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Motivated by the recent experimental and theoretical progress of the magnetic properties in iron-based
superconductors, we provide a comprehensive analysis of the extended spin-1 bilinear-biquadratic (BBQ) model
on the square lattice. Using a variational approach at the mean-field level, we identify the existence of various
magnetic phases, including conventional spin dipolar orders (ferro- and antiferromagnet), novel quadrupolar
orders (spin nematic), and mixed dipolar-quadrupolar orders. In contrast to the regular Heisenberg model, the
elementary excitations of the spin-1 BBQ model are described by the SU(3) flavor-wave theory. By fitting
the experimental spin-wave dispersion, we determine the refined exchange couplings corresponding to the
collinear antiferromagnetic iron pnictides. We also present the dynamic structure factors of both spin dipolar and
quadrupolar components with connections to the future experiments.
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I. INTRODUCTION

The parent compounds of the recently discovered iron-
based superconductors (SCs) exhibit a variety of unusual mag-
netic phases, reviewed by Ref. [1] and references therein. In-
stead of the regular Néel antiferromagnetic (AFM) order found
in cuprates, iron pnictides display a collinear antiferromagnetic
(CAFM) order. In contrast to cuprates superconductors where
the magnetism of the parent compounds are well described
by a nearest-neighbor (NN) Heisenberg model, the character
of magnetic interactions in iron-based SCs may not be well
described by Heisenberg-type models.

Early inelastic neutron scattering (INS) experiments in the
iron pnictides reveal that the spin-wave excitations in these
compounds are highly anisotropic [2–4], with a dispersion
which can be understood in terms of a phenomenological Jx −
Jy − J2 model. However, the strong anisotropic version with
antiferromagnetic Jx and ferromagnetic Jy is not compatible
with the tetragonal lattice structure even when the small
orthorhombic distortion is taken into account. Thus a correct
interpretation of the strong anisotropy entails additional under-
lying mechanisms. While the strong anisotropy of magnetic
interactions in iron-based SCs has also been linked to nematic
ordering [5], there is still an ongoing debate on whether it is
caused by the spin-nematic sector [6–9] or the orbital ordering
sector [10–14].

Based on a simple local moment picture, this puzzling
feature found experimentally can be naturally explained with
the inclusion of a biquadratic spin coupling. Indeed, the parent
compounds of a large majority of iron-based SCs host a range
of semimetallic behaviors, signaling the deviation of Mott
insulating state, it is natural that the magnetic Hamiltonian
consists of not only bilinear spin interactions originating from
the strong coupling regime but also interactions involving
multispin exchange terms when perturbation expansion is
carried out up to fourth order [15,16]. The presence of
biquadratic terms in iron-based materials has been verified
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by first-principles calculations [17,18]. It is argued that the
biquadratic spin-spin interaction describes the low-energy
properties after integrating out the itinerant electrons or orbital
degrees of freedom [19,20]. Furthermore, a large biquadratic
exchange in iron-based SCs was also attributed to the crossover
of different local spin states [21].

In the previous studies of the CAFM iron pnictides, only
the NN biquadratic coupling K1 was included which leads
to a minimum effective J1 − J2 − K1 model [19,22–25]. This
minimum model can really preserve the tetragonal lattice sym-
metry and capture the essentially anisotropic spin excitations
of the parent compounds CaFe2As2 and BaFe2As2. However, it
is not a priori that the next NN (NNN) biquadratic coupling K2

is negligible, since both experimental and theoretical studies
suggest a substantial superexchange process through NNN
sites. Therefore we consider the extended bilinear-biquadratic
(BBQ) model defined as

H =
∑

μ=1,2

∑
〈ij〉μ

JμSi · Sj − Kμ(Si · Sj )2, (1)

where 〈ij 〉1 and 〈ij 〉2 denote the NN and NNN bonds,
respectively. We note that we have not considered the third NN
couplings, which are believed to be essential to describe the
magnetic properties of iron chalcogenides [23,26], since the
above model appears to be adequate to describe iron pnictides.

In the present work, we assume the effective spin S = 1
on the iron sites based on the successful studies of two-band
models [27]. The reason is twofold, (i) S � 1 agrees with the
observed relatively small local moments from the integrated
spin spectral weight of INS measurements, (ii) the biquadratic
spin interactions are expected to be a natural consequence of
the strong coupling expansion in multiorbital systems with
local effective spin S � 1 induced by Hund’s coupling. The
later can be easily understood by recasting the biquadratic term
as

2(Si · Sj )2 = Qi · Qj − Si · Sj + 2

3
S2(S + 1)2, (2)

where Q is the quadrupolar operator with five components
Qαβ = 1

2 {Sα,Sβ} − 1
3S(S + 1)δαβ [28]. It is worth noting that
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Q = 0 for S = 1
2 and the BBQ model (1) reduces to an

effective J̄1 − J̄2 model with renormalized exchange constants
J̄1 = J1 + K1

2 and J̄2 = J2 + K2
2 . Though it was shown that

biquadratic coupling could be generated by quantum or
thermal fluctuations in a bare J1 − J2 model [6,29], the small
amplitude of the biquadratic constant is not applicable to
experiments. Thus it is commonly believed that the Heisenberg
J1 − J2 model can not explain the observed anisotropic spin
excitations in iron pnictides, this justifies the validity of using
S = 1 for our study.

In this paper, we study the spin-1 BBQ model by treating the
spin dipolar and quadrupolar degree of freedom on an equal
footing. Despite conventional spin dipolar orders with finite
magnetic moments 〈S〉 found previously [23], our variational
phase diagram by taking into account the quantum nature of
local spin-1 states show that the BBQ model can support
novel orderings of spin quadrupolar moments 〈Q〉, which
are also known as spin nematic phases without time-reversal
symmetry breaking [30–32]. Contrary to previous works based
on conventional SU(2) spin-wave theory where the intrinsic
quadrupolar fluctuations were missed [19,22–25], we find
that the elementary excitations in the framework of SU(3)
flavor-wave theory display distinct features which are crucial
for a consistent interpretation of the magnetic interactions and
spin excitation spectra in iron-based superconductors.

The remainder of the paper is organized as follows. In
Sec. II, we identify various variational ground states of the
BBQ model on the square lattice and display a portion of the
mean-field phase diagram relevant for the iron-based SCs. In
Sec. III, we introduce the SU(3) flavor-wave theory for spin-1
systems and provide its implications for the spin dynamics
of CAFM iron pnictides. The comparison with the results
given by conventional SU(2) spin-wave theory is also made. In
Sec. IV, we present the dynamic correlation functions of both
spin dipolar and quadrupolar components with connections to
the future experiments in iron pnictides. Section V is devoted
to our summary and conclusion. For the sake of completeness,
we present the formula of the conventional SU(2) spin-wave
theory in Appendix.

II. VARIATIONAL GROUND STATES

A. Parametrization of spin-1 states

We discuss the zero temperature variational phase diagram
based on the following site-factorized wave function [28,30]:

|�〉 =
N∏

i=1

|ψi〉 , (3)

where N is the number of lattice sites and |ψi〉 the local wave
function at site i. It is convenient to introduce the time-reversal
invariant basis for spin-1 states

|x〉 = i
|1〉 − |1̄〉√

2
, |y〉 = |1〉 + |1̄〉√

2
, |z〉 = −i |0〉 , (4)

where |1̄〉 , |0〉 , |1〉 are the usual bases quantized along the z

axis. A general single-site wave function can be written as

|ψi〉 =
∑

α=x,y,z

diα |α〉 , (5)

TABLE I. Variational ground-state manifolds under individual
interaction J D

μ or J Q
μ on the square lattice.

Interaction Sign Ground state Degeneracy

+ (Néel) AFM 1
J D

1 − FM 1

+ FQ 1
J

Q

1 − Semiordered (SO) ∞
+ Decoupled AFM ∞

J D
2 − Decoupled FM ∞

+ Decoupled FQ ∞
J

Q

2 − Decoupled SO ∞

where d = u + iv satisfies the normalization constraint |d| =
1. Without loss of generality, one can choose u and v in such
a way that u · v = 0. The coherent spin state is realized for
u = v and 〈S〉 = 2u × v. If u = 0 or v = 0, the state is purely
quadrupolar with a director along the nonzero component u
or v. In fact, one may refer to the larger of the two vectors as
the director in the case 0 < 〈S〉 < 1 (in other words, the spin
is not fully developed). It is evident that the director has to lie
in the plane perpendicular to the spin vector in the partially
developed state.

B. Large- J ground state

Using Eq. (2), we can recast the BBQ Hamiltonian (1) as,
up to a constant energy (− 8

3N (K1 + K2))

H =
∑

μ=1,2

∑
〈ij〉μ

JD
μ Si · Sj − JQ

μ Qi · Qj , (6)

where we have defined the effective spin dipolar and quadrupo-
lar couplings JD

μ = Jμ + Kμ

2 and JQ
μ = Kμ

2 , respectively. In
order to provide a simple but rather instructive picture, the
minimization of the mean-field ground-state energy EGS =
〈�|H |�〉 can be carried out first for several extreme cases
with only one type of coupling surviving, which we term
large-J limit. Since the exchange couplings involve both
NN and NNN bonds, one obtains eight different ground-state
manifolds depending on the sign of the coupling coefficient.
Some of these ground-state manifolds are unique while others
are degenerate. The variational results are summarized in
Table I. We will present the detailed analysis for each case
in the following.

(i) Large-JD
1 limit. We may set |JD

1 | = 1 and J
Q
1 = JD

2 =
J

Q
2 = 0. In this case, we find only spin dipolar operators among

NN bonds are coupled. The presence of only JD
1 interaction

induces conventional ferromagnetic (FM) phase for JD
1 < 0

and Néel AFM phase for JD
1 > 0.

(ii) Large-JQ
1 limit. We may set |JQ

1 | = 1 and JD
1 = JD

2 =
J

Q
2 = 0. In this case, we find only spin quadrupolar operators

among NN bonds are coupled. It is easy to show that a
ferroquadrupolar (FQ) phase with parallel directors for all the
sites will be stabilized for J

Q
1 > 0. However, the case for

antiferroquadrupolar (AFQ) coupling J
Q
1 < 0 is nontrivial.

In order to gain further insight, one should note that the
expectation value of a pair of quadrupolar operators can be
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(a) (b) (c)

FIG. 1. Degeneracy of a semiordered (SO) bond with dominant
AFQ coupling among two spin-1 sites. Keeping one of the sites
a purely quadrupolar state, one may either obtain the solution of
(a) a quadrupole, (b) a partially developed dipole, or (c) a coherent
spin state on the other site. Blue (green) arrows symbolize coherent
(partially developed) moments, while red lines symbolize directors.

written as

〈Qi · Qj 〉 = |di · dj |2 + |d∗
i · dj |2 − 2

3 . (7)

We see that 〈Qi · Qj 〉 is minimized if dj is orthogonal both to di

and its time-reversal transform, which implies that one state is a
pure quadrupole with director d while another one may feature
either a pure quadrupole with its director perpendicular to d, or
a spin vector of arbitrary length pointing along d. Following
Refs. [33–35], we call this phase “semiordered” (SO). The
degeneracy of a SO bond with dominant AFQ coupling among
two sites is depicted in Fig. 1.

(iii) Large-JD
2 limit. We may set |JD

2 | = 1 and JD
1 = J

Q
1 =

J
Q
2 = 0. In this case, we find that only spin dipolar operators

among NNN bonds are coupled. In the presence of only JD
2

interaction, the lattice decouples into two interpenetrating FM
(JD

2 < 0) or AFM (JD
2 > 0) sublattices and the angle between

the magnetization or staggered magnetization of these two
sublattices is arbitrary. The decoupled AFM and FM phases
on a plaquette are depicted in Figs. 2(a) and 2(b), respectively.

(iv) Large-JQ
2 limit. We may set |JQ

2 | = 1 and JD
1 = J

Q
1 =

JD
2 = 0. In this case, we find only spin quadrupolar operators

among NNN bonds are coupled. In analogy with the above
analysis, we also find two decoupled phases with decoupled
FQ for J

Q
2 > 0 and decoupled SO for J

Q
2 < 0. We depict two

examples on a plaquette in Figs. 2(c) and 2(d).

C. Lift of degeneracy via various perturbations

Based on the large-J analysis, we find that the SO phase
and the four decoupled phase are infinitely degenerate. The
presence of infinite degeneracies arises from two aspects. One
is from the arbitrary spin moment in a SO bond. Another
is from the continuous rotation between the two decoupled
lattices. We will show that the massive degeneracy in the large-
J phases can be fully or partially lifted due to the perturbation
of various secondary interactions. The results are summarized

(a) (b) (c) (d) 

FIG. 2. Illustration of the four decoupled phases in the presence
of individual NNN interaction J D

2 or J
Q

2 on a plaquette. (a) Decoupled
AFM for J D

2 > 0. (b) Decoupled FM for J D
2 < 0. (c) Decoupled FQ

for J
Q

2 > 0. (d) Decoupled SO for J
Q

2 < 0.

TABLE II. Lift of the infinite degenerate ground states under
various perturbed interactions.

Degenerate manifold Perturbation Resultant phase

J D
2 → 0+ Diagonal FQ+AFM

J D
2 → 0− Diagonal FQ+FM

Semiordered (J Q

1 < 0)
J

Q

2 → 0+ Néel AFQ
J

Q

2 → 0− Degenerate AFQ

J
Q

1 → 0+ CAFM
Decoupled AFM (J D

2 > 0)
J

Q

1 → 0− OM

J D
1 → 0+ AFM

J D
1 → 0− FM

Decoupled FM (J D
2 < 0)

J
Q

1 → 0+ FM/AFM
J

Q

1 → 0− OM

J
Q

1 → 0+ FQ
Decoupled FQ (J Q

2 > 0)
J

Q

1 → 0− Néel AFQ

J D
1 → 0+ Stripe FQ+AFM

J D
1 → 0− Stripe FQ+FM

Decoupled SO (J Q

2 < 0)
J

Q

1 → 0+ Decoupled AFQ
J

Q

1 → 0− Degenerate SO

in Table II. We present the detailed analysis for each degenerate
large-J phase in the following.

(i) Lift of degeneracy in the SO phase. Since the expectation
value of a pair of spin operators can be written as

〈Si · Sj 〉 = |d∗
i · dj |2 − |di · dj |2, (8)

we see that 〈Si · Sj 〉 is always zero when one of the two sites
features a purely quadrupolar state. Thus including the NN
dipolar coupling JD

1 has no consequence on the ground-state
energy of the SO phase.

However, we find that the degeneracy of the SO phase will
be fully lifted in the presence of finite JD

2 coupling, leading to
two interpenetrating sublattices along the diagonal direction
with one sublattice featuring FQ order and the other featuring
AFM (JD

2 > 0) or FM (JD
2 < 0) order, see Figs. 3(a) and 3(b)

for an illustration on a plaquette. We call this phase diagonal
FQ+FM for JD

2 < 0 and diagonal FQ+AFM for JD
2 > 0.

Likewise, the presence of finite J
Q
2 coupling will also lift

the degeneracy of the SO phase. For J
Q
2 > 0, the degeneracy is

fully lifted, leading to a two-sublattice Néel type AFQ order,
see Fig. 3(c). However, the massive degeneracy is partially
lifted for J

Q
2 < 0 and we find that a highly degenerate state

with purely quadrupolar nature is stabilized. This degenerate

(a) (b) (c) (d) 

FIG. 3. Lift of the infinite degeneracies in the SO phase under
various perturbed interactions leads to (a) diagonal FQ+AFM for
J D

2 → 0+, (b) diagonal FQ+FM for J D
2 → 0−, (c) Néel AFQ for

J
Q

2 → 0+, and (d) degenerate AFQ for J
Q

2 → 0−.
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(a) (b)

FIG. 4. Illustration of two magnetic phases exhibiting purely spin
dipolar ordering. (a) Collinear AFM (CAFM) phase with ordering
wave vector (π,0). (b) Orthomagnetic (OM) phase without breaking
the tertragonal lattice symmetry.

phase can be constructed by filling the square lattice with three
purely quadrupolar state (e.g., |x〉, |y〉, and |z〉) by requiring all
NN bonds featuring orthogonal state, see Fig. 3(d) for a sketch
on a plaquette. We call this phase degenerate AFQ. In fact,
the ground-state configuration for the degenerate AFQ phase
on the square lattice has been extensively studied with only
NN bilinear and biquadratic interactions [33] and it is recently
proposed that a peculiar three-sublattice ordering is selected
by quantum fluctuations [34,35].

(ii) Lift of degeneracy in the decoupled AFM phase. It
can be shown that only J

Q
1 perturbation has an impact on the

ground-state energy. We find that the degeneracy due to the
continuous rotation between the two decoupled lattices will be
fully lifted in the presence of a finite NN quadrupolar coupling,
leading to a collinear configuration (CAFM phase) with NN
spin moments being parallel for J

Q
1 > 0 and an orthomagnetic

(OM) phase with NN spin moments being perpendicular for
J

Q
1 < 0. The collinear phase has a twofold degeneracy with

ordering wave vector (π,0) or (0,π ) while the OM phase
preserves the tertragonal lattice symmetry [36]. We depict
these two phases in Figs. 4(a) and 4(b), respectively.

(iii) Lift of degeneracy in the decoupled FM phase. It can
be shown that the decoupled FM phase is unstable with the
perturbation of all NN dipolar and quadrupolar couplings. The
selection mechanism is strongly dependent on the sign of the
interactions. In particular, we find that the FM phase is selected
by JD

1 < 0, the AFM phase is selected by JD
1 > 0 and the OM

phase is selected by J
Q
1 < 0. However, for J

Q
1 > 0 both the

FM and AFM phase are the variational ground states.
(iv) Lift of degeneracy in the decoupled FQ phase. We find

that the degeneracy in the decoupled FQ phase is only lifted by
the presence NN quadrupolar couplings. A uniform FQ order
is selected by J

Q
1 > 0 while the Néel AFQ order is selected

by J
Q
1 < 0.

(v) Lift of degeneracy in the decoupled SO phase. The
decoupled SO phase is unstable with the perturbation of all
NN dipolar and quadrupolar couplings.

In the presence of perturbed NN dipolar interaction JD
1 ,

one can obtain two different phases with mixed dipolar and
quadrupolar characters. In particular, one finds the ground-
state manifold will feature alternate dipolar and quadrupolar
alignments along the columns (rows) with collinear directors
and moments. Since the directors of the quadrupolar alignment
should be parallel to their adjacent spin moments, we denote
this phase as stripe FQ+AFM for JD

1 > 0 and stripe FQ+FM

(a) (b) (c) (d) 

FIG. 5. Lift of the infinite degeneracies in the decoupled SO phase
under various perturbed interactions leads to (a) stripe FQ+AFM for
J D

2 → 0+, (b) stripe FQ+FM for J D
2 → 0−, (c) decoupled AFQ for

J
Q

2 → 0+, (d) degenerate SO for J
Q

2 → 0−.

for JD
1 < 0. An illustration of the two phases on a plaquette is

depicted in Figs. 5(a) and 5(b). Notice that the two stripe phases
on the square lattice are still infinitely degenerate since every
AFM or FM column (row) is decoupled. Thus the degeneracy
is only partially lifted in this case.

In the presence of perturbed NN quadrupolar interactions,
one still obtains two highly degenerate phases. For J

Q
1 > 0,

the variational solution supports a peculiar purely quadrupolar
phase which consists of two decoupled Néel AFQ lattices, see
Fig. 5(c). In this case, it is expected that a quantum order-
by-disorder mechanism can break the continuous degeneracy
due to the arbitrary angle between the staggered directors of
these two sublattices, leading to a FQ alignment along one
direction with parallel directors between two NN sites and an
alternate AFQ configuration along the other direction with
orthogonal directors between two NN sites. We note that
the effect of additional third NN interactions is important
to stabilize a genuine two-sublattice collinear AFQ (CAFQ)
phase with ordering wave vector (π,0)/(0,π ). The (π,0) AFQ
order is recently proposed to explain the curious magnetic
properties and nematicity of FeSe, see Ref. [26]. For J

Q
1 < 0,

the degeneracy of one diagonal SO bond on a plaquette
will be lifted, leading to a purely quadrupolar configuration
with orthogonal directors, while the degeneracy of the other
diagonal SO bond is still preserved, see Fig. 5(d) for an
illustration. We denote this phase as degenerate SO.

D. Phase diagram relevant to iron-based SCs

Based on the above variational analysis, we find that the
extended BBQ model (1) can support various ground-state
manifolds including conventional spin dipolar orders (ferro-
and antiferromagnet), novel quadrupolar orders (spin nematic),
and mixed dipolar-quadrupolar orders. An exhaustive phase
diagram can be mapped out by comparing the ground-state
energy of different phases. Since we are interested in the
emergence of possible new ground states relevant to iron-based
SCs, we restrict our discussion to J

Q
1 > 0 (or K1 > 0) regime

where the (π,0) CAFM phase for iron pnictides is stabilized
in the presence of dominant antiferromagnetic J2 interaction.
Henceforth, we will set J2 = 1 as the energy unit in order
to incorporate the NNN antiferromagnetic superexchange
processes in iron pnictides and chalcogenides.

A portion of the variational phase diagram under the
influence of variable K1 and K2 interactions is mapped out
in Fig. 6 for several J1 interactions. We see that for strong NN
biquadratic coupling K1 the ground state consists of FQ or
AFM order since K1 enhances both antiferromagnetic dipolar
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FIG. 6. The variational ground-state phase diagram for the spin-1 bilinear-biquadratic (BBQ) model (1) on the square lattice. We have set
J2 = 1 and (a) J1 = −1, (b) J1 = 0, (c) J1 = 1. S1 and S2 represent stripe FQ+FM and stripe FQ+AFM phases, respectively.

coupling as well as ferroquadrupolar coupling among NN sites
according to Eq. (2). The CAFM phase occupies the upper
left part of the phase diagram since a large and positive K2

interaction will enhance the NNN antiferromagnetic dipolar
coupling and the presence of moderate K1 > 0 will select the
collinear phase at the variational level. The most interesting
feature is in the lower left part of the phase diagram. We find
that for J1 < 0, it is occupied by a mixed dipolar-quadrupolar
phase (stripe FQ+FM) and a purely quadrupolar phase (decou-
pled AFQ). While for J1 � 0 the stripe FQ+FM disappears
from the present phase diagram. Specifically, both DAFQ
and another mixed phase (stripe FQ+AFM) are the ground
state for J1 = 0 and the latter dominates the whole lower
left region for J1 > 0. Thus the emergence of a nonuniform
purely quadrupolar phase in the vicinity of the CAFM phase,
including the proposed (π,0) AFQ phase relevant to FeSe as
selected by quantum fluctuations in the DAFQ phase, is most
likely to be realized for J1 < 0.

III. SU(3) FLAVOR-WAVE THEORY

Since the quadrupolar operators are related to the generators
of SU(3) Lie algebra, the spin dipolar and quadrupolar order
parameters fluctuate in the SU(3) space instead of the SU(2)
space of local spin rotations [37,38]. The SU(3) flavor-wave
theory for spin-1 systems starts from introducing three-flavor
Schwinger bosons (SBs) a†

μ (with μ = 1,2,3), which create
the three local spin-1 basis a†

μ |∅〉 = |μ〉 and satisfy the local
constraint [39–41]

∑
μ

a†
μaμ = 1. (9)

For the description of conventional spin dipolar phases, it is
convenient to use the usual Sz basis |μ〉 = (|1̄〉 , |0〉 , |1〉), while
the time-reversal invariant basis |μ〉 = (|x〉 , |y〉 , |z〉) is used
for the study of quadrupolar phases. In terms of the SBs, the
local spin and quadrupolar operators have bilinear forms which
are constructed by the eight generators of SU(3) group in the
fundamental representation [42,43]. In the next we investigate
the dynamic properties of the BBQ model in the (π,0) CAFM
phase within the framework of SU(3) flavor-wave theory.

A. General results for the (π,0) CAFM phase

The three-flavor SBs which create the three local spin-1
basis are introduced as

a
†
1 |∅〉 = |1̄〉 , a

†
2 |∅〉 = |0̄〉 , a

†
3 |∅〉 = |1〉 , (10)

and satisfy the local constraint (9). In terms of the three-flavor
SBs, the local spin and quadrupolar operators are constructed
by the fundamental representation of SU(3) Lie algebra, which
have the following bilinear forms [37,38]:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sx

Sy

Sz

Qx2−y2

Q3z2−r2

Qxy

Qyz

Qzx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2
(a†

1a2 + a
†
2a3 + H.c.)

i√
2
(a†

1a2 + a
†
2a3 − H.c.)

a
†
3a3 − a

†
1a1

a
†
1a3 + a

†
3a1

1√
3
(1 − 3a

†
2a2)

i(a†
1a3 − a

†
3a1)

i√
2
(a†

2a3 + a
†
2a1 − H.c.)

1√
2
(a†

2a3 − a
†
2a1 + H.c.)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

In order to study the two-sublattice CAFM phase, it is
convenient to perform a local rotation in the spin space

S
x0
i = eiκ ·ri Sx

i , S
y0
i = S

y

i , S
z0
i = eiκ ·ri Sz

i , (12)

where κ = (π,0) is the corresponding ordering wave vector.
In the local frame, the following mean-field ground state is
stabilized

|�〉 =
N∏

i=1

a
†
3i |∅〉 . (13)

The leading quantum correction above the mean-field ground
state is described by the SU(3) flavor-wave theory, which is
implemented via the condensation of the boson a3 under the
local constraint (9)

a
†
3,a3 →

√
1 − a

†
1a1 − a

†
2a2. (14)

The SB operators (a1,a2) thus play the role of the Holstein-
Primakoff bosons in the SU(2) spin-wave theory which
describe the fluctuations around the variational ground state.
After performing the Fourier transformation, we obtain the
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quadratic SU(3) flavor-wave Hamiltonian

H =
∑

k,ν=1,2

Aνka
†
νkaνk + Bνk

2
(aνkaν−k + H.c.), (15)

where

A1k = 8J2 − 2K1 cos ky + 4K2, (16)

B1k = 2K1 cos kx − 4K2 cos kx cos ky, (17)

A2k = 2J1 cos ky + 4J2 + 2K1 + 4K2, (18)

B2k = − 2(J1 + K1) cos kx − 4(J2 + K2) cos kx cos ky.

(19)

The resulting Hamiltonian can be diagonalized via a Bogoli-
ubov transformation

aνk = uνkbνk + vνkb
†
ν−k, (20)

with

u2
νk,v

2
νk = Aνk ± ενk

2ενk
, uνkvνk = − Bνk

2ενk
. (21)

The elementary excitation spectrum consists of two branches:

ενk =
√

A2
νk − B2

νk. (22)

FIG. 7. Elementary excitation spectra of the flavor waves in the
CAFM phase of the BBQ model (1) with J1 = J2 = 1 and K2 = 0.
(a) The high-energy (quarupolar) branch is gapped corresponding
to the elementary 
S = 2 excitations. (b) The low-energy spectra
are gapless magnon mode corresponding to the elementary 
S = 1
excitations.

According to (10), we find that the operator a
†
1 creates

an excitation with 
Sz = 2, the corresponding branch ε1k
has a quadrupolar (nematic) character, which is the bound
state of two magnons and always gapped in the magnetic
dipolar phase. While a

†
2 creates an excitation with 
Sz = 1,

the corresponding branch ε2k is the conventional magnon
mode (Goldstone mode) with gapless excitations. The quasi-
particle dispersion for several representative points in the phase
diagram of the CAFM phase is shown in Fig. 7. Generally, the
high-energy quadrupolar branch forms a perfectly flat band
with a finite gap in the absence of biquadratic couplings, see
Fig. 7(a). While we see that when the system approaches a
nematic critical point, as shown in Fig. 7(a), the quadrupolar
branch eventually becomes gapless excitations, signaling the
onset of a quadrupolar order. It is already clear from Eq. (22)
that the low-energy magnon spectrum has zeros at k = (0,0)
and k = (π,0) in the two-dimensional Brillouin zone, see
Fig. 7(b). It is also shown in Fig. 7(b) that the presence of
finite NN biquadratic coupling K1 opens the spin-wave gap at
momentum (π,π ).

B. Spin-wave dispersion of iron pnictides

We now discuss the applicability of the extended BBQ
model for iron pnictides and determine which regime in the
parameter space is the most relevant to the experimentally
observed spin-wave dispersion. Experimentally, the magnon
dispersion is best known for the 122 compounds CaFe2As2 [2]
and BaFe2As2 [4]. Hence we fit the dispersion with the SU(3)
flavor-wave theory of the BBQ model (1) to the measured
spin-wave dispersion for iron pnictides. Then we are able
to compare the exchange values with those obtained by the
conventional SU(2) spin-wave approaches (see Appendix for
a summary of the spin-wave theory).

To address this issue, we would like to make a brief
review of the previous efforts. The experimentally observed
INS spectrum of CAFM iron pnictides exhibits a striking
feature, namely, the spin-wave energy approximately forms
a maximum at (π,π ) point [2,4,44]. This distinct feature
can not explained by a simple Heisenberg J1 − J2 model
which predicts a minimum at (π,π ) point [45–47]. The initial
fittings were performed by a phenomenological Jx − Jy − J2

model with antiferromagnetic Jx and nearly ferromagnetic Jy ,
which do not allow for a reconciliation even when the small
orthorhombic lattice distortion is taken into account. Therefore
it is of great importance to formulate a minimum spin model
which can capture both the correct spin-wave spectrum and
preserve the tetragonal lattice symmetry. Such efforts were
subsequently made by the inclusion of a biquadratic coupling
between NN sites which is just the celebrated J1 − J2 − K1

model. The J1 − J2 − K1 model studied in Refs. [19,23,24]
is based on a mean-field decoupling of the biquadratic
term which is shown to be identical to the Jx − Jy − J2

model, see Appendix for an exact mapping between these
two models under a Hubbard-Stratonovich transformation.
Thus such fitting gives the traditionally accepted magnetic
exchange interactions with J1 = 22 meV, J2 = 19 meV and
K1 = 14 meV for CaFe2As2, see the orange circles in Fig. 8.
However, the limitations of the mean-field decoupling are
realized subsequently by authors in Refs. [22,25] where they
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FIG. 8. Spin-wave spectrum for iron pnictides Ca(Ba)Fe2As2.
The orange circles represent the experimental dispersion fitted by a
Jx − Jy − J2 model, which is equivalent to the J1 − J2 − K1 model
in the linear SU(2) spin-wave theory with the accepted parameters
J1 = 22 meV, J2 = 19 meV, and K1 = 14 meV [2,4]. The red dashed
curve represents the dispersion plotted by the same set of parameters
but in the framework of SU(3) flavor-wave theory. The best fitting of
the experimental dispersion with SU(3) flavor-wave theory as shown
by the blue curve is achieved with J1 = −5 meV, J2 = 50 meV,
K1 = 45 meV, and K2 = −25 meV.

carry out a nonlinear spin-wave calculation and find that the
experimental spectra can not be well captured even with fairly
large biquadratic coupling.

We want to point out that all these fittings carried out
in the previous works are based on the assumption of J1 ≈
J2 [19,23,24]. However, a dominant antiferromagnetic J2

coupling can be accounted for by taking into the arsenic
bridging superexchange process [48] and even a ferromagnetic
J1 coupling is proposed in some iron chalcogenides (see
Table I in Ref. [23] for a summary of the exchange constants).
Furthermore, the dramatic reduction or even the sign change
of J1/J2 signals the importance of the p orbitals of As or Te/Se
on the influence of magnetism in iron-based SCs. In the present
work, we will extend the fitting by including an adjustable J1

interaction ranging from ferromagnetic to antiferromagnetic
in the framework of SU(3) flavor-wave theory. We find that
for J1 ≈ J2 scenario, the existence of local minimum at
(π,π ) is robust against both the NN and NNN biquadratic
interactions which is in good agreement with the prediction
by nonlinear SU(2) spin-wave theory [25]. The best fitting
of the experimental magnon dispersion for Ca(Ba)Fe2As2

under J1 
 J2 scenario in the framework of SU(3) flavor-
wave theory is achieved for J1 = −0.1J2, K1 = 0.9J2 and
K2 = −0.5J2 with the energy scale J2 = 50 meV, see the
blue curve Fig. 8. We also show that the previously accepted
exchange constants that were obtained by conventional SU(2)
spin-wave theory fail to reproduce the experimental dispersion
in the new framework of SU(3) flavor-wave theory, see the red
dashed curve in Fig. 8, since the spin quadrupolar nature is
neglected in conventional SU(2) spin-wave theory.

IV. DYNAMIC CORRELATION FUNCTIONS

A. Spin dynamic structure factors

Neutron scattering cross section is directly related to the
diagonal components of the spin dipolar dynamical structure

factor (DSF), or the dynamical spin-spin correlation function

Sα0β0
D (q,ω) =

∫ ∞

−∞

dt

2π
eiωt

〈
Sα0

q (t)Sβ0
−q(0)

〉
, (23)

where α0 and β0 refer to spin dipolar components in the
laboratory frame {x0,y0,z0}. Using (12), we obtain the spin
dipolar DSF in the rotating frame

S tot
D (q,ω) = Sxx

q−κ,ω + Syy
q,ω + Szz

q−κ,ω, (24)

In Eq. (24), one can readily identify the conventional transverse
and longitudinal components of the DSF which are respec-
tively given by

ST (q,ω) = Sxx
q−κ,ω + Syy

q,ω, SL(q,ω) = Szz
q−κ,ω. (25)

In order to determine the leading contributions of the one-
and two-particle excitations to the total DSF in (24), the spin
operators are expanded to the quadratic terms according to
(11) with the help of (14), leading to

⎛
⎜⎝

Sx

Sy

Sz

⎞
⎟⎠ ≈

⎛
⎜⎝

1√
2
(a†

2 + a
†
1a2 + H.c.)

i√
2
(a†

2 + a
†
1a2 − H.c.)

1 − 2a
†
1a1 − a

†
2a2

⎞
⎟⎠. (26)

According to Eq. (26) the transverse DSF can be expressed
as

ST (q,ω) = ST
1 (q,ω) + ST

2 (q,ω), (27)

with

ST
1 (q,ω) = (

u2q − v2q
)2

δ
(
ω − ε2q

)
, (28)

ST
2 (q,ω) =

∑
k+k′=q

(u1kv2k′ − v1ku2k′ )2δ(ω − ε1k − ε2k′).

(29)

Apart from the coherent part ST
1 which is contributed by

the single-magnon excitation, one can clearly see that the
transverse DSF also consists of a two-particle continuum. The
incoherent spectra ST

2 which can not be identified by SU(2)
spin-wave theory represents the simultaneous excitation of a
magnon mode ε2 plus a quadrupolar mode ε1. In Fig. 9(a),
we present the transverse DSF at momentum point (π,π )
for CaFe2As2. The coherent spectra show a δ function peak
exactly at the spin-wave energy of ω ≈ 4J2, while the high-
energy incoherent continuum ranges from about 6J2 to 11J2.
Similarly, we find that the inelastic part of longitudinal DSF
consists of two incoherent excitations

SL(q,ω) = SL
a (q,ω) + SL

b (q,ω), (30)

with

SL
a (q,ω) =

∑
k+k′=q

2(u1kv1k′ − v1ku1k′ )2δ(ω − ε1k − ε1k′ ),

(31)

SL
b (q,ω) =

∑
k+k′=q

1

2
(u2kv2k′ − v2ku2k′ )2δ(ω − ε2k − ε2k′ ).

(32)
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FIG. 9. Coherent and incoherent contributions to the spin dipolar
dynamic structure factor (DSF) at momentum point (π,π ). (a) The
transverse DSF consists of both a coherent single-particle spectrum
(ST

1 ) and a two-particle continuum (ST
2 ). (b) The longitudinal DSF

consists of two incoherent two-particle continuum with contributions
from two high-energy quadrupolar modes (SL

a ) and two low-energy
magnon modes (SL

b ). (c) The total DSF (ST + SL) is shown by shaded
areas, while the total longitudinal component is plotted by red dashes
lines.

Thus the longitudinal DSF describes the excitations of two
quadrupolar modes (SL

a ) and two magnon modes (SL
b ) while

the former can not be identified by SU(2) spin-wave theory
either. In Fig. 9(b), we display the inelastic part of longitudinal
DSF at momentum point (π,π ) for CaFe2As2. It is interesting
to point out that the two continua are separated by a finite gap
with SL

a(b) contributing to high(low)-energy spectra.
The total DSF at momentum point (π,π ) for CaFe2As2 is

also shown in Fig. 9(c). Though the two longitudinal continua
SL

a and SL
b have no overlap, the transverse continuum ST

2
bridges the gap and the three different continua give rise
to a robust high-energy sideband which may be verified
experimentally.

B. Quadrupolar dynamic structure factors

Moreover, one will see that the correlation functions of
spin quadrupolar operators will also come into play even
in the conventional magnetic dipolar phases. To access the
fingerprint of quadrupolar correlations, we consider the spin
quadrupolar DSF

SQ(q,ω) =
∫ ∞

−∞

dt

2π
eiωt 〈Tr[Qq(t)Q−q(0)]〉, (33)

where we have kept the experimental details unspecified
and calculate the quadrupolar DSF in the diagonalized
representation. Though the quadrupolar DSF can not be
directly seen in conventional neutron probes due to its
nature of 
S = 2 excitations, it may be detected by optical
measurements [49] under certain conditions and it is recently
proposed that the momentum resolved quadrupolar DSF
can be experimentally discernible in resonant inelastic x-ray
scattering spectroscopy [50].

FIG. 10. The coherent excitations revealed by the spin dipolar (a)
and quadrupolar (b) dynamic structure factors in the CAFM phase of
the BBQ model (1) with parameters fitted to Ca(Ba)Fe2As2.

In order to determine the leading contributions of the
coherent and incoherent excitations, the quadrupolar operators
can be also expanded to the quadratic terms according to (11)
with the help of (14), leading to

⎛
⎜⎜⎜⎜⎜⎜⎝

Qx2−y2

Q3z2−r2

Qxy

Qyz

Qzx

⎞
⎟⎟⎟⎟⎟⎟⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a
†
1 + a1

1√
3
(1 − 3a

†
2a2)

i(a†
1 − a1)

1√
2
(a†

2 − a
†
1a2 − H.c.)

i√
2
(a†

2 − a
†
1a2 + H.c.)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

It is clear to see that the correlation function of Q3z2−r2
can give

rise to elastic scattering cross section in experimental probes.
The presence of magnetic Bragg peak in quadrupolar DSF
in the conventional magnets does not signal any quadrupolar
order parameter but exhibits the intrinsic properties of spin-1
systems. The comparison of the spin dipolar and quadrupolar
DSF of iron pnictides is shown in Fig. 10 where we have only
calculated the dominated coherent spectra. The low-energy
magnon mode is revealed in the spin DSF with strong
intensity near the antiferromagnetic wave vector (π,0) and
gapless excitations at (0,0), see Fig. 10(a). However, both
the low-energy magnon mode and high-energy quadrupolar
mode are simultaneously revealed in the quadrupolar DSF, see
Fig. 10(b). Note that in the quadrupolar DSF, the quadrupolar
branch has a gap of about 2J2 which is directly accessible by
experimental measurements.

To better understand the spectral weight of DSFs in
momentum space, we also present the constant energy cuts of
SD(q,ω) and SQ(q,ω) in Fig. 11. At low energies, as displayed
in Figs. 11(a) and 11(d), the spin dipolar and quadrupolar
DSF show similar structure with elliptic rings emerging from
the magnetic ordering vector (π,0). This is not surprising
since only magnon excitations come into play below the
energy gap of quadrupolar branch. With increasing energy,
the rings increase with size, see Figs. 11(b) and 11(e). The
peculiar feature of the quadrupolar DSF is the presence of
two concentric rings when the cutting energies are above the
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FIG. 11. Constant energy cuts of the coherent spin dipolar
[(a)–(c)] and quadrupolar [(d)–(f)] dynamic structure factors for
Ca(Ba)Fe2As2. The cutting energies showing in the figures are in
units of J2 and the reciprocal lattice vectors are given in units π /lattice
constant.

gap. The inner one is attributed to the coherent excitations
of quadrupolar mode. At sufficiently high energy, the spectral
weight of the dipolar DSF decreases greatly and ultimately
disappears as the cutting energy exceeds the band width of the
magnon dispersion, see Fig. 11(c). Thus in the energy interval
between the maximum energy of magnon and quadrupolar
dispersion, only quadrupolar DSF persists which forms stripe
patterns, see Fig. 11(f).

V. SUMMARY AND CONCLUSION

To summarize, we have studied the variational phase
diagram of the extended BBQ model by incorporating both
NN and NNN exchange couplings on the square lattice. Apart
from the (π,0) CAFM phase relevant to iron pnictides, various
magnetic orderings including conventional spin dipolar orders,
novel quadrupolar orders (spin nematic) and mixed dipolar-
quadrupolar orders are identified. This suggests that it is
possible to find these novel orders in close proximity to the
CAFM phase in the phase diagram in other iron-based SCs,
e.g., the stoichiometric FeSe [51].

We have also calculated the elementary excitation spectra in
the (π,0) CAFM phase within the framework of SU(3) flavor-
wave theory. By fitting the experimental spin-wave dispersion,
we have obtained the most relevant exchange constants for
iron pnictides. It is suggested that the NN bilinear coupling
J1 deduced from the SU(3) flavor-wave theory differs strongly
with the previous predictions by the conventional SU(2) spin-
wave theory.

Finally, we have presented the dynamical correlations
of both spin dipolar and quadrupolar components for iron
pnictides. The spin dipolar and quadrupolar DSFs can be
directly probed with future experiments in INS and optical
spectroscopies, respectively. Our results are consistent with
and go beyond prior studies with the conventional SU(2)
spin-wave theory where the spin quadrupolar nature can not
be captured.
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APPENDIX: SU(2) SPIN-WAVE THEORY
FOR THE BBQ MODEL

Here we use the conventional SU(2) spin-wave theory to
study the BBQ model (1). The Schwinger representation of
SU(2) algebra is defined by introducing two boson, a and b.
The spin operators can be written as

S+ = a†b, S− = b†a, Sz = 1
2 (a†a − b†b), (A1)

along with the constraint

a†a + b†b = 2S. (A2)

The Holstein-Primakoff (HP) transformation is introduced to
describe the broken symmetry phases by condensing one of
the two bosons with the constraint (A2). In the local rotating
frame, we can define the following HP transformation

Sz
i = S − a

†
i ai, S−

i = a†
√

2S − a
†
i ai, S+

i = (S−
i )†. (A3)

The quadratic SU(2) spin-wave theory Hamiltonian of the
BBQ model (1) in the (π,0) CAFM phase is given by

H =
∑

k

Aka
†
kak − Bk

2
(aka−k + H.c.), (A4)

with

Ak = 4J2 + 8(K1 + K2) + (2J1 − 4K1) cos ky, (A5)

Bk = (2J1 + 4K1) cos kx + (4J2 + 8K2) cos kx cos ky. (A6)

It is worth noting that the above linear spin-wave Hamiltonian
can be also obtained from an effective J̃x − J̃y − J̃2 model.
Actually, in the harmonic level, the two models are exactly
related via the following Hubbard-Stratonovich transformation
[19,23–25]

J̃x = J1 + 2K1, J̃y = J1 − 2K1, J̃2 = J2 + 2K2, (A7)

which can be easily deduced by a mean-field decoupling of a
pair of NN spins for the biquadratic term

(Si · Sj )2 ≈ 2〈Si · Sj 〉Si · Sj − 〈Si · Sj 〉2. (A8)

The resulting Hamiltonian can be diagonalized by a Bo-
goliubov transformation, leading to the elementary excitation
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spectrum

εk =
√

A2
k − B2

k. (A9)

The spin-wave dispersion for iron pnictides is shown in Fig. 8
with the accepted parameters J1 = 22 meV, J2 = 19 meV, and
K1 = 14 meV.

The dynamic spin correlations can be also calculated by
expanding the HP transformation of spin operators to quadratic

terms. We find that the transverse DSF consists of only one
type of excitations, namely the single-magnon excitations

ST (q,ω) = Ak − Bk

εk
δ(ω − εk), (A10)

which shows a clear difference when compared with Eq. (27)
given by SU(3) flavor-wave theory.
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