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Electronic structure theory of weakly interacting bilayers

Shiang Fang1 and Efthimios Kaxiras1,2

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 18 April 2016; published 27 June 2016)

We derive electronic structure models for weakly interacting bilayers such as graphene-graphene and graphene–
hexagonal boron nitride, based on density functional theory calculations followed by Wannier transformation
of electronic states. These transferable interlayer coupling models can be applied to investigate the physics of
bilayers with arbitrary translations and twists. The functional form, in addition to the dependence on the distance,
includes the angular dependence that results from higher angular momentum components in the Wannier pz

orbitals. We demonstrate the capabilities of the method by applying it to a rotated graphene bilayer, which
produces the analytically predicted renormalization of the Fermi velocity, Van Hove singularities in the density
of states, and moiré pattern of the electronic localization at small twist angles. We further extend the theory
to obtain the effective couplings by integrating out neighboring layers. This approach is instrumental for the
design of van der Walls heterostructures with desirable electronic features and transport properties and for the
derivation of low-energy theories for graphene stacks, including proximity effects from other layers.
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I. INTRODUCTION

Two-dimensional layered materials are becoming the focus
of experimental and theoretical investigations aiming to realize
the potential applications of these atomically thin structures
[1–3]. The library of these layered materials is still expanding
with properties that range from metals and semimetals to
semiconductors and insulators. Graphene, a semimetallic
atomically thin sheet of carbon atoms in the honeycomb lattice
[4,5], is an important member of the layered materials family.
Flakes of graphene can be obtained by the exfoliation method
from a graphite crystal [6] or synthesized by methods such as
chemical vapor deposition [7]. In addition to its outstanding
electronic and mechanical properties, graphene is also an
interesting platform to investigate the quasirelativistic strongly
interacting many-body physics near the charge-neutrality point
(CNP) when screening between charges is reduced [8]. This
electron-hole plasma, known as the Dirac fluid, behaves
differently from the conventional Fermi liquid, when the Fermi
level is far from the CNP. The inclusion of graphene in the van
der Waals (vdW) heterostructures, that is, stacks of various
layered materials, can serve several purposes, for instance as
an active layer, a spacer, or an electrode. The different layered
materials exhibit a wide variety of physical properties such
as topological phases [9], superconductivity [10], magnetism
[11], and charge density waves [12]. Different ways of
stacking, manipulating these materials, and intercalating with
foreign atoms in the vdW heterostructure open even wider
possibilities for interesting physics phenomena and for novel
nanodevice applications [2,13]. Other control knobs include
electrical gating, an external magnetic field, and various
contacts and twist angles which affect strongly the Brillouin
zone (BZ) alignment and the coupling between layers [14].

To investigate the electronic properties of these fascinating
systems, large-scale density functional theory (DFT) [15,16],
tight-binding models [17–20], and low-energy k · p expan-
sions [21–24] have been employed. The parameter-free DFT
approach is computationally demanding, while the computa-
tionally efficient tight-binding methods and low-energy k · p

expansions are hampered by the absence of a universal form of
the interlayer couplings. The interlayer couplings employed by
empirical methods are often parametrized as functions of only
the interatomic distances or more elaborate forms that depend
on the local bonding environment [20,25] with the values of
parameters obtained by fitting the band structure of selected
crystal configurations. A set of such interlayer hopping terms
for graphene has been determined from ab initio calculations,
but they are extracted only from a restricted subset of all
possible bilayer orientations [26,27]. The dependence of
interlayer hopping on both the distance between pairs of
atoms and the relative orientation of bonds, as exemplified
by the γ3 and γ4 terms in the Slonczewski-Weiss-McClure
model [5], have not yet been addressed properly. An accurate
and transferable theory of interlayer coupling would not only
provide an efficient way of evaluating electronic properties,
but would also shed light on transport properties across layers
[28] and on the derivation of effective low-energy theories for
arbitrary graphene stacking sequences.

We provide here a comprehensive and quantitative under-
standing of interlayer coupling in two prototypical bilayers,
graphene-graphene (G-G) and graphene–hexagonal boron
nitride (G-hBN). This type of ab initio modeling based on
the Wannier transformation is applied to derive a transferable
potential applicable to bilayer configurations with arbitrary
translations and twists between the two layers. In contrast to
similar analysis applied to transition-metal dichalcogenides,
in which interlayer coupling was shown to have a simple,
orientation-independent scaling form that depends only on the
distance between pairs of atoms [29], the G-G and G-hBN in-
terlayer couplings include a dependence on both pair distances
and relative orientations. The ensuing angular dependence is
related to the crystal field distortions of the atomic pz Wannier
orbitals. We derive the form of effective coupling terms that
is suitable in the general vdW heterostructure with arbitrary
twists and translations when some layers are integrated out.
This scheme is relevant for obtaining the proximity effects
on graphene due to other layered materials in the vdW
heterostructure. These interlayer coupling models provide
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efficient ways for obtaining electronic properties and effective
low-energy theories, as well as for estimating proximity effects
in vdW heterostructures, especially when graphene layers are
included in the stacks.

The paper is structured as follows: In Sec. II, we introduce
the numerical methods employed for the DFT calculations
and the Wannier transformation. In Sec. III, we investigate
the Hamiltonians for weakly interacting bilayers, using G-G
and G-hBN interfaces as the prototypical examples. In Sec. IV
we discuss the physics of twisted bilayer graphene and in
Sec. V we derive the effective theory for proximity effects by
integrating out the neighboring layers. Our concluding Sec. VI
gives a summary of the main points, makes comparisons with
similar approaches in the literature, and contains some remarks
on possible extensions and future applications.

II. NUMERICAL METHODS

The approach we adopt here is to derive the ab initio
tight-binding Hamiltonian based on the Wannier transfor-
mation of DFT calculations. Within DFT, we obtain the
Bloch wave functions and energies using VASP [30,31] with
pseudopotentials of the projector augmented wave (PAW) type,
the exchange-correlation functional of Perdew, Burke, and
Ernzerhof (PBE) [32], a plane-wave energy cutoff 500 eV,
and a 17 × 17 × 1 reciprocal space grid. A 20 Å distance is
used to eliminate the coupling between periodic images of the
layers in the direction perpendicular to the atomic planes. The
diagonal Kohn-Sham Hamiltonian in the Bloch basis from the
DFT calculations is then transformed into a basis of maximally
localized Wannier functions (MLWFs) [33] implemented in
the Wannier90 code. In our modeling, only pz-like orbitals at
each atomic site are projected out and retained in the Wannier
basis. The short-ranged ab initio tight-binding Hamiltonian
we construct is an accurate and reliable way to obtain model
parameters by preserving the phase and the orbital information
from the DFT calculations.

III. HAMILTONIAN FOR WEAKLY INTERACTING
BILAYERS

Before modeling the interlayer coupling, we first re-
construct the ab initio tight-binding Hamiltonian H0 for
a graphene monolayer [34]. The unit cell for monolayer
graphene is spanned by a1 = (

√
3x̂ − ŷ)a/2 and a2 =

(
√

3x̂ + ŷ)a/2 with the lattice constant a = 2.46 Å. Two
basis atoms are situated at δA = 0 and δB = (a1 + a2)/3.
We extract the intralayer couplings up to the eighth nearest
neighbors, which shows good agreements with DFT results.
The numerical parameters for ti , the intralayer hopping
parameter to the ith nearest neighbor, are listed in the left
block H0 of Table I.

The shape of the localized basis, also known as the
Wannier orbital, provides intuition for the chemical bonding,
hybridization, and the symmetry of the crystal. For monolayer
graphene, the constructed Wannier orbital has a dominant pz

character but the azimuthal symmetry is broken by the crystal
field distortion from the neighboring atoms. Locally, at the
position of the carbon atom, the threefold rotation symmetry
is restored. Thus, the angular momentum is defined up to

TABLE I. Graphene intralayer (H0) and interlayer (H′) TBH
parameters with the on-site energy εC = 0.3504 eV. ti (for the
locations of these neighbors, see Ref. [34]) and λi are in eV with
a = 2.46 Å for r̄; ξi , xi , κi are dimensionless parameters.

H0 H′: V0(r) V3(r) V6(r)

t1 −2.8922 t5 0.0524 λi 0.3155 −0.0688 −0.0083
t2 0.2425 t6 −0.0209 ξi 1.7543 3.4692 2.8764
t3 −0.2656 t7 −0.0148 xi 0.5212 1.5206
t4 0.0235 t8 −0.0211 κi 2.0010 1.5731

modulo 3, which means that there is hybridization within each
sector of angular momentum states. In Fig. 1(b), we decompose
the Wannier function for graphene into m = 0 (dominant
pz), m = ±3, and m = ±6 angular momentum components.
This decomposition shows the range and the strength of each
component, and the characteristic radius gets larger for larger
angular momentum components.

When two or more monolayers are brought into contact,
the shape of the Wannier function has implications for the
interlayer coupling. These couplings are described by the
matrix elements: 〈ψ2|H|ψ1〉 with ψ1 (ψ2) the Wannier orbital
of the first (second) layer and H the total Hamiltonian.
The angular momentum mixing as shown in Fig. 1(b) for
the Wannier orbital in graphene translates into the angular
dependence of such interlayer couplings, in addition to the
usual dependence on the distance of the pair. Without loss
of generality, we assume the projected vector r from ψ1 to
ψ2 on the plane is along the positive x axis, and θ1 (θ2) is
the angle relative to r needed to determine the orientation of
the crystal of the layer to which the Wannier orbital ψ1 (ψ2)
belongs. The interlayer coupling can then be written as the
function t(r,θ1,θ2). If the underlying crystal and the embedded
Wannier orbital has N-fold rotation symmetry, then θ is only
defined up to modulo 2π/N . The above interlayer coupling
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FIG. 1. (a) The generic graphene bilayer configuration with
arbitrary translations and twists. The constituent monolayer crystal is
described by the primitive vectors a1 and a2. For an interlayer pair,
the coupling dependence is characterized by the projected distance r

and the angles θ12 and θ21 between r and the nearest-neighbor bonds.
(b) Decomposition of the Wannier function for monolayer graphene
into the constant (m = 0), cos(3θ ) (m = ±3), and cos(6θ ) (m = ±6)
components.
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can be simplified to

t(r,θ1,θ2) =
∞∑

m1,m2=−∞
fm1,m2 (r)eim1N1θ1+im2N2θ2 (1)

with integers mi . For real t , fm̄1,m̄2 (r) = f ∗
m1,m2

(r). This
decomposition can be viewed as the multichannel interlayer
hopping process.

We next apply this general analysis to bilayers of graphene
(G-G) and of graphene/hexagonal boron nitride (G-hBN).
We consider two specific stackings, AA and AB, defined
by the relative position of the basis A or B atom of the
top layer to that of the basis A atom of the bottom layer.
The bilayers are assumed to be flat with the same constant
separation c = 3.35 Å in the z direction [5]. Since in these
two specific cases the two layers are not rotated with respect
to each other, each primitive unit cell contains four atoms.
After carrying out the DFT and Wannier transformation,, the
ab initio tight-binding Hamiltonian H = Ht

0 + Hb
0 + H′ can

be decomposed into the intralayer Ht
0, Hb

0 and the interlayer
H′ parts. The interlayer coupling of any atomic pair can be
obtained from elements of H′ in the Wannier basis. We then
apply a lateral translation � = r cos(θ )x̂ + r sin(θ )ŷ to the
top layer with the vertical separation c fixed. This translation
will affect both the distance and the relative orientation of
the interlayer bonds while keeping the underlying crystal
orientation untouched. The interlayer hoppings are extracted
between the basis A atom of the bottom layer at the origin and
the shifted A (B) basis atom of the top layer in the translated
AA (AB) structure.

The extracted interlayer hoppings as functions of the
projected interlayer bond distance r are plotted in Figs. 2(a)
and 2(b) for the graphene AA and AB bilayers, respectively.
At a given distance r , the spread of the interlayer hopping
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FIG. 2. Hoppings for the shifted graphene bilayer of (a) AA-type
and (b) AB-type pairs as functions of the pair distance r; the spread of
the hoppings at fixed r indicates angular dependence. Decomposition
into the constant m = 0 (solid line), cos(3θ ) (circle), and cos(6θ )
(cross) components for the (c) AA-type pairs and (d) AB-type pairs.
These curves are modeled by the Vi(r) in Eq. (3).

indicates strong angular dependence. Notably, hopping in the
AA-type bilayer is different from that in the AB-type bilayer.
Due to the threefold rotation symmetry of the underlying
crystal, these interlayer hoppings are invariant under θ →
θ ± 2π/3. We further decompose the angular dependence
at fixed r into its Fourier components of the constant term,
cos(3θ ), and cos(6θ ) terms. Higher order cos(3Nθ ) terms do
exist but are vanishingly small.

The hopping is given by the superposition of the interlayer
terms that involve the symmetric combination of the following
parameters:

t(r) = V0(r) + V3(r)[cos(3θ12) + cos(3θ21)]

+V6(r)[cos(6θ12) + cos(6θ21)], (2)

where r the two-dimensional (projected) vector connecting the
two atoms, r = |r|, and θ12 and θ21 are the angles between the
projected interlayer bond and the in-plane nearest-neighbor
bond as defined in Fig. 1(a). The result does not depend
on which nearest-neighbor bond is used. Compared with
Eq. (1), these correspond to nonzero values for the terms f0,0,
f±1,0, f0,±1, f±2,0, and f0,±2, with N1 = N2 = 3. We use the
following fitting functions for Vi(r) with r̄ = r/a:

V0(r) = λ0e
−ξ0(r̄)2

cos(κ0r̄),

V3(r) = λ3r̄
2e−ξ3(r̄−x3)2

, (3)

V6(r) = λ6e
−ξ6(r̄−x6)2

sin(κ6r̄).

These Fourier-projected components are plotted in
Figs. 2(c) and 2(d) for the AA and AB stackings, respectively.
For the constant term, the AA/AB hoppings are very similar
to each other, and we define V0(r) to be the average of the
two. Projection into cos(3θ ) is significant for the AB type
but vanishes identically for the AA type, and the curve in the
AB case is defined as 2V3(r). The two stackings have similar
behavior for the much smaller cos(6θ ) term, and 2V6(r) is the
average of the two. The values of the fitting parameters are
given in Table I from the analysis of the translated AA/AB

structures.
A proper analysis of the inherent symmetry of the two-

layer system provides the justification for the form of the
interlayer hoppings and enables us to generalize the model to
arbitrary configuration. Specifically, the threefold symmetry
of the crystal field allows mixing between pz and m = ±3N

orbitals with N an integer. Due to the crystal symmetry, these
components acquire a phase (−1)N when A and B basis atoms
are interchanged, which are related by a yz mirror operation.
With the Wannier orbital viewed as composite objects of mixed
angular momentum, the hopping between two such objects is
determined by the superposition of the individual hopping
channels between each component, within the two-center
approximation [35]. The dominant channel is between the
two m = 0 components which gives the constant part in the
interlayer hopping. There is a cos(3θ ) term from the coupling
between m = 0 and m = ±3 channels. Due to the symmetry,
the two terms add up constructively (destructively) for the AB

(AA) type. This can also be seen from the additional minus
sign in exchanging A and B basis atoms. There are two types
of contribution to the cos(6θ ) term, and they can be generated
from the coupling between m = 0 and m = ±6, or between
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TABLE II. hBN intralayer and G-hBN interlayer tight-binding parameters. εB = 2.2021 eV, εN = −1.9124 eV with the convention
a = 2.46 Å for r̄ in the fitting expression Eq. (3).

HB
0

(
HN

0

)
H′: V CB

0 (r) V CB
3,BC(r) V CB

3,CB(r) V CN
0 (r) V CN

3,NC(r) V CN
3,CN(r)

t1 −2.6490 t5 0.0344 (0.0301) λi 0.3905 −0.0588 −0.0651 0.2517 −0.0606 −0.0465
t2 0.0594 (0.2276) t6 −0.0374 (−0.0240) ξi 1.5426 3.0827 3.7998 1.6061 3.3502 3.0464
t3 −0.2163 t7 −0.0053 xi 0.6085 0.6341 0.5142 0.5264
t4 0.0502 t8 −0.0133 κi 1.8229 2.1909

m = ±3 components of the two atoms. By symmetry, the first
(second) part of the contribution is even (odd) in AA/AB. We
can model the contribution of the first type from the average
cos(6θ ) term of AA/AB in Figs. 2(c) and 2(d). The channel
between two m = ±3 can in general produce complicated
angular dependence, but it is only a small correction (a few
meV) and hence we ignore it in our model.

Following similar steps, we derive the tight-binding Hamil-
tonian for interlayer coupling in the case of a bilayer G-hBN. In
the G-hBN interlayer coupling compared to the G-G coupling
the symmetry is lower since the atoms are not identical, and
this affects the amplitude for each angular momentum channel.
From similar analysis for the shifted AA/AB couplings in a
G-hBN bilayer, we can model the coupling as

tCX(r) = V CX
0 (r) + V CX

3,XC(r) cos(3θXC)

+V CX
3,CX(r) cos(3θCX), (4)

where X = B, N atoms. V CX
0 (r), V CX

3,CX(r), and V CX
3,XC(r) share

the same functional form as the ones in the G-G case, and
the corresponding values of the parameters are tabulated in
Table II.

To validate our model with the intra- and interlayer
couplings, in Figs. 3(a) and 3(b) we compare the band structure
obtained from DFT and from our tight-binding Hamiltonian in
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FIG. 3. Comparison between the tight-binding Hamiltonian (red
lines) and ab initio DFT (blue circles) band structure calculations
along 
-M-K-
 in an AB-stacking (a) bilayer, (b) bulk; (c) (M,N ) =
(6,5) twisted superstructure (θ (6,5) ≈ 6.01◦) and comparison to the
folded monolayer band structure (green crosses).

the conventional AB-stacking bilayer and bulk graphite. The
two band structures show good agreement over a large energy
region around the Fermi level. The discrepancies away from
the Fermi level are due to the hybridization of pz orbitals
and other orbitals such as sp2 which are not included in
our Wannier model. When one monolayer is twisted relative
to the other, a supercell structure can be constructed in the
commensurate case [15,36], labeled by (M,N ) with twist angle
θ (M,N). The two layers are separated by a constant height
c = 3.35 Å. In Fig. 3(c), we compare the result from DFT
and tight-binding calculations for the (M,N ) = (6,5) twisted
supercell (θ ≈ 6.01◦); the model Hamiltonian reproduces the
DFT band structure well. We also include in Fig. 3(c) a
comparison with the band structure of the folded BZ for
a single monolayer, which is quite different, showing the
importance of having an accurate description of interlayer
coupling.

IV. TWISTED BILAYER GRAPHENE PHYSICS

The coupling between layers is weak for θ ≈ 30◦, and
gets stronger when the twist approaches angles near 0◦ or
60◦ [17]. When two layers are twisted, the bands are formed
from the hybridization of monolayer bands [19] as in the
schematic diagram of Fig. 4(a), inset. The characteristic kinetic
energy scale is defined by �vF �K , with vF = 8.22 × 105 m/s
the Fermi velocity of the monolayer graphene, and �K =
|K − Kθ | = 8π

3a
sin(θ/2) the distance between displaced K

points of two layers (K = 4π
3a

ŷ, Kθ = 4π
3a

[cos(θ )ŷ − sin(θ )x̂]).
Under the hybridization at large twist angles, the bilayer bands
retain the linear Dirac dispersion, but with a different slope
around the Dirac point compared to the folded bands of the
monolayer graphene as in Figs. 3(c) and 4(b). The Fermi
velocity is renormalized by the interlayer coupling as can be
seen from the effective low-energy theory around the Dirac
points. A pair of states around the Dirac point with near-zero
energy are coupled to three pairs of states of energy ±�vF �K .
The effective theory from a Schrieffer-Wolff transformation
for the near-zero-energy doublet states has corrections to linear
order in k which renormalize the velocity [21]. We constructed
a series of twisted supercell structures with decreasing angles
from 30◦, and the renormalized Fermi velocity calculated from
the bands along 
-K indeed follows the theoretical prediction
ṽF /vF = 1 − C/ sin2(θ/2) with C = 1.953 × 10−4 [21].

Another feature for the band structure of the twisted
superstructure is the Van Hove singularities (VHS) in the
density of states (DOS) near the Fermi level [19], which often
leads to electronic instabilities such as superconductivity [37]
and magnetism [38] in the many-body system. In Fig. 4(c),
the DOS of a (M,N ) = (6,5) supercell with θ ≈ 6.01◦ is
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correspond to the singular points of DOS. (d) Similar calculations for
the (M,N ) = (31,30) supercell (θ ≈ 1.08◦). (e) The states around the
Fermi level are localized at AA sites forming a moiré pattern.

compared to a monolayer graphene with the singular points
corresponding to the energy extrema in Fig. 4(b). This VHS is
due to gap opening from hybridization between states in the
overlap between the Dirac cones of the two layers [19]. The
advantage of twisted bilayers is that the location of VHS can
be controlled by varying the twist angle [39], and are roughly
centered at E = ± 1

2 �vF �K .
When the twist angle is even smaller, such as with a

(M,N ) = (31,30) supercell structure (θ ≈ 1.08◦), the Fermi
velocity is close to zero, and nearly flat bands are observed
at the Fermi level [18] in Fig. 4(d). The electronic states in
these nearly dispersionless bands show highly localized charge
density at the AA sites [17] as in Fig. 4(e), referred to as the
moiré pattern. In experiments, the VHS and the localization of
electrons in twisted graphene layers have been measured by
scanning tunneling spectroscopy [39–41].

In the discussion so far we have assumed the layers to be
flat and focused only on their electronic properties. Structural
relaxations such as rippling or more drastic commensurate-
incommensurate transitions with domain-line formation, as
in the G-hBN bilayer [42], could be relevant for small twist

angles. They are driven by the different local mechanical
energy for AA and AB stackings [43]. Though the prediction
of mechanical deformations is beyond the scope of the current
work, we comment that more general forms of interlayer
couplings can be modeled by incorporating variable height
or strain by modifying the initial AA/AB sliding bilayers,
which will allow proper description of the effects of structural
deformations.

V. EFFECTIVE THEORY FROM PROXIMITY EFFECTS

As a final comment on how our model can be applied, we
discuss how to construct effective theories with limited degrees
of freedom instead of having to solve the Hamiltonian in the
full Hilbert space of the combined layers. In graphene bilayers,
the low-energy Hamiltonian has the form of non-Abelian
gauge theory [44]. To define and formulate the problem,
we consider a vdW bilayer heterostructure with layer 1
as the main component where the low-energy degrees of
freedom at the Fermi level EF reside. Layer 2 is brought
close to layer 1 to introduce the desired proximity effects.
In general, the presence of layer 2 will affect the electronic
properties of layer 1 in two ways: (1) by introducing a direct
additional potential generated by the neighboring atoms; (2)
by introducing virtual interlayer hopping processes through
hybridization to the states of the neighboring layer. The general
vdW heterostructure Hamiltonian takes the form

HvdW =
[
Ĥ1 + �Ĥ12 T̂

T̂ † Ĥ2 + �Ĥ21

]
. (5)

�Ĥ12 and �Ĥ21 are the direct corrections of the first type, and
T̂ is the interlayer coupling in the heterostructure. Integrating
out the second layer gives a perturbation term for the first layer,

�V12(E) = T̂
1

E − (Ĥ2 + �Ĥ21)
T̂ †, (6)

where, since T̂ is already small, and �Ĥ21 is a higher order
correction that disrupts the lattice translation symmetry in
Ĥ2, this term can be ignored. The effective potential takes
the following form in the spatial representation, evaluated at
E = EF :

�V12(r2,r1,EF )

=
∑
s2,s1

tr2,s2〈s2| 1

EF − Ĥ2
|s1〉t†s1,r1

=
∑
s2,s1

tr2,s2 t
†
s1,r1

�k

∫
BZ

d2k〈ψk,δ2 |
eik·(s2−s1)

EF − Ĥ2(k)
|ψk,δ1〉 (7)

with �k the BZ area, ri (si) the localized orbitals of layer 1 (2),
which include both the position vector r i (si) and the orbital
index δi , and ti,j the interlayer coupling from j to i orbitals
between the layers. In the usual perturbation framework, this
expression describes hopping across the layers from r1 to s1,
allowing for all paths s1 to s2 within layer 2, and hopping
back to layer 1, from s2 to r2. When applied to the G-hBN
bilayer, the sublattice symmetry breaking mass terms of �V12

from hBN to carbon sites have opposite sign from the direct
term �H12: the carbon site above a BN layer experiences
the same sublattice potential as the BN layer itself in the
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direct contribution �Ĥ12, while �V12 is opposite due to level
repulsion in the framework of perturbation theory. The use of
this effective potential will enable application to very large
systems without loss of accuracy.

VI. CONCLUSION

In summary, we derived the ab initio G-G and G-hBN
interlayer couplings based on the maximally localized Wannier
function transformation of DFT calculations. We show that
these interlayer couplings have both pair-distance and angular-
orientation dependence. In contrast, the conventional way of
modeling such couplings by fitting band structure calculations
leads to ambiguities in the functional form and its dependence
on important structural variables [17–20,25,45]. The success
of the latter, simpler approach is due to the small number of
parameters needed in effective low-energy theories near the
Dirac energy [21–24], implying that only one set of dominant
Fourier components for interlayer coupling is relevant; this
set of components, however, is not enough to constrain its
functional form and its dependence on key variables. In the
work of Jung et al. [26,27], such interlayer couplings were
extracted with the use of the Wannier transformation but the
crystal configuration of the bilayer was held at fixed orientation
which means that it can only be applied to layered stacks that
involve only translations and small relative twist angles.

In our work, we elucidate the physics from the extracted
couplings by analyzing the multi-angular-momentum channel

contributions. This enabled us to generalize the interlayer-
coupling model to arbitrary stacking orientations with that
involve any possible relative translation or rotation of the
layers. Our model can also be generalized to incorporate
local variations of in-plane strain and interlayer distance by
varying the reference configurations in a systematic way. We
expect our model to be relevant in investigating the derivation
of low-energy theories appropriate for layer stackings [21–
24,44], the band gap introduced by the presence of hBN
[46], optical absorption [47], vertical transport across layers
[28], phenomena such as the quantum Hall effects, and
Hofstadter’s butterfly from the competition between magnetic
field and supercell length scales [48–50]. The systematic
Wannier approach also allows for further generalization to
other two-dimensional layered materials.
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