spatial distribution of the magnetic
moments of the individual rings across different frequencies.
For this purpose, we depict how the spatial distribution of the
magnetic moments varies with frequency (see Supplemental
Material E [32]). In the vicinity of resonances, the currents
tend to be strongest around the poles (top/bottom layers) of
the sphere, in the flat case being more central and uniform,
and in the ragged case somewhat shifted to the edges of the
top/bottom layers. Looking at the standard deviation of the
induced currents around their mean value (see Supplemental
Material F [32]) does not reveal a substantial difference
between the two types of structure, however the ratio between
the peak values and the mean value is much greater in the flat
case. This is consistent with the fact that the rings lying flat
on the surface have a more distinct immediate environment
as compared to the boundary rings in the ragged case. In this
respect, the case of low dissipation yields similar observations.

As a final remark, we note that the effects described above
are specific for resonant systems. Calculations performed
for the same geometry but nonresonant rings (closed loops
with no capacitors) demonstrate a diamagnetic response in a
broad frequency range, consistent with the earlier theoretical
predictions [34]. These data reveal a negligible variation
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FIG. 5. Resonance frequency νN of the magnetic polarizability of
the discrete spherical samples depending on their size (symbols) and
the corresponding best fits to Eq. (3) (lines) for the case of low-loss
samples with ragged isotropic lattices (red pluses, dashed-dotted line)
and flat isotropic lattices (green diamonds, dashed line). Theoretical
frequency of the resonance ν0 is shown by a black horizontal dash.

with the size of the structure within about 0.03% from the
effective-medium value (see Supplemental Material G [32]).

V. CONCLUSIONS

To summarize, we have analyzed the consequences of the fi-
nite size of subwavelength metamaterial samples with discrete

structure, containing up to almost 20 000 individual elements.
We have demonstrated that, even for the most symmetric
spherical shape of the samples, observable properties show a
remarkable difference from theoretical predictions. Our data
show that with the increase in sphere size, the discrepancy in
resonance frequency decreases inversely proportional to the
radius, indicating a steady but slow convergence to the effective
medium.

The properties of the finite spheres also noticeably depend
on the boundary structure, which suggests that the difference
to EMT is related to the additional modes associated with
the surface layers and depends on the degree of isolation
of surface elements from the rest of the bulk. We have
also explicitly confirmed that decreasing the dissipation of
finite samples makes the discrete boundary effects much
stronger so that larger sizes will be required to converge to
the effective-medium predictions. This implies a counterplay
between dissipation and size, which is an important rule for
the future of metamaterial design.
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