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Momentum-space structure of surface states in a topological semimetal
with a nexus point of Dirac lines
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Three-dimensional topological semimetals come in different variants, either containing Weyl points or Dirac
lines. Here we describe a more complicated momentum-space topological defect where several separate Dirac
lines connect with each other, forming a momentum-space equivalent of the real-space nexus considered before
for helium-3. Close to the nexus the Dirac lines exhibit a transition from type I to type II lines. We consider a
general model of stacked honeycomb lattices with the symmetry of Bernal (AB) stacked graphite and show that
the structural mirror symmetries in such systems protect the presence of the Dirac lines, and also naturally lead
to the formation of the nexus. By the bulk-boundary correspondence of topological media, the presence of Dirac
lines lead to the formation of drumhead surface states at the side surfaces of the system. We calculate the surface
state spectrum, and especially illustrate the effect of the nexus on these states.
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I. INTRODUCTION

The study of momentum space topological defects is an
important topic in modern condensed matter physics [1–
3]. Topological materials are characterised by the existence
of bulk topological invariants and protected surface states.
The fully gapped topological phases have been classified in
terms of the existence of various antiunitary symmetries—
e.g., time-reversal and particle-hole symmetries [4,5]—and
also the importance of the unitary symmetries is under-
stood [6–12]. Recently there have been attempts to clas-
sify also the gapless topological phases [13–20]. In an
ordinary d-dimensional metal a d − 1-dimensional Fermi
surface separates the filled and empty states. On the other
hand, topological semimetals and nodal superconductors
exhibit lower dimensional Fermi lines or Fermi points,
whose stability is guaranteed by certain symmetries and
a nontrivial topology of the wave functions. The simplest
examples of gapless topological phases are graphene [21]
and d-wave superconductors [22–24] supporting topologi-
cal flat bands at the edges. Three-dimensional topological
semimetals with Dirac points [25–27], Weyl points [28–37],
and Dirac lines [38–53] have been theoretically predicted
and experimentally observed. Moreover, nodal topological
band structures with topologically protected surface states
can arise in superconductors with unconventional pairing
symmetries [1,54–66].

The possible topological defects occurring in gapless
materials are not limited to these options. The next step in
the increasing complexity of the momentum space topological
defects is to consider the topology of the systems containing
multiple Dirac lines [67,68]. These Dirac lines can meet
somewhere in the momentum space giving rise to an excep-
tional point, which can be called a nexus [67]. In real space
nexuses can appear when vortex lines meet and such kinds of
topological defects have been considered in the contexts of
superfluid helium-3 [1] and as a possible mechanism for con-
finement in the Georgi-Glashow model in particle physics [69].
Recently the idea that a momentum space nexus may occur
in topological semimetals was put forward in Ref. [67] in the

context of Bernally (AB) stacked graphite, where the existence
and merging of multiple band contact lines is theoretically well
established [70–72].

In this paper we study the properties of the nexus semimetal
phase proposed in Refs. [67,70–72]. We identify the key
properties of the model that allow stabilizing the nexus in
the momentum space: reflection symmetries and the existence
of more than one electron- or holelike bands close to the
Fermi energy. The reflection symmetries of the structure
specify mirror planes in the momentum space where the
Hamiltonian is block diagonal, and allow stabilizing band
crossings where the bands have different eigenvalues of
the mirror symmetry operator [16,48]. The requirement for
stabilizing the nexus is to have several of those mirror planes
sharing a common line in the momentum space, so that stable
Dirac lines can merge at a specific point within this line.
We show that in the nexus semimetal phase proposed in
Refs. [67,70–72] the nexus indeed defines a pointlike topo-
logical defect in the momentum space where three bands
are degenerate at the same momentum, and the appearance
of this type of an exceptional point distinguishes the nexus
semimetal phase from a semimetal containing (multiple)
Dirac lines that do not merge in the momentum space. By
the bulk-boundary correspondence of topological media, the
presence of Dirac lines lead to the formation of surface states.
We show that the number of surface states as a function of
the momentum components parallel to the surface displays
a fine-structure associated with the projected Dirac lines.
Far away from the nexus the surface state dispersions take
a form of a drumhead that is bounded by the projected
crossing points of the electron- and holelike bands [16,48].
In the vicinity of the nexus there occurs a crossover to
a different type of behavior, where one of the surface
bands connects two electronlike bands to each other, and
the other surface band connects two holelike bands. In
the crossover regime the surface states hybridize with the
bulk states so that they connect bulk band edges to each
other instead of being bounded by the projected Dirac
lines.
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II. MODEL AND SYMMETRIES

We consider Bernally stacked honeycomb lattices [Fig. 1(a)] such as Bernal graphite [67,70–72]. The tight-binding model for
such kind of three-dimensional system [in the layer ⊗ sublattice space described in Fig. 1(a)] can be written as

H (kx,ky,kz) =

⎛
⎜⎝

� −γ0f (kx,ky) 2γ4�(kz)f ∗(kx,ky) −2γ1�(kz)
−γ0f

∗(kx,ky) 0 2γ3�(kz)f (kx,ky) 2γ4�(kz)f ∗(kx,ky)
2γ4�(kz)f (kx,ky) 2γ3�(kz)f ∗(kx,ky) 0 −γ0f (kx,ky)

−2γ1�(kz) 2γ4�(kz)f (kx,ky) −γ0f
∗(kx,ky) �

⎞
⎟⎠. (1)

The different hopping parameters γi are illustrated in Fig. 1(a).
We have neglected further neighbor hoppings, as they do
not change the qualitative conclusions if they are small and
preserve the structural symmetry. Additionally, there exists
a parameter �, denoting a locally broken A-B sublattice
symmetry but still preserving the global A-B symmetry. This
term is allowed by the symmetries of the structure, since
one of the sublattices in each layer has an atom on top
of it so that it has a different environment than the other
sublattice. The structure factors arising from the Fourier
transform are f (kx,ky) = ∑

ei�δi ·(kx ,ky ) and �(kz) = cos(kz).
The nearest neighbor vectors �δi [Fig. 1(a)] are normalized
so that the vectors connecting neighboring unit cells have unit
length. In z direction we use the spacing between the layers as
the unit length so that −π/2 � kz � π/2.

The most important symmetries of the model (see Ap-
pendix A for more details) are a mirror symmetry

H (kx,ky,kz) = τxσxH (kx,−ky,kz)τxσx

(a) (b)

FIG. 1. (a) Unit cell of Bernally stacked honeycomb lattice: two
layers (solid and dashed lines), each consisting of two sublattices
(filled and unfilled circles). The hopping terms γi are depicted
(hopping between the layers is indicated with �). (b) Momentum-
dependent energy gap between the two bands closest to the Fermi
level E3(k) − E2(k) as a function of kx and ky for kz = 0. There are
band crossings in the vicinity of K and K ′ points in the (kx,ky) plane
(Fig. 3). As a function of kz these band crossings form nodal Dirac
lines, so that for each momentum along the line the energy spectrum
with respect to the transverse momenta is conical. The band crossings
always appear within the mirror planes directed along the kz direction
and the dashed lines within the (kx,ky) plane, and are protected by
structural mirror symmetries. The mirror planes share common lines
in the momentum space directed along kz direction exactly at K and
K ′ in the (kx,ky) plane. The Dirac lines can merge at a specific kz

within this line, leading to an appearance of a nexus.

and a threefold rotational symmetry

H (kx,ky,kz) = H (k̄x,k̄y,kz) = H (k̃x,k̃y,kz),

where (k̄x , k̄y) and (k̃x , k̃y) are the momentum coordinates
after a rotation by ±2π/3 around the z axis. There are similar
mirror symmetries also with respect to (k̄x , k̄y) and (k̃x , k̃y). In
a special case � = γ4 = 0 the system supports an accidental
chiral symmetry CH (k)C = −H (k), where C = τ0σz. In
graphite, �,γ4 � γ0,γ1,γ3, so that the chiral symmetry is valid
as a good approximation.

There are special planes going through the � point and at
the boundary of the Brillouin zone which are mapped back to
themselves in the mirror symmetries (up to a reciprocal lattice
vector) [Fig. 1(b)]. The relevant three planes around the K

point are directed along the kz direction and ky = 2π/
√

3,
k̄y = −2π/

√
3, and k̃y = 0 within the (kx,ky) plane [73].

Within these mirror planes the mirror symmetries give rise
to symmetries commuting with the Hamiltonian at fixed
momentum, e.g.,

S†H (kx,2π/
√

3,kz)S = H (kx,2π/
√

3,kz).

The symmetry operators in different coordinates are
S = UτxσxU

†, S̄ = U †τxσxU , S̃ = τxσx , where U =
diag(e−i2π/3,1,ei2π/3,e−i2π/3) (see Appendix A), and all of
them are simultaneously valid within the line along kz direction
at the K point: K = (2π/3,2π/

√
3), K̄ = (2π/3,−2π/

√
3),

and K̃ = (−4π/3,0) in different coordinates.
In addition to the symmetries we assume a hierarchy

of couplings |γ0| 	 |γ1| > |γ3|,|γ4|,|�|. In particular, this
fixes the overall behavior of the different bands so that two
of the bands are electronlike (holelike), bending upwards
(downwards) in energy when moving away from the K point.
Some of the details discussed below depend on the relative
signs of the couplings. In the main text we consider all
couplings to be positive [in the convention defined by the
Hamiltonian (1)] and we illustrate the main effects of other
choices of signs in Appendix E. When not otherwise stated,
we choose in the figures γ1 = 0.3γ0, γ3 = � = 0.1γ0, and
γ4 = 0.05γ0. These are close to the values [74] often used for
Bernal graphite, except that we use somewhat larger � and γ4

to better illustrate the properties of the nexus.

III. BULK PROPERTIES

In the following we study the bulk spectrum around
the K point [(k̃x,k̃y) = K̃ + (qx,qy)] [73]. Because S̃S =
diag(1,ei2π/3,e−i2π/3,1) and S̃ commute with the Hamiltonian,
two bands must always be degenerate at the K point for all val-
ues of kz. This degeneracy also follows from the tight-binding
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FIG. 2. Energy-momentum dispersions for bulk bands around the
K point for (a) �(kz) = 1, (b) �(kz) = �/(2γ1), and (c) �(kz) =
�/(2γ1) − 0.1. For small kz [�(kz) > �/(2γ1)] electron and hole
bands are degenerate at the K point (a), whereas for large kz

[�(kz) < �/(2γ1)] two hole bands are degenerate at the K point
and there is a gap between the electron and hole bands (c). Because
the mirror symmetries guarantee that at least two bands must always
be degenerate at the K point, there necessarily exists a value of kz

where three bands are simultaneously degenerate (b).

Hamiltonian (1) but it is protected by the existence of the
mirror symmetries, not by the explicit form of the Hamiltonian.
However, there are two topologically distinct options on how
two bands can be degenerate within this model, as illustrated
in Fig. 2. For small kz electron and hole bands are degenerate
at the K point [Fig. 2(a)], whereas for large kz two hole
bands are degenerate at the K point and there is an energy
gap between the electron and hole bands [Fig. 2(c)]. Because
the mirror symmetries guarantee that at least two bands are
always degenerate at the K point, there must exist a value of
kz [�(kz) = �/(2γ1)] where three bands are simultaneously
degenerate [Fig. 2(b)]. We call this exceptional point nexus
because it is also a merging point of several Dirac lines (see
below). The existence of the exceptional point where three
bands are simultaneously degenerate is protected by the fact
that situations (a) and (c) are topologically distinct in the
presence of the mirror symmetries.

In addition to the band contact line at the K point, three
other band crossings appear [67,70–72] at energy Ec within
the three mirror planes at q ≡ (qx,qy) = qc(−1,0) and q =
qc(1/2, ± √

3/2) [Fig. 3(a)], where (see Appendix A)

Ec(kz), qc(kz) ∝ [
4γ 2

1 �2(kz) − �2
]
.

The two bands crossing at q = qc(−1,0) correspond to
different mirror eigenvalues S̃|ψ±〉 = ±|ψ±〉. Therefore,
〈ψ−|H1|ψ+〉 = 〈ψ−|S̃†H1S̃|ψ+〉 = −〈ψ−|H1|ψ+〉, so that
an arbitrary perturbation H1 obeying the mirror symmetry
S̃†H1S̃ = H1 cannot open a gap at the crossing [Fig. 3(b)]. The
number of states with mirror eigenvalue +1 and energy below
the crossing defines a mirror index, which is a Z topological
invariant and has different values on the opposite sides of the
crossing [16,48].

The stable Dirac lines meet and merge at the nexus point
q = 0 and �(kz) = �/(2γ1), which is shared by all the mirror
planes [Fig. 3(c)]. This merging occurs at the same point where
the three bands are simultaneously degenerate [Fig. 2(b)] [75].
For large kz above the nexus [�(kz) < �/(2γ1)] there is a
gap between electron and hole bands [Fig. 2(c)], but there still
exists band crossings between the two hole bands [dashed lines
in Fig. 3(c)].

Around the crossings at q = 0 and q = qc(−1,0) the pro-
jected Hamiltonians in the basis of eigenvectors corresponding
to eigenvalues +1 and −1 of the mirror symmetry operator at

FIG. 3. (a) E3(k) − E2(k) around the K point for kz = 0.
There are four band crossings at q = 0, q = qc(−1,0), and q =
qc(1/2,±√

3/2). As a function of kz they form Dirac lines. (b) Bulk
dispersions showing the crossings at q = 0 and q = qc(−1,0) [boxed
region in Fig. 2(a)]. Because the bands correspond to different mirror
eigenvalues it is only possible to move the crossing in energy and
momentum (indicated with arrows), but it is not possible to remove
it unless the perturbation breaks the mirror symmetry or causes a
merging of several Dirac lines. (c) The Dirac lines merge at the
nexus point q = 0 and �(kz) = �/(2γ1). For kz above the nexus
[�(kz) < �/(2γ1)] there is a gap between electron and hole bands
[Fig. 2(c)], but there still exist band crossings between the two
hole bands (dashed lines). (d) The low energy theories around the
band crossings are described by Hamiltonians (2). The corresponding
pseudomagnetic field �h(δq) is a two-component vector (represented
with arrows) that forms a vortex line along the Dirac line. Therefore,
the Berry phase around the Dirac line is ±π . In (c) we have used
� = 0.25γ0 to improve the visibility of the nexus.

the crossings are [76]

H0 ≈
√

3γ3�(kz)δqxσz +
√

3γ3�(kz)δqyσy,

Hc ≈
(

Ec(kz) +
√

3γ3
[
8γ1γ4�

2(kz) − �γ0
]

γ1γ0
δqx

)
σ0

−
√

3γ3�(kz)δqxσz + 3
√

3γ3�(kz)δqyσy. (2)

The latter describes a tilted Dirac cone for each value of kz, and
it becomes overtilted at �(k∗

z ) ≈ �
γ1

. For kz > k∗
z , the Dirac line

can thus be called a type II Dirac line [77] (see Appendix A).
These Hamiltonians are locally of the form

H0[c] = ξ0[c](kz,δq)σ0 + �h0[c](kz,δq) · �σ ,

where the direction of the pseudomagnetic field �h0[c](δq)
rotates by 2π when δq goes around the band crossing point
[Fig. 3(d)]. Therefore, the wave vector would obtain a Berry
phase ±π if taken around such a path. Such Berry phases are
typically associated with the appearance of surface states [48].
However, the Berry phase is only defined modulo 2π , and as a
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result this argument can be used to explain the existence of only
a single protected surface state at a given surface momentum.

IV. SURFACE STATE SPECTRUM

We consider a translationally invariant system in the x and
z directions, so that kx and kz are good quantum numbers.
In the presence of chiral symmetry (� = γ4 = 0) the 1D
Hamiltonian Hkx,kz

(ky) has a well-defined topological invariant
(winding number) W (kx,kz) whenever there is no gap closing
as a function of ky (see Appendix B), and this invariant deter-
mines the number of zero-energy surface states for each kx and
kz. Moreover, W (kx,kz) can change only at the Dirac lines with
kx = Kx − qc(kz), kx = Kx , and kx = Kx + qc(kz)/2, where
the energy gap closes [73]. By computing W (kx,kz) in the
presence of chiral symmetry (see Appendix B) we arrive at a
flat band (zero energy) spectrum in the regions of the transverse
momenta with W �= 0 in Fig. 4(a). There are two flat bands
connecting the projected Dirac lines kx = Kx + qc(kz)/2 and
kx = K ′

x − qc(kz)/2. Additionally there is a single flat band
between the projected Dirac lines at kx = Kx − qc(kz) and
kx = Kx [73].

In the presence of the chiral symmetry the Dirac lines meet
at the boundary of the Brillouin zone kz = π/2 and there is no
threefold degenerate exceptional point where a gap between
the electron and hole bands opens up. Therefore, � and γ4 have

FIG. 4. (a) W (kx,kz) in the presence of the chiral symmetry
(� = γ4 = 0). The transitions between different W occur at kx =
Kx − qc(kz), kx = Kx , and kx = Kx + qc(kz)/2, where the bulk
energy gap closes. The regions kx ∈ [−π,0] or kz ∈ [−π/2,0] are
mirror images of (a). (b)–(d) Surface state dispersions as a function
of kx for (b) �(kz) = 1, (c) �(kz) = �/(2γ1), and (d) �(kz) = 0
(�,γ4 �= 0). (b) and (c) Dashed black lines show the analytic
approximations given by Eqs. (3) and (4). (d) Dashed black lines show
the exact surface state dispersions E = 0 and E = � (2π/3 � kx �
4π/3) for Hamiltonian (1). The colorful lines show the numerically
computed surface state dispersions obtained with the help of surface
Green functions (see Appendix D). The transition between the two
qualitatively different types of spectrums [(b) and (d)] occurs in the
vicinity of the nexus (c). The solid lines (black and red) show the bulk
dispersions along the special directions defined by the mirror planes.

important effects on the surface state spectrum. The eigenstates
in the presence of chiral symmetry can be solved exactly, and
the surface state dispersions can be computed perturbatively in
the limit γ0,γ1�(kz) 	 γ3�(kz),γ4�(kz),�. By utilizing also
the observation that the surface bands connect the Dirac lines
in energy and momentum we get (see Appendix C)

E1(kx,kz) ≈ 4γ 2
3 �2(kz)[�γ0 − 8γ1γ4�

2(kz)]/γ
3
0 ,

(3)

E2(kx,kz) ≈
−8 γ1γ4

γ0
�2(kz) + �

1 + 4γ 2
1 �2(kz)

γ 2
0 [1−4 cos2(kx/2)]2

,

for Kx + qc(kz)/2 < kx < K ′
x − qc(kz)/2 and

E3(kx,kz) ≈ Ec(kz)

4

(
1 −

√
1 − 8

kx − Kx

qc(kz)

)2

, (4)

for Kx − qc(kz) < kx < Kx , which are valid far away from
the nexus [78] (Fig. 4). Therefore for small kz below the
nexus the dispersions take the form of a drumhead that is
bounded by the projected crossing points of the electron- and
holelike bands [16,48] [Fig. 4(b)]. On the other hand, for large
kz on the other side of the nexus [�(kz) < �/(2γ1)] there
is a gap between electron- and holelike bands and one of
the surface bands connects two electronlike bands to each
other, and the other surface band connects two holelike bands.
For kz = π/2 the surface state dispersions can be solved
exactly for Hamiltonian (1) and one obtains E1 = 0 and
E2 = � for 2π/3 � kx � 4π/3 (see Appendix C) [Fig. 4(d)].
This qualitative change in the behavior of the surface bands
on opposite sides of the nexus signals the existence of an
exceptional point in the momentum space where three bands
are simultaneously degenerate. By numerically computing the
surface Green functions [79], we find that in the vicinity of
the nexus the surface states hybridize with the bulk states so
that they connect bulk band edges to each other instead of
being bounded by the projected Dirac lines [Fig. 4(c)]. This
hybridization appears in the regime where the Dirac cones
around the band crossings [Eq. (2)] are overtilted (|dξc/dqx | >

|d �hc/dqx |) forming type II Dirac lines (see Appendixes A
and D) [77].

V. SUMMARY AND DISCUSSION

We have identified the symmetries of the model that allow
stabilizing the nexus in the momentum space and shown how
the momentum-space structure of surface states follows from
the properties of Dirac lines. In the vicinity of the nexus the
behavior of the surface states changes qualitatively, indicating
the existence of triple degeneracy point in the momentum
space. There is an ongoing search for new types of fermions in
condensed matter systems (in addition to Majorana, Weyl, and
Dirac fermions) that are described by simultaneous crossings
of multiple bands [80]. The best candidate material for
the study of nexus fermions is regular graphite, where the
surfaces with a component parallel to the c axis should exhibit
surface states. The properties of these surface states can be
studied with STM and ARPES. Other candidate materials
include for example suitably stacked silicene layers [81]
and InAs1−xSbx [82]. The latter also supports a pair of
triple degeneracy points connected by Dirac lines. Moreover,
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this material obeys similar mirror and threefold rotational
symmetries as graphite, so that the stabilization of the nexus
in InAs1−xSbx follows from our analysis. We point out that
the symmetry analysis described in this paper may be a useful
starting point for a general classification scheme of the nexus
semimetals based on the space group symmetries, and it would
be interesting to find out whether the predicted properties of the
surface state spectrum in the vicinity of the nexus are generic
for all nexus semimetals.

Apart from spectroscopic features, topological phases often
have unusual response characteristics (anomalies) [83–88].
One interesting direction for future research is to find out
whether the nexus semimetal phase is characterized by an
anomaly associated with a spectral flow between the nexus
points. We also point out that even relatively weak interactions
can lead to symmetry-broken states at the surface because of
the large density of states caused by the approximately flat
bands [89–94]. These symmetry-broken states are expected
to be exotic since they cannot be described with a mean field
theory [95]. Finally, we expect that the interactions may lead to
“dipole” correlations within the structure, so that the effective
� is renormalized. This would mean that the position of the
nexus and the size of the energy gap above it would depend on
temperature.
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APPENDIX A: DETAILED DESCRIPTION
OF THE SYMMETRIES OF THE MODEL

AND THE BULK PROPERTIES

We consider the tight-binding model for Bernally stacked
honeycomb lattices [Eq. (1)]. Similarly, as in the main text, we
assume the hierarchy of couplings and consider all the cou-
plings to be positive unless stated otherwise (see Appendix E).

The Hamiltonian obeys a (i) SU(2) spin rotation symmetry
(block diagonal in real spin), (ii) time-reversal symmetry

H ∗(−kx,−ky,−kz) = H (kx,ky,kz),

and (iii) several mirror symmetries

H (kx,ky,kz) = H (−kx,ky,kz),

H (kx,ky,kz) = H (kx,ky,−kz),

H (kx,ky,kz) = τxσxH (kx,−ky,kz)τxσx.

Additionally, there exists (iv) a threefold rotational symmetry

H (kx,ky,kz) = H (k̄x,k̄y,kz) = H (k̃x,k̃y,kz),

where k̄x = −kx/2 + √
3ky/2, k̄y = −ky/2 − √

3kx/2, k̃x =
−kx/2 − √

3ky/2, and k̃y = −ky/2 + √
3kx/2, so that similar

mirror symmetries exist also with respect to (k̄x , k̄y) and (k̃x ,
k̃y). In a special limit � = γ4 = 0 the system also supports a
chiral symmetry CH (k)C = −H (k), where C = τ0σz.

The most important symmetries are the mirror sym-
metries with nontrivial matrix structure H (kx,ky,kz) =
τxσxH (kx,−ky,kz)τxσx [and correspondingly for (k̄x , k̄y) and
(k̃x , k̃y)]. There are special planes going through the middle of
the Brillouin zone and at the boundary of the Brillouin zone
which are mapped back to themselves in the mirror symmetries
(up to a reciprocal lattice vector). The relevant three planes
around the K point are directed along the kz direction and
ky = 2π/

√
3, k̄y = −2π/

√
3, and k̃y = 0 within the (kx,ky)

plane. Within these mirror planes the mirror symmetries give
rise to symmetries commuting with the Hamiltonian at fixed
momentum

S†H (kx,2π/
√

3,kz)S = H (kx,2π/
√

3,kz),

S̄†H (k̄x,−2π/
√

3,kz)S̄ = H (k̄x,−2π/
√

3,kz),

S̃†H (k̃x,0,kz)S̃ = H (k̃x,0,kz).

The symmetry operators in different coordinates are
S = UτxσxU

†, S̄ = U †τxσxU , and S̃ = τxσx , where U =
diag(e−i2π/3,1,ei2π/3,e−i2π/3). All these symmetries are simul-
taneously valid within the line directed along kz direction at
the K point, which in different coordinates appears at K =
(2π/3,2π/

√
3), K̄ = (2π/3,−2π/

√
3), and K̃ = (−4π/3,0).

The Hamiltonian (1) around the K point can be expanded
as [(k̃x,k̃y) = K̃ + (qx,qy)]

H̃ =

⎛
⎜⎜⎜⎝

� −
√

3
2 γ0(qx − iqy)

√
3γ4�(kz)(qx + iqy) −2γ1�(kz)

−
√

3
2 γ0(qx + iqy) 0

√
3γ3�(kz)(qx − iqy)

√
3γ4�(kz)(qx + iqy)√

3γ4�(kz)(qx − iqy)
√

3γ3�(kz)(qx + iqy) 0 −
√

3
2 γ0(qx − iqy)

−2γ1�(kz)
√

3γ4�(kz)(qx − iqy) −
√

3
2 γ0(qx + iqy) �

⎞
⎟⎟⎟⎠. (A1)

By analyzing this Hamiltonian it is easy to see that there always exists a band crossing at (qx,qy) = (0,0) for all values of kz

as discussed in the main text. Additionally there exists three other Dirac lines in the vicinity of K point. These band crossings
appear at finite energy Ec within the three distinct mirror planes at (qx,qy) = qc(−1,0) and (qx,qy) = qc(1/2, ± √

3/2), where

Ec(kz) ≈ γ 2
3

[
4γ 2

1 �2(kz) − �2]�γ 2
0 − 8γ1γ4γ0�

2(kz) + 4�γ 2
4 �2(kz)[

γ1γ
2
0 − 2γ4�γ0 + 4γ1γ

2
4 �2(kz)

]2 , (A2)

qc(kz) ≈ 2
√

3γ3�(kz)
[
4γ 2

1 �(kz)2 − �2
]

v2−[2γ1�(kz) + �] + v2+[2γ1�(kz) − �]
, (A3)
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FIG. 5. Energy-momentum dispersions around the band crossing occurring at q = qc(−1,0) for (a) �(kz) = 1, (b) �(kz) = 0.6, (c) �(kz) =
0.3, and (d) �(kz) = 0.2. With increasing kz [decreasing �(kz)] the Dirac cone becomes more tilted, and for sufficiently small �(kz) it is overtilted,
i.e., so-called type II Dirac cone. This transition occurs at a slightly smaller value of kz [�(kz) ≈ �/γ1] than the nexus [�(kz) = �/(2γ1)].
Tight-binding parameters are γ1 = 0.3γ0, γ3 = � = 0.1γ0, and γ4 = 0.05γ0.

and v2
± = 3

4 [γ0 ± 2γ4�(kz)]2. Around the crossings at q = 0
and q = qc(−1,0) the projected Hamiltonians in the basis of
eigenvectors corresponding to eigenvalues +1 and −1 of the
mirror symmetry operator at the crossings are given by Eqs. (2)
in the main text. The Hamiltonian around q = qc(−1,0)
describes a tilted anisotropic Dirac cone for each value of
kz. For small values of kz the Dirac cone is only slightly tilted
but when one approaches the nexus [�(kz) = �/(2γ1)] the tilt
increases. The Dirac cone becomes overtilted at

�(k∗
z ) ≈ �

γ1
. (A4)

For kz > k∗
z , the Dirac line can thus be called a type II Dirac

line (see also the discussion in Ref. [77]). This transition,
which occurs already at slightly smaller value of kz than the
nexus, is illustrated in Fig. 5.

APPENDIX B: THE SIGNIFICANCE OF THE CHIRAL
AND MIRROR SYMMETRIES: FLAT BANDS

AND DRUMHEAD SURFACE STATES

We consider a translationally invariant system in the x and
z directions corresponding to a zigzag edge for each graphene
layer. Therefore kx and kz are good quantum numbers and
by fixing them we get a 1D Hamiltonian Hkx,kz

(ky), which
depends only on ky . In the special limit � = γ4 = 0, the
system supports an additional chiral symmetry C = τ0σz, and
the 1D Hamiltonians Hkx,kz

(ky) have well-defined topological
invariants. To calculate this topological invariant we first notice
that the Hamiltonian can be written in a block–off-diagonal
form

U †H (k)U =
(

0 A(k)
A†(k) 0

)
, (B1)

where

A(k) =
( −γ0f1(kx,ky) −2γ1�(kz)

2γ3�(kz)f ∗
2 (kx,ky) −γ0f1(kx,ky)

)
, (B2)

f1(kx,ky)=e−i�δ·(kx ,ky )f (kx,ky), f2(kx,ky)=e2i�δ·(kx ,ky )f (kx,ky),
and �δ = (0,1/(2

√
3)). The topological invariant can then be

defined as a winding number

W (kx,kz) = i

2π

∫
dz(ky)

z
, z = det[A(k)]

| det[A(k)]| , (B3)

where the integration is over the 1D Brillouin zone in ky

direction.

The winding number undergoes a series of transitions at
the momenta of the projected Dirac lines kx = Kx − qc(kz),
kx = Kx , and kx = Kx + qc(kz)/2 in such a way that

W (kx,kz) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, |kx | < Kx − qc(kz),

1, Kx − qc(kz) < |kx | < Kx,

0, Kx < |kx | < Kx + qc(kz)/2,

2, Kx + qc(kz)/2 < |kx | < π.

(B4)

These changes occur because the complex field z has vortex
lines at the positions of the Dirac lines [Figs. 6(a) and 6(b)].
The winding number W as a function of kx and kz is shown in
Fig. 4(a).

The winding number W (kx,kz) determines the number of
zero-energy states for each kx and kz. In the presence of chiral
symmetry, the band crossings always occur at energy E = 0,
and the surface states form flat bands at E = 0 between the
Dirac lines [Fig. 6(c)].

In the absence of chiral symmetry the band crossings
are protected by the mirror symmetry and they appear at
finite energy Ec. Moreover, around some of the crossings the
low energy theory is described by a tilted Dirac cone. By
considering a general tilted Dirac cone

HT (qx,qy) = (Ec + b0qx)σ0 + b1qxσz + b2qyσy, (B5)

we can introduce an edge by replacing qy = −i∂y . By looking
for an exponentially localized solution

ψ =
(

a1

a2

)
e−αy

at the energy Es(qx), we get

α2 = b2
1q

2
x − (b0qx + Ec − Es)2

b2
2

,

(b0qx + Ec − Es + b1qx)a1 = −αb2a2. (B6)

Therefore real solutions of α exist only if

Ec + b0qx − b1qx � Es(qx) � Ec + b0qx + b1qx (B7)

and by varying Es(qx) (and the sign of qx) one can interpolate
between different boundary conditions determining the ratio
a2/a1. [The surface state may occur either for qx < 0 or qx > 0
depending on the boundary conditions. Similarly the exact
dispersion Es(qx) depends on the boundary conditions.] As
one can see from inequalities (B7), for qx = 0 the surface
state energy must satisfy Es(0) = Ec, so that a single Dirac
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FIG. 6. (a) In the presence of chiral symmetry the topology of the system is described by complex field z(k) [Eq. (B3)], which is represented
here with arrows. The complex field z has vortex/antivortex lines at the positions of the Dirac lines. (b) Magnification of (a) around the K point
(the boxed region). (c) In the presence of chiral symmetry the surface states (magenta) form flat bands at E = 0 between the Dirac lines. The
number of flat bands is determined by the winding number W (kx,kz). (d) In absence of chiral symmetry the band crossings (protected by mirror
symmetry) can appear at finite energy Ec(kz). In the regime Kx − qc(kz) < |kx | < Kx there exists a protected drumhead surface state (magenta)
bounded by the projected Dirac lines. In the regime Kx + qc(kz)/2 < |kx | < π the existence of two drumhead surface states depends on how
strongly the Dirac cone is tilted (see below). The parameters used in the figures are γ1 = 0.3γ0, γ3 = 0.1γ0, and �(kz) = 1. In (a)-(c) we have
assumed chiral symmetry � = γ4 = 0. In (d) � = 0.1γ0 and γ4 = 0.05γ0.

line gives rise to a drumhead surface state dispersion bounded
by the projected Dirac line in energy and momentum. In
particular, it follows from this calculation that the existence
of a single surface state is always guaranteed in the regime
Kx − qc(kz) < |kx | < Kx [Fig. 6(d)]. On the other hand, in
the regime Kx + qc(kz)/2 < |kx | < π we expect to find two
surface states in the presence of chiral symmetry, and once the
chiral symmetry is broken due to �,γ4 �= 0 the existence of
the drumhead surface states may depend on how strongly the
Dirac cones are tilted (see below).

APPENDIX C: ANALYTICAL RESULTS FOR THE
SURFACE STATE SPECTRUM

In order to obtain analytical insights into the surface
state dispersions, we start by considering the zero energy
wave functions in the presence of the chiral symmetry (γ4 =
� = 0). The solutions exist either only in sublattice A or
sublattice B depending on which surface one is considering.
In the following we concentrate on those solutions which are

localized in sublattice B:

ψ(y) =
(

ψB1(y)
ψB2(y)

)
eiKyy, (C1)

where Ky = 2π/
√

3 is the y component of the momentum at
the Dirac point and the indices refer to the layer degree of
freedom. By substituting the ansatz [Eq. (C1)] to the block–
off-diagonal form of the Hamiltonian [Eq. (B1)], we arrive at
equations

−γ0F̂1(kx,−i∂y)ψB1(y) = 2γ1�(kz)ψB2(y),

−2γ3�(kz)F̂2(kx,−i∂y)ψB1(y) = γ0F̂1(kx,−i∂y)ψB2(y),

where

F1(kx,q) = 2 cos(kx/2) − e−i
√

3q/2,

F2(kx,q) = e−i
√

3q/2[2 cos(kx/2) − ei
√

3q/2].

We look for a solution of the form (the plane y = y0

describes the surface)

ψB1(y) = b1e
−Q(y−y0), ψB2(y) = b2e

−Q(y−y0), (C2)
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which gives

det

( −γ0F (kx,iQ) −2γ1�(kz)
−2γ3�(kz)F2(kx,iQ) −γ0F (kx,iQ)

)
= 0. (C3)

The wave functions localized in sublattice B exist on the right
surface, i.e., Re[Q] < 0. For Kx − qc < kx < Kx we obtain

Q ≈ −qc

2

(
− 1 +

√
1 − 8

kx − Kx

qc

+ 2
kx − Kx

qc

)
,

b2

b1
≈

√
3
γ0

γ1

Q + kx − Kx

4�(kz)
. (C4)

This solution describes how the weight of the wave function
within the different layers varies as a function of kx and kz in
the case of the flat band corresponding to W = 1 regime in
Eq. (B4).

Additionally we need to find expressions for the wave
functions of the flat bands corresponding to W = 2 regime.
To describe these wave functions we look for solutions of
Eq. (C3) allowing also complex values of Q, but still requiring
Re[Q] < 0. Such solutions exist for Kx + qc/2 < kx < π and
they come in pairs Q and Q∗, where

Q = 2√
3

ln

{
2

(
1 +

√
3

4
qc

)
cos(kx/2)

+ i

√
−

√
3

2
qc

[
1 +

√
3

4
qc + 2

(
1 +

√
3

8
qc

)
cos kx

]}
.

(C5)

The orthonormal solutions obtained using these solutions can
be written as

ψ1(y) = 1

N1

(
1
b2

)
e−Q(y−y0)eiKyy,

ψ2(y) = 1

N2

[(
1
b∗

2

)
e−Q∗(y−y0) + A

(
1
b2

)
e−Q(y−y0)

]
eiKyy,

(C6)

where

b2 = −γ0F (kx,iQ)

2γ1�(kz)
, A = −1 + (b∗

2)2

1 + |b2|2
1 − e−√

3|Re[Q]|

1 − e
√

3Q∗ ,

N1 =
√

1 + |b2|2
1 − e−√

3|Re[Q]| , (C7)

N2 =
√

(1 + |b2|2)(1 + |A|2)

1 − e−√
3|Re[Q]| + 2 Re

[
A∗(1 + b∗2

2

)
1 − e

√
3Q∗

]
.

In the special limit �(kz) = 0, the Hamiltonian becomes block
diagonal in the layer degree of freedom, so that Q = Q∗ and
these expressions describe two copies of the edge states for
a single layer graphene. On the other hand, for �(kz) = 1 the
solutions describe the edge states of bilayer graphene.

By considering the couplings γ4 and � as a perturbation,
we obtain in lowest order in γ3,

E1 ≈ 0 + O(γ 2
3 ),

E2 ≈
−8 γ1γ4

γ0
�2(kz) + �(

1 + 4γ 2
1 �2(kz)

γ 2
0 [1−4 cos2(kx/2)]2

) + O
(
γ 2

3

)
, (C8)

FIG. 7. Surface state dispersions as a function of kx for (a)
�(kz) = 0.3, (b) and (c) �(kz) = 0.2, (d) and (e) �(kz) = 0.18, and
(f) �(kz) = 0.1. (c) and (e) The spectrum around the boxed region in
(b) and (d), respectively. The dashed black lines show the analytic
approximation given by Eq. (4), which works very well also in
the vicinity of the nexus. The colorful lines show the numerically
computed surface state dispersions obtained by plotting the surface
density of states as a contour plot. (The broadening η is chosen in
each figure in such a way that the surface state dispersions are well
visible in the pictures.) The solid lines (black and red) show the
bulk dispersions along the special directions defined by the mirror
planes. For small kz sufficiently far from the nexus the surface state
dispersions take a form of a drumhead that is bounded by the projected
crossing points of the electron- and holelike bands [(a)]. When the
nexus is approached by decreasing �(kz) the bulk Dirac cones become
strongly overtilted and the surface states hybridize with bulk states
[(b)–(e)]. On the other side of the nexus [�(kz) < �/(2γ1)] there is
a gap between electron- and holelike bands and one of the surface
bands connects two electronlike bands to each other, and the other
surface band connects two holelike bands [(f)]. With increasing kz

these surface state dispersions smoothly deform towards the exact
analytic solution for kz = π/2 [Eq. (C10)]. Tight-binding parameters
are γ1 = 0.3γ0, γ3 = � = 0.1γ0, and γ4 = 0.05γ0.
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FIG. 8. Energy-momentum dispersions for bulk bands around the K point for � < 0 and (a) �(kz) = 1, (b) �(kz) = |�|/(2γ1), and (c)
�(kz) = |�|/(2γ1) − 0.1. The figures look similar to the case � > 0 (cf. Fig. 2) except that one needs to mirror all bands in energy E → −E. In
particular for large kz [�(kz) < |�|/(2γ1)] two electron (hole) bands are degenerate at the K point for � < 0 (� > 0). Tight-binding parameters
are γ1 = 0.3γ0, γ3 = 0.1γ0, � = −0.1γ0, and γ4 = 0.05γ0.

for Kx + qc(kz)/2 < |kx | < π and

E3 ≈
[
� − 8γ1γ4

γ0
�2

]
γ 2

3 �2

γ 2
0

(
1 −

√
1 − 8

kx − Kx

qc(kz)

)2

,

(C9)
for Kx − qc(kz) < kx < Kx .

Additionally we can utilize the knowledge that far away
from the nexus the surface states must have the shape of
the drumhead bounded by the projected Dirac lines. By
including the necessary corrections to E1 and E2, we arrive
to surface state dispersions described by Eqs. (3). In principle
these expressions should work for �(kz) 	 �/2γ1 or |kx −
Kx | 	 �/γ0. However, numerically we find that they work
everywhere except very close to the nexus. On the other hand,
since the single protected surface state should exist also in the
vicinity of the nexus, we find that the surface dispersion E3 is
given by Eq. (4).

Finally, we notice that the full tight-binding Hamiltonian
also has an exact solution for �(kz) = 0, i.e., for kz = π/2.
Namely, in this case the Hamiltonian becomes block diagonal
in the layer degree of freedom, and each block can be solved
similarly as the surface states for a single layer graphene. This

FIG. 9. (a) Momentum-dependent energy gap E3(k) − E2(k)
around the K point for kz = 0 and γ3 < 0. Similarly, as in the case
γ3 > 0 [Fig. 3(a)], there exists four band crossing points but now
they are located in the momentum space on the opposite side of the
K point. (b) Winding number W (kx,kz) in the presence of the chiral
symmetry (� = γ4 = 0) for γ3 < 0. The transitions between different
W occur at kx = Kx − |qc(kz)|/2, kx = Kx , and kx = Kx + |qc(kz)|,
where the bulk energy gap closes. Because the bulk band crossings
are on the opposite side of the K point, the fine structure of W (kx,kz)
around kx ≈ Kx is modified in comparison to the case γ3 > 0 [cf.
Fig. 4(a)]. Tight-binding parameters are γ1 = 0.3γ0, γ3 = −0.1γ0,
� = 0.1γ0, and γ4 = 0.05γ0.

way we obtain

E1 = 0, E2 = � for �(kz) = 0 and Kx � |kx | � π.

(C10)
These also coincide with Eqs. (3) for �(kz) = 0.

APPENDIX D: NUMERICAL ANALYSIS OF THE SURFACE
STATE SPECTRUM IN THE VICINITY OF THE NEXUS

We have checked that the analytical solutions (3), (4),
and (C10) describe the surface state dispersions reasonably
far away from the nexus by numerically diagonalizing the
tight-binding Hamiltonian in the case of a finite width in
y direction. However, in the vicinity of the nexus it is
difficult to obtain analytic expressions for the surface state
dispersions. Moreover, in that regime the localization length of
the surface states becomes very long, and thus the numerical
diagonalization of the tight-binding Hamiltonian with large
enough width in y direction also becomes computationally
expensive.

Alternatively the surface state dispersions can be ob-
tained by numerically calculating the surface Green function
GR

s (E,kx,kz) = [E + iη − H (kx,kz)]
−1
00 (the matrix indices 00

correspond to the surface in the y direction). The surface
density of states is given by

ρs(E,kx,kz) = − 1

π
Im[Tr GR

s (E,kx,kz)]. (D1)

This method is computationally much more efficient since
the Green function can be computed for a semi-infinite
system using a quickly converging renormalization group
method [79]. In the numerics we broaden the δ peaks in
the ρs(E,kx,kz) corresponding to the surface state energies
Es(kx,kz) by using a nonzero value of η.

Sufficiently far away from the nexus, the Green func-
tion method reproduces the analytic surface state disper-
sions (3), (4), and (C10) as shown in Figs. 4(b) and 4(d).
For small kz the dispersions take the form of a drumhead that
is bounded by the projected crossing points of the electron- and
holelike bands [Fig. 4(b)], but for kz = π/2 one of the surface
bands connects two electronlike bands to each other, and the
other surface band connects two holelike bands [Fig. 4(d)].
We now turn to the description of the transition between these
qualitatively distinct regimes, which occurs in the vicinity of
the nexus.

Figure 7 shows the surface density of states ρs(E,kx,kz) as a
function of kx and E for specific values of kz. The surface state
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FIG. 10. Same as Fig. 7 but for γ3 = −0.1γ0 and (a) �(kz) =
1, (b) and (c) �(kz) = 0.25, and (d) �(kz) = 0.1. (c) The spectrum
around the boxed region in (b). For small kz sufficiently far from
the nexus [(a)] two drumhead surface states originate from kx =
Kx − |qc(kz)|/2. One of them connects to the Dirac line at kx = Kx

and other one to a Dirac line at kx = K ′
x + |qc(kz)|/2. (The spectrum

around K ′ point is obtained by mirroring the spectrum around the
K point.) Additionally there is a drumhead surface state connecting
Dirac lines at kx = Kx + |qc(kz)| and kx = K ′

x − |qc(kz)|. When the
nexus is approached by decreasing �(kz) the bulk Dirac cones become
overtilted and the surface states hybridize with bulk states [(b) and
(c)]. On the other side of the nexus [�(kz) < �/(2γ1)] the spectrum
is similar as in the case γ3 > 0.

energies Es(kx,kz) show up as peaks in ρs(E,kx,kz) (broadened
by η) and form lines as a function of kx . Sufficiently far from
the nexus the surface state dispersions take the form of a
drumhead that is bounded by the projected crossing points of
the electron- and holelike bands [Fig. 7(a)]. When the nexus
is approached by decreasing �(kz) [�(kz) → �/(2γ1)] the
bulk Dirac cones become strongly overtilted and the surface
states hybridize with bulk states so that they connect bulk
band edges to each other instead of being bounded by the
projected Dirac lines [Figs. 7(b)–7(e)]. On the other side of the
nexus [�(kz) < �/(2γ1)] one of the surface bands connects
two electronlike bands to each other, and the other surface
band connects two holelike bands [Fig. 7(f)]. With increasing
kz these dispersions approach the exact solution for kz = π/2
[Eq. (C10)].

APPENDIX E: EFFECTS OF THE DIFFERENT SIGNS
OF TIGHT-BINDING PARAMETERS

The signs of γ0 and γ1 can be chosen arbitrarily in the
Hamiltonian (1) without loss of generality, so we choose
γ0,γ1 > 0. The relative signs of the other parameters then
influence the physics.

The sign of � influences the nature of the bands involved
in the transition occurring at the nexus �(kz) = |�|/(2γ1).
Namely for � > 0 the transition occurs as illustrated in Fig. 2.
For small kz electron and hole bands are degenerate at the K

point, whereas for large kz two hole bands are degenerate
at the K point and there is an energy gap between the
electron and hole bands. In the case � < 0, for small kz

electron and hole bands are still degenerate at the K point
[Fig. 8(a)]. However, now two electron bands are degenerate
at the K point for large kz [Fig. 8(c)]. In general all the results
remain qualitatively similar when the sign of � is changed
except that one needs to mirror all the figures in energy
E → −E.

The sign of γ4 mainly influences the band crossing
energies Ec(kz) as can be seen from Eq. (A2). Since the
drumhead surface states connect band crossings in energy and
momentum, γ4 also influences the surface state dispersions
[Eqs. (3) and (4)]. In particular the relative sign of γ4

and � determines whether the drumhead dispersion in the
regime Kx − qc(kz) < |kx | < Kx is tilted in the same direction
for all values of kz (unidirectional surface states). This
can for example influence the transport properties of these
systems.

The sign of γ3 determines the side in which the Dirac lines
are with respect to the K point [cf. Figs. 3(a) and 9(a)]. As a
result the winding number W (kx,kz) in the presence of chiral
symmetry (� = γ4 = 0) is modified in the different regions
of kx and kz around kx ≈ Kx [cf. Figs. 4(a) and 9(b)]. As
discussed in Appendix B, the winding number influences the
number of surface states also when the chiral symmetry is
broken (�,γ4 �= 0). We expect that for small kz far away from
the nexus there exists drumhead surface states bounded by
the projected Dirac lines, and the number of these surface
states for each kx and kz is determined by W (kx,kz). This
expectation is confirmed by the surface state spectrum shown
in Fig. 10(a). On the other hand, we find that close to the
nexus the surface states hybridize with bulk states similarly
as in the case γ3 > 0 [Figs. 10(b) and 10(c)]. On the other
side of the nexus [�(kz) < �/(2γ1)] one of the surface bands
connects two electronlike bands to each other, and the other
surface band connects two holelike bands, so that the surface
state spectrum is practically indistinguishable from the surface
state spectrum in the case γ3 > 0 [cf. Figs. 10(d) and 7(f)].
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[67] T. T. Heikkilä and G. E. Volovik, New J. Phys. 17, 093019

(2015).
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