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Novel energy scale in the interacting two-dimensional electron system evidenced from transport
and thermodynamic measurements
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We study how the non-Fermi-liquid two-phase state reveals itself in transport properties of high-mobility
Si-MOSFETs. We have found features in zero-field transport, magnetotransport, and thermodynamic spin
magnetization in a 2D correlated electron system that may be directly related with the two-phase state. The features
manifest above a density-dependent temperature T ∗ that represents a high-energy scale, apart from the Fermi
energy. More specifically, in magnetoconductivity, we found a sharp onset of the regime δσ (B,T ) ∝ (B/T )2 above
a density-dependent temperature Tkink(n), a high-energy behavior that “mimics” the low-temperature diffusive
interaction regime. The zero-field resistivity temperature dependence exhibits an inflection point Tinfl(n). In
thermodynamic magnetization, the weak-field spin susceptibility per electron ∂χ/∂n changes sign at TdM/dn(n).
All three notable temperatures, Tkink, Tinfl, and TdM/dn behave critically ∝(n − nc), are close to each other, and
are intrinsic to high-mobility samples solely; we therefore associate them with an energy scale T ∗ caused by
interactions in the 2DE system.
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I. INTRODUCTION

Two-dimensional (2D) interacting low-density carrier sys-
tems in the past two decades attracted considerable interest
[1–4], demonstrating fascinating electron-electron interaction
effects, such as metallic temperature dependence of resistivity
[5–7], metal-insulator transition (MIT) [1,5,8–10], strong pos-
itive magnetoresistance (MR) in parallel field [11–18], strong
renormalization of the effective mass and spin susceptibility
[2,19–24], etc.

Far away from the critical MIT density nc, in the well
“metallic regime,” these effects are explained within the
framework of the Fermi liquid theory—either in terms of
interaction quantum corrections (IC) [25,26] or temperature-
dependent screening of the disorder potential [27–31]. Both
theoretical approaches so far are used to treat the experimental
data on transport, and the former one—also to determine the
Fermi liquid coupling constants from fitting the transport
and magnetotransport data to the IC theory. In the close
vicinity of the critical region, conduction is treated within the
renormalization group [32–36] or the Wigner-Mott approach
[37,38].

On the other side, a number of theories predicts breakdown
of the uniform paramagnetic 2D Fermi liquid state due
to instability in the spin or charge channel, developing as
interaction strength increases [39–43]. However, how the
potential instabilities reveal themselves in charge transport
remains an almost unexplored question.

A. On the spin polarization of the 2D electron system

Spin fluctuations are believed to play an important role in
the 2DE system, especially near the apparent metal-insulator
transition. Ferromagnetic instabilities result from the interplay
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of the electronic interactions and the Pauli principle. The
interaction energy can be minimized when the fermion anti-
symmetry requirement is satisfied by the spatial wave function
resulting in the alignment of spins and a large ground-state
spin magnetization. In clean metals, the long-range part of
the Coulomb interaction is screened, whereas its short-range
part leads to strong correlations of the electron liquid. This
short-range part of the interaction leads to ferromagnetic
(Stoner) instability at sufficiently large values of the interaction
strength. Initial numerical quantum Monte Carlo calculations
[44] did not reveal a difference in energy between the polarized
and unpolarized fluid phases at the crystallization transition.
From diffusion Monte Carlo calculations [45], no evidence
was found for the stability of a partially spin-polarized fluid
phase in 2D systems.

The valley degree of freedom has qualitative effects on
the 2DEG properties, making the fully spin-polarized fluid
unstable [46,47], at variance with the one-valley 2DE system.
This conclusion directly refers to the two-valley electron
system in (100) Si-MOS samples. The DMC calculations [47]
confirm the absence of a transition from the paramagnetic
to the fully spin-polarized fluid in the two-valley symmetric
system. Moreover, in the whole density range, where the fluid
is stable, there is no evidence for the stability of a state with
partial spin polarization [39,44,45,47,48].

B. Spin polarization of the spatially confined 2DE system

In Ref. [49], the ground-state magnetization was numer-
ically studied for clusters of interacting electrons in two
dimensions in the regime where the single-particle wave
functions are localized by disorder. It is found that the Coulomb
interaction leads to a spontaneous ground-state magnetization.
The magnetization is suppressed when the single-particle
states become delocalized. The stability of the minimum spin
ground state in a quantum dot was analyzed in Ref. [50].
Within perturbation theory, the effective interaction strength
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is enhanced by the presence of disorder, leading to a ferro-
magnetic instability already below the Stoner threshold [51].
Observations of the spin polarization for a few electrons system
confined in quantum dots were reported in several experiments
[52,53] and are considered as evidence of interaction-induced
collective spin polarization transition.

C. Experimental situation

For the infinite 2D system, extensive experimental search
has been undertaken and the results are contradictory enough.
The respective reviews may be found in Refs. [2–4,24,54,55].
The experimental results may be summarized as follows.
From experiments with low perpendicular fields, the spin
susceptibility of itinerate electrons, determined from quantum
oscillations, remains finite down to the critical density of the
2D metal-insulator transition, n = nc [2,19–22]. In particular,
the spin susceptibility was measured in GaAs/AlGaAs super-
lattices [21], with electron densities as low as 1.7 × 109 cm−2

and no polarization transition was observed.
In contrast, the susceptibility and effective mass determined

with (100) Si-MOS samples from in-plane field (gμBB > T )
magnetotransport [56,57] and temperature-dependent trans-
port [23] were reported to diverge; based on these data,
the authors concluded on the ferromagnetic instability of
itinerant electrons in 2DE system. In similar experiments
[15–18,58,59], however, the opposite conclusion was
achieved, that is, the ferromagnetic instability does not occur
and the spin susceptibility remains finite down to the lowest
accessible density, e.g., down to n = 0.3 × 1011 cm−2 in
Si/SiGe quantum wells in Ref. [17]. In measurements of the
weak localization [60] and quantum oscillations in a weak
perpendicular field [2], a Fermi-liquid type behavior was
found with no signatures of the spin polarization of itinerant
electrons.

Eventually, the thermodynamic spin magnetization mea-
surements performed in a weak field [61] have clarified the
reason of the contradiction: the 2D interacting electron system
experiences a transition from Fermi liquid to the two-phase
state, that hampered interpretation of the data. The main result
of the thermodynamic weak field studies is the observation of
“spin droplets”—spin-polarized collective electron states with
a total spin of the order of two [61]. These easily polarized
“nanomagnets” exist as a minority phase on the background
of the majority Fermi liquid phase even though the density
and the dimensionless conductance are high, kF l ∼ 100; the
latter is commonly considered as a criterion of the well-defined
Fermi liquid state.

D. Motivation

In this paper, we study how the non Fermi-liquid two-phase
state reveals itself in magnetotransport and zero-field transport.
We report results of the transport and magnetotransport mea-
surements with a 2D correlated electron system, which reveal
the existence of a characteristic energy scale T ∗ that is smaller
than the Fermi temperature TF , but much bigger than 1/τ

(we set throughout the paper �,kB,e = 1). The same energy
scale is found in our earlier magnetization measurements.
Obviously, no such large energy scale may exist in the Fermi

liquid. In magnetoconductivity σ (B‖), we found a sharp
onset of the anomalous regime δσ (B,T ) ∝ (B/T )2 above
a density-dependent Tkink(n), the high-energy behavior that
“mimics” the low-temperature diffusive interaction regime
[26]. In zero-field transport, there is an inflection point Tinfl(n)
on the resistivity temperature dependence. We found that the
two remarkable temperatures are close to each other and close
to the temperature TdM/dn for which the spin susceptibility per
electron ∂χ/∂n (and ∂M/∂n) changes sign (the phenomenon
reported earlier in Ref. [61]). All three notable temperatures,
Tkink ≈ Tinfl ≈ TdM/dn, behave critically ∝(n − nc), and are
intrinsic to high-mobility samples only; we therefore associate
them with an energy scale T ∗ caused by interactions in the
2DE system. Our studies do not address critical behavior
at MIT, rather, we focus on the high-density regime, away
from the critical density of the 2D MIT, and on the high-
temperature regime where resistivity exhibits strong growth
with temperature.

II. EXPERIMENTAL

The ac measurements (5 to 17 Hz) of resistivity were
performed using a four-probe lock-in technique in magnetic
fields up to ±7 T. The range of temperatures, 0.4–20 K,
was chosen so as to ensure the absence of the shunting
conduction of bulk Si at the highest temperatures, and, on
the low-temperature side, to exceed the valley splitting and
intervalley scattering rate [62]. Measurements were performed
with three “high-mobility” samples, Si-2, Si-63, and Si-4
(μpeak = 3, 2.5, and 0.95 m2/V s), and, for comparison, with
two “low-mobility” samples Si-40 and Si-46 (μmax ≈ 0.2
and 0.1 m2/V s). Their transport features are described
further. All samples had ≈190 ± 5 nm gate oxide thickness,
and were lithographically defined as rectangular Hall bars,
0.8 × 5 mm2. The magnetoconductivity measurements were
performed similar to Ref. [63], but in a much wider domain
of densities and temperatures, from far above the MIT critical
density (n � nc) and in the well-conducting regime kF l � 1
down to low densities n � nc.

By rotating the sample with a step motor, we aligned
the magnetic field in the 2D plane to within 1′ accuracy,
using the weak localization magnetoresistance as a sensor
of the perpendicular field component. The carrier density n

was varied by the gate voltage Vg in the range (0.9–10) ×
1011 cm−2. The linear n(Vg) dependence was determined from
the quantum oscillations period measured in the perpendicular
field orientation during the same cooldown.

III. EXPERIMENTAL RESULTS

A. In-plane field magnetoconductivity

The lowest-order variations of the conductivity (as well
as resistivity) with a weak in-plane field gμBB < T 	 TF

at a fixed temperature T are parabolic. This follows from the
symmetry arguments, as well as from the interaction correction
theory and the screening theory:

σ = σ0 − aσ B2 + O(B2),

ρ = ρ0 + aρB
2 + O(B2), (1)
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where gμBB is considered to be small as compared with either
T , (T 2τ ), or TF , and by definition

aσ ≡ − 1
2∂2σ/∂B2

∣∣
B=0,

aρ ≡ 1
2∂2ρ/∂B2

∣∣
B=0.

In the experimental data, a purely parabolic ρ(B) ∝ B2

dependence was found to extend with high accuracy even
far above the range of low fields (gμBB < T ) (see Fig. 1).
For this reason, we quantified the magnetoconductivity using
the prefactor aσ (T ,n). For example, the higher order-in-
(gμBB/T ) terms in Eq. (1) were less than 0.1% (relative
to the B2 term) even at gμBB/T = 6.5, and could be safely
neglected therefore for gμBB 	 T .

Consider the relation between aσ and the experimentally
measured magnetoresistance (MR) ρ(B). In purely parallel
magnetic field, σ = 1/ρ. Taking the second derivative from
both sides of Eq. (1) and recalling that (∂ρ/∂B)|B=0 = 0, we
obtain

aσ =
[

1

2ρ2

∂2ρ

∂B2
− 1

ρ3

(
∂ρ

∂B

)2
]

B=0

= 1

2ρ2

∂2ρ

∂B2
. (2)

Following the latter relation, from the experimentally mea-
sured magnetoresistivity, we determined the magnetoconduc-
tivity prefactor, which is analyzed below versus T for various
densities.

The variations of the conductivity with a weak in-plane
field at a fixed temperature are low, � 5%, in the selected
range of fields gμBB < T [64] (see Fig. 1). This smallness
favors comparison of the data with theory of interaction
corrections (IC), which makes firm predictions specifically
for magnetoconductivity (MC) and suggests a clear physical
picture behind it [26].

In the spirit of the IC theory, the temperature variation of the
conductivity of the 2DE system is described by the interference
and e-e interaction corrections [25]

�σ (T ) = �σC(T ) + nT �σT (T ) + O

(
1

kF l

)
.

Here, the first term combines both single-particle interference
and interaction corrections in the singlet channel, and the
second term is the interaction corrections in the triplet
channels whose number depends on the valley degeneracy,
nT = 4g2

v − 1 [33], and kF l is presumed to be �1. Particularly,
nT = 15 for the two-valley electron system in (100) Si-MOS.
For low temperatures, T τ 	 1, in the so-called diffusive
interaction regime, �σ ∝ ln(T τ ) depends logarithmically on
temperature; for higher temperatures T τ � 1, in the ballistic
regime of interactions, �σ varies linearly with T τ . According
to the IC theory, the crossover occurs at Tdb = (1 + Fσ

0 )/2πτ

[25], where Fσ
0 is the Fermi-liquid coupling parameter.

Within the same approach, magnetoconductance in a weak
in-plane magnetic field originates from the field dependence of
the effective number of triplet channels, which in its turn is due
to the Zeeman splitting mechanism [26]. For example, when
the Zeeman energy EZ = gμBB (g = 2 is the bare g-factor
for Si) becomes much greater than T (but lower than TF ), the
effective number of the triplet terms that contribute to �σ (T )
is reduced from 15 to 7.

As a result, the first-order interaction corrections to the
MC in the diffusive and ballistic interaction regime �σ ≡
σ (T ,B) − σ (T ,0) may be written as follows [26,65]:

�σd ≈ Ad

(
Fσ

0 ,gv

)
Kd

(
T ,B,F σ

0

)(gB

T

)2

, T τ 	 1,

�σb ≈ Ab

(
Fσ

0 ,gv

)
Kb

(
T ,B,F σ

0

)
(T τ )

(
gB

T

)2

, T τ � 1.

(3)

Explicit expressions for Kb and Kd are given in Ref. [26]. In
terms of Eq. (1), the above theory predictions are

aσ (T ) ∝
{

(1/T )2, T τ 	 1
(1/T ), T τ � 1

.

In Fig. 1(a), the resistivity is somewhat lower than in
Fig. 1(b); this difference is due to the different sample mobility.
It is worth mentioning that in the framework of the renormal-
ization group theory [32–36], the magnetoconductance can

FIG. 1. Magnetic field dependence of the resistivity (a) for sample Si-2 at five temperatures: 0.55, 0.87, 1.36, 1.82, and 2.34 K, electron
density is 2 × 1011 cm−2, and (b) for sample Si-4 at five temperatures: 0.7, 1.3, 1.6, 2.0, and 3.0 K, electron density is 2.5 × 1011 cm−2. Vertical
ticks mark the gμBB = T field.
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FIG. 2. Temperature dependence of resistivity at zero field (a) for the high-mobility sample Si-2 (nc ≈ 0.85) at nine densities; (b) for the
low mobility sample Si-46 at three densities. Carrier densities are shown in units of 1011 cm−2. Crosses and dots on the left panel mark the
ρ(T ) maxima and the inflection points, respectively.

also be described by the Castellani-Di Castro-Lee formula
[36], which is equivalent to Eq. (3) in the diffusive limit and
for σ (T ,B = 0) � 1.

B. High- and low-mobility samples

Here, we compare the magnetoconductivity behavior for
high- and low-mobility samples. At zero field, the difference
in their temperature dependencies is illustrated in Figs. 2(a) and
2(b). In the “metallic” range of densities, n > nc, for the high-
mobility samples Si-2, Si-4, Si-63, and Si-6-14, the resistivity
sharply varies by a factor of 6–10 [8]. By contrast, for the
low-mobility samples Si-40 and Si-46, ρ(T ) varies by ≈15%
only and its variation occurs at much higher temperatures and
densities [67]. These well known features have been explored
and understood earlier [58,59,62,66–68].

In particular, the upturn at low temperatures in Fig. 2(b) is
due to quantum corrections, which for low-mobility samples
have an “insulating” sign at all densities (see Fig. 2(b) and
Ref. [67]). For high-mobility samples, the upturn sets upon
lowering temperature, (T < 1/τ ; T < 1/τv), where the effec-
tive number of triplet terms diminishes [58], and/or at higher
densities where Fσ

0 diminishes [20,24,59,69,70]; these low-
temperature and high-density regimes are out of sight in Fig. 2.

In the “insulating” regime, the high- and low-mobility
samples also have distinctly different non-Ohmic and electric
field threshold conduction, explored in detail in Refs. [71–74].
These different features of the transport result in a fundamen-
tally different behavior of the correlation length: ξ ∝ �/eEt

on the insulating side of the transition; ξ diverges as n → nc

for high-mobility samples, whereas ξ vanishes at nc for low-μ
samples [71,72].

The in-plane field magnetoconductance, which is the focus
of our interest, for low-mobility samples develops in accord
with interaction correction theory. This is illustrated by
Fig. 3, where the magnetoconductivity prefactor for sample
Si-40 is shown versus temperature. The overall behavior is
quantitatively consistent with the IC theory, Eq. (3), which with
no fitting parameters describes the low-temperature diffusive

interaction regime aσ ∝ 1/T 2, the high-temperature ballistic
regime aσ ∝ 1/T , and the diffusive-to-ballistic crossover at
about T = 4–5 K.

The agreement with theory is no longer valid for the
high-mobility samples. In Fig. 4, we plotted the magnetocon-
ductivity prefactor aσ (T ,n) for the high-mobility sample versus
temperature. In this case, the estimated diffusive/ballistic
border Tdb ≈ 0.2 K is below the accessible temperatures range
of our measurements and we anticipate to observe only the
behavior characteristic of the ballistic regime. One can see
from Fig. 4 that aσ (T ) indeed develops in a ballistic fashion,
∝T −1. This behavior extends up to temperatures 1.5–2 K
(which is a factor of 10 higher than Tdb ≈ 0.2K), then it sharply
changes to the unforseen dependence, aσ (T ) ∝ T −2, making
the overall picture clearly inconsistent with theory predictions,
Eq. (3). The crossover in Fig. 4 occurs rather sharply, as a kink

FIG. 3. Temperature dependence of the aσ prefactor for the low-
mobility sample Si-40 (filled boxes). The densities are indicated in
1011 cm−2. The two higher density sets of data are scaled by the factors
indicated next to each curve. Dotted, dashed, and continuous bold
lines show the predicted aσ (T ) dependencies for ballistic, diffusive
and the total interaction correction, respectively, Eq. (3).
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FIG. 4. Comparison of the temperature dependencies of the
prefactors aσ (T ) for samples Si2 and Si-63, for two density values
(indicated in units of 1011 cm−2). For clarity, the curves are scaled by
the factors shown next to each curve.

on the double-logarithm scale. The kink and the overall type of
behavior were observed in a wide range of densities and were
qualitatively similar for the studied high-mobility samples (as
Figs. 4 and 5 show).

Figure 5(a) shows the density evolution of aσ (T ) in
a wide range of densities. Though the high-temperature
behavior, aσ ∝ T −1, formally coincides with that predicted
for the diffusive interaction regime, Eq. (3), it extends up to
temperatures of the order of Fermi temperature TF . For this
reason, this behavior can not be associated with the diffusive
interaction regime.

The immediate consequence of the aσ (T ) behavior is that
the 2D electron system under study appears to have a novel
characteristic energy scale T ∗ ≈ Tkink(n). The latter develops
critically versus electron density, as Fig. 6 shows: Tkink

vanishes ∝(n − nc) at a finite density nc, which is somewhat
sample dependent. Within the experimental uncertainty, this
critical density for Tkink(n) coincides with the MIT critical
density in transport [8,75].

The dependence Tkink ∝ (n − nc) has little in common
with the Fermi energy, which in the 2D case is proportional
to the carrier density n. Clearly, the existence of such an
energy scale is inconsistent with the Fermi liquid picture.
The critical Tkink(n) behavior points at the relevance of the
electron-electron interaction effects. Another indication of
the crucial importance of the electron-electron interactions
is the fact that the kink in aσ (T ) at Tkink and the anomalous
regime of MC at T > Tkink are intrinsic only to high-mobility
samples, where the strongly correlated regime is accessed upon
lowering density. For samples Si-40 and Si-46 with a factor of
10–30 lower mobilities, such low densities are inaccessible and
in the same range of temperatures, the magnetoconductance
develops in accord with IC theory predictions with no kink.

The sharp crossover at high temperatures to the anomalous
regime of MC, which is in contrast with the theory predictions,
is one of the main results of our study; it is intrinsic to high-
mobility samples and dilute regime of strong interactions.

C. Magnetoconductivity and magnetoresistivity

For high-mobility Si-MOSFETs and in the low-density
and intermediate-temperature regime (1/τ < T < TF ), the in-
plane field magnetoconductivity is inequivalent to the magne-
toresistivity (MR), because variations of the conductivity with
temperature at zero field are large, a factor of 4–10. As a result,
the aσ (T ) and aρ(T ) temperature dependencies are different
[see Figs. 5(a) and 5(b)]. The latter is nonmonotonic and less
transparent, being affected by both, the onset of the anomalous
regime in MC and by the strong ρ(T ) [and σ (T )] variations.
For higher densities n = 10,5.25,3.25 × 1011 cm−2, where
the ρ(T ) variations are relatively weak [the lowest three
curves in Fig. 5(b)], aρ(T ) exhibits a shallow maximum
that coincides with the kink in aσ (T ). For lower densities,
the maxima in aρ(T ) get smeared, which hampers their
quantification. The simplicity of the aσ (T ) dependence [in
comparison with aρ(T )] clearly points at the primary role
of the magnetoconductivity rather than magnetoresistivity in

FIG. 5. Temperature dependencies of the prefactors (a) aσ (T ) and (b) aρ(T ) for sample Si-2, for several electron densities indicated in units
of 1011 cm−2. In (a), for clarity, the curves are magnified by the factors shown next to each curve. Vertical arrows mark the kink positions, the
dashed curves show TF (n) and T ∗

F (n).
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FIG. 6. Empirical phase diagram of the 2DE system. Dashed
areas are (I) the ballistic interaction regime and (II) the anomalous
MC regime. Hatched area (III) is the nondegenerate regime, the blank
area at n < nc is a localized phase. Full dots: the kink temperature
Tkink; open dots: the inflection point Tinfl. Sample Si-2. Dash-dotted
curves show the calculated bare (TF ) and the renormalized (T ∗

F ) Fermi
temperatures. The insert blows up the low-density region; the dashed
line is TdM/dn [61].

the physical mechanism responsible for the appearance of the
kink.

The kink temperature Tkink lies far away from the bare
and renormalized Fermi energy and from the crossover Tdb =
(1 + Fa

0 )/2πτ ≈ 0.2 K value [25], which are the only known
energy scales in the Fermi liquid. We interpret Tkink as a
manifestation of an additional energy scale, beside the Fermi
energy. Obviously, no such energy scale may exist in the pure
2D Fermi liquids, and vice versa, its existence indicates a
non-Fermi liquid state.

In Fig. 5(a), one can also see that the magnetoconductivity
prefactor exhibits another twist upward for even higher
temperatures, clearly noticeable for the four lowest curves
(lowest densities). However, this feature occurs close to the
renormalized TF and is likely to signify a transition to a
nondegenerate regime, which is beyond the scope of our
paper.

D. Other available data: spin magnetization

In order to test whether the kink temperature in magne-
toconductivity has a more general significance and indeed
signals a novel energy scale, we inspected the temperature
dependencies of other physical quantities measured in the
high-temperature range and in weak or zero magnetic fields.
Available data that fit these requirements are as follows:
(i) spin magnetization per electron ∂M/∂n [61], (ii) entropy
per electron ∂S/∂n [77], and (iii) zero-field transport ρ(T ).

The spin magnetization-per-electron ∂M/∂n data [61], in
general, are interpreted as a clear evidence for the formation
of a two-phase state, in which the Fermi liquid phase coexists
with large-spin collective “spin droplets” (the latter being
presumably collective localized states). These data [61] show
a pronounced sign change of ∂χ/∂n ≡ ∂2M/∂B∂n at a

density-dependent temperature TdM/dn(n). Physically, the sign
change means that for temperatures lower than TdM/dn(n), the
minority phase (large-spin collective spin droplets) melt as
density increases. In other words, extra electrons added to the
system join the Fermi sea, improve screening and favor spin
droplets disappearance. For temperatures above TdM/dn(n), the
number of spin droplets grows as density increases; here the
extra electrons added to the 2D system prefer joining the spin
droplets.

The spin magnetization measurements [61] have been
performed with our high-mobility samples (almost identical
to Si-2 and Si-63), and also with high-mobility Si-MOS
samples from a different manufacturer [76]; all samples
demonstrated a universal behavior. We believe therefore these
results may be compared with our current magnetotransport
data. The TdM/dn(n) dependence copied from Figs. 1 and 2
of Ref. [61] is depicted in the insert to Fig. 6. One can see
that TdM/dn(n) also behaves critically and vanishes to zero
at nc; remarkably, within the measurements uncertainty, it is
consistent with Tkink(n) deduced from our magnetotransport
data.

With the same aim, we also inspect our earlier entropy-per-
electron dS/dn measurements [77]. There is a clear onset of
the strong dS/dn growth with lowering density at n ≈ n(T ∗),
signaling a crossover from the Fermi-liquid-type behavior
dS/dn ≈ 0 to a large entropy phase (see Figs. 1(a) and 1(c) of
Ref. [77]). The later phase corresponds to the region II of the
phase diagram in Fig. 6. These data do not contradict the spin
magnetization data and the empirical phase diagram (Fig. 6),
though does not enable us to explain the magnetotransport
puzzling behavior. The latter will be done in the next
sections.

E. Other available data: resistivity and conductivity
in zero field

Searching for manifestation of the novel energy scale in
zero-field transport, we analyze the ρ(T ) and σ (T ) dependen-
cies at zero field (see Fig. 2). The variations of these quantities
in the relevant temperature range are large (up to a factor of 10),
making the IC theory inapplicable in this “high-temperature”
regime.

Each ρ(T ) curve has two remarkable points: ρ(T ) max-
imum, Tmax, and inflection, Tinfl [75]. Whereas Tmax is an
order of the renormalized Fermi energy, the inflection point
happens at much lower temperatures, in the degenerate regime.
Importantly, the inflection temperature appears to be close to
the kink temperature (see Figs. 2 and 6). Therefore the prox-
imity of the three notable temperatures, which are inherent to
high-mobility samples solely, Tkink ≈ Tinfl ≈ TdM/dn strongly
supports the existence of an energy scale T ∗ in the correlated
2D system.

T ∗ is much less than the bare Fermi temperature TF [78]
and the renormalized T ∗

F = TF (mb/m∗) [20]. In contrast to TF

(which is ∝n), T ∗(n) develops as (n − nc). On the other hand,
T ∗(n) is much higher than the “incoherence” temperature at
which the phase coherence is lost (defined as τϕ(T ) = τ [79]),
confirming that the kink, inflection, and ∂χ/∂n sign change
are irrelevant to the single-particle coherent effects.
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IV. DISCUSSION

A. Phenomenological model for transport
and magnetotransport

In the absence of an adequate microscopic theory, we
attempt to elucidate the origin of the T ∗ energy scale and of the
anomalous magnetoconductance behavior. We suggest below a
phenomenological two-channel scattering model that links the
“high-temperature” transport and magnetotransport behavior
in a unified picture and makes a bridge to the thermodynamic
magnetization data. The physical picture behind the two-
channel scattering is described further, in the corresponding
section.

One can see from Fig. 2 that the ρ(T ) temperature
dependence is monotonic up to the limits of degeneracy,
T = TF , and follows one and the same additive resistivity
functional form over a wide density range:

ρ(T ) = ρ0 + ρ1 exp (−�(n)/T ),

�(n) = α(n − nc(B)), (4)

where ρ1(n,B) is a slowly decaying function of n, and ρ0(n,T )
includes Drude resistivity and quantum corrections, both from
the single-particle interference and interaction [80]. Although
the above empirical resistivity form has been suggested in
Ref. [81] on a different footing, it fits well the ρ(T ) dependence
for a number of material systems [6,7,81–86].

This empirical additive ρ(T ) form satisfies general re-
quirements for the transport behavior in the vicinity of a
critical point [10,75], and explains the apparent success of
the earlier attempts of one-parameter scaling [namely, of the
ρ(T ) steep rise and the mirror reflection symmetry between
ρ(T ) and σ (T ) on the metallic and insulating sides of
the MIT] [5,8]. The additive resistivity form presumes the
two-phase state of the low-density 2D electronic system (cf.
Matthiessen’s rule). The two-phase state is experimentally
revealed in macroscopic magnetization measurements [61],
and in experiments with mesoscopic systems or local probes
[52,87]. There is also a large body of theoretical sugges-
tions for spontaneous formation of the two-phase state [39–
43,49,88,89] due to instabilities in the charge or spin channel.
Dealing with the two-phase state, the two channel scattering
or additive resistivity approach seems quite adequate to the
problem.

The features of our interest, Tkink and Tinfl, represent “high-
energy” physics. Moreover, the ρ(T ) [and σ (T )] variations of
the experimental data (Fig. 2) are so large, that the first order in
T corrections, of cause, cannot describe them. Our analysis of
other known theoretical models for a homogeneous 2D Fermi
liquid reveals that neither of them describes adequately the
inflection on the ρ(T ) data and of course does not include an
associated energy scale. This is another motivation for us to
turn attention to the two-phase state.

The typical ρ(T ) behavior (Fig. 2) naturally prompts the
dual channel scattering. The simplest functional dependence,
Eq. (4), correctly describes the inflection in ρ(T ) and linear
density dependence of the inflection temperature [81,90,91].
Obviously, in this model Tinfl = �/2. To take magnetic field
into account and following results of Ref. [90], we include to
(�/T ) all the lowest order in B/T (and even-in-B) terms, as

FIG. 7. Fitting ρ(T ,B = 0) dependencies (left) and aσ (T ) (right)
with the same set of the fitting parameters. Sample Si-2; carrier
densities (from top to bottom) are n = 1.5, 2.0, 2.5, and 3.25 ×
1011 cm−2. Fitting parameters are presented in Table I. Vertical arrows
point at the kink positions.

follows:

�(T ,B,n)/T = �0(n)/T − β(n)B2/T − ξ (n)B2/T 2, (5)

with �0 = α[n − nc(0)].
Equations (4) and (5) link the magnetoconductance with

the zero-field ρ(T ) temperature dependence. With these, the
ρ(T ,B) dependence is as follows:

ρ(B,T ) = [σD − δσ exp (−T/TB )]−1

+ ρ1 exp

(
−α

n − nc(0)

T
− β

B2

T
− ξ

B2

T 2

)
. (6)

The term in the square brackets includes the Drude con-
ductivity and interaction quantum corrections [25,26]. The
latter, δσ (T ) = γ (B2/T ) + ηT , was calculated using exper-
imentally determined Fσ

0 (n) values [20,58], and σD found
from a standard procedure [59]. In order to cut off the
corrections above a certain border temperature [92] and, thus,
to disentangle the exponential–and linear-in-T contributions,
the calculated interaction corrections are cut-off with an
exponential crossover function above TB, which for simplicity,
we set equal to �(n)/2.

From Eq. (6), the prefactor aσ = −(1/2)∂2σ/∂B2 is
calculated straightforward and in Fig. 7 is compared with
experimental data. In the ρ(T ) fitting [Figs. 7(a), 7(c), 7(e),
and 7(g)], basically, there is only one adjustable parameter
ρ1(n) for each density. Indeed, nc(0) is determined from the
conventional scaling analysis at B = 0 [75], and the slope,
α = 2∂Tinfl(n)/∂n may be determined from Fig. 6. However,
in order to test the assumed linear �(n) relationship, Eq. (4),
we treated α(n) as an adjustable parameter. On the next step,
in the aσ (T ) fitting [Figs. 7(b), 7(d), 7(f), and 7(h)], we fixed
the parameters determined from the ρ(T ) fit and varied β(n)
and ξ (n).
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TABLE I. Summary of fitting parameters, corresponding to Fig. 7
and Eq. (6). ρ1 and ρD = σ−1

D are in (�/�), density is in units of
1011 cm−2, nc = 0.88, α is in K/1011 cm−2.

n ρD ρ1 α β (K/T2) ξ (K2/T2)

1.5 1268 14362 4.53 −0.0160 −0.08
1.996 901 9564 4.35 −0.0080 −0.09
2.5 662.2 6937 4.28 −0.0043 −0.11
3.25 501.5 5202 4.24 −0.0019 −0.15
5.252 336.14 3456.6 4.18 −0.0005 −0.19

One can see that both ρ(T ) and aσ (T ) are well fitted;
the model captures correctly the major data features, the
steep ρ(T ) rise (including the inflection), and the aσ (T ) kink.
Within this model, the kink signifies a transition from the low-
temperature magnetoconductance regime [where the linear
σ (T ) temperature dependence dominates and the exponential
term may be neglected] to the high-temperature regime
governed by the steep exponential ρ(T ) rise; both regimes
being irrelevant to diffusive interaction. The parameters of
the fit (Fig. 7) are summarized in the Table I. The factor
β is an order of magnitude smaller than ξ , therefore, the
corresponding term in Eq. (6) becomes important only at high
temperatures. The slope α is almost constant, confirming our
assumption [Eq. (4)].

B. Possible origin of the two channel scattering

We suggested a unified phenomenological descrip-
tion of the transport and magnetotransport data, based
on the two-phase state (two scattering channels). The
two parallel dissipation channels in Eq. (4) are
(i) ordinary scattering (by impurities and interface roughness)
of the itinerant electrons in 2D Fermi liquid and (ii) Coulomb
scattering of itinerant electrons by the charged collective
localized states (spin droplets). The latter may be viewed as
quantum dots confining four or more electrons [61]. Besides
the low-lying ground energy state, the dot (droplet) contains
an excited level, located above the Fermi energy, at EF + �.
Capture and emission of electrons from/to the surrounding
Fermi sea is a slow process, requiring rearrangement of all
electrons inside the dot. Consequently, for a sufficiently long
time, much longer than the transport scattering time, the dot
may become charged and scatter itinerant electrons effectively.
The probability of its charging is negligible at low temperatures
T 	 � but grows with temperature as exp(−�/T ). The
neutral dots (droplets) do not scatter itinerant electrons because
their size is larger than the Fermi wavelength. As a result, the
presence of droplets does not affect low-temperature transport
and magnetotransport at T 	 T ∗(n). Only at temperatures
above � charging of droplets and hybridization of itinerant
and localized electrons become significant and contribute to
transport, leading to the exponentially strong ρ(T ) temperature
dependence and the anomalous magnetotransport regime. This
qualitative model is roughly similar to the charged trap model
by Alltshuler and Maslov [93], but relates the traps with the
spin droplets inside the 2D layer, rather than with defects at
the Si–SiO2 interface. In principle, the presence of the spin

droplets is expected to cause saturation of the temperature
dependence of the phase breaking time [94], however, we
did not reveal the τϕ saturation down to about 30 mK [58];
a possible explanation of the low saturation temperature is
discussed in Ref. [94].

C. On the magnetoconductivity interpretation

For high densities n � nc, the temperature range above
Tkink is unambiguously beyond the diffusive regime of in-
teractions and, hence, the B2/T 2 dependence is the high-
temperature MC regime of the nondiffusive type. Below
Tkink, the temperature is still higher than Tdb and the regime
aσ ∝ T −1 (see Fig. 5) therefore is reminiscent of the ordinary
ballistic interaction regime [26]. This conclusion is confirmed
by Fig. 7 where the standard interaction corrections incorpo-
rated in Eq. (6) with experimentally determined interaction
parameters provide quite a successful fit below Tkink.

The kink in Fig. 5(a) moves down as carrier density
decreases. As a result, the δσ ∝ −(B2/T 2) regime for low
densities occupies more and more space and eventually,
approaching n = nc, extends down to the lowest temperature
of our measurements, T = 0.3 K. By tracing the evolution
of this regime from the higher-density side, we conclude that
this is a high-T phenomenon that can hardly have diffusive
interaction origin. Therefore we conclude that in the vicinity
of the critical density, and at temperatures down to 0.3 K,
the MC is governed by a high-temperature mechanism of a
nondiffusive origin. In other words, the MC in the vicinity of
n = nc mimics the behavior anticipated for the diffusive regime
of electron-electron interaction [26,36,63]. The temperature
of the ρ(T ) maxima is even higher than Tkink ≈ Tinfl and,
hence, also belongs to the high-temperature regime. This fact
suggests that the ρ(T ) maximum is not caused by the diffu-
sive interactions, at least in the explored temperature range
T > 0.3 K.

This finding requires to refine the RG treatment of the
experimental ρ(T ,B‖) data in the vicinity of MIT [63], and
particularly, the phase diagram of the 2D interacting and
disordered systems deduced from fitting the experimental
data within this approach [95,96]. Indeed, in these studies,
namely the ρ(T ) maximum and the temperature dependence
(B2/T 2+ε) of the magnetoconductance (with ε > 0) were
taken as evidence for the diffusive interaction; the latter was
used as an input to deduce the temperature renormalization of
the interaction parameter γ2 = −Fσ

0 /(1 + Fσ
0 ) ∝ 1/T ε [63].

The new measurements of the in-plane field MR now should be
taken at much lower temperatures, in the millikelvin range, in
order to reveal the true diffusive regime for the high-mobility
samples and to use these data for comparison with the RG
theory [34]. This, however, is experimentally challenging
since requires measurements of a tiny magnetoresistance in
extremely low fields, gμBB < T .

Our results also explain why the Fermi-liquid parameters
extracted from fitting the measured magnetoconductance
scatter significantly in various experiments and why they differ
from those obtained from zero-field σ (T ) data: indeed, by
fitting the data in the nominally ballistic regime, one would
observe aσ (and deduce Fa

0 values) to be strongly dependent
on the particular temperature range, above or below the kink.
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V. CONCLUSION

In conclusion, we have found unforeseen features in
transport and magnetotransport in the correlated 2D electron
system which set in above a characteristic temperature T ∗ that
suggests a novel energy scale in the two-phase electronic sys-
tem. We attribute these features to the effect of spin-polarized
collective droplets on transport and magnetotransport of
itinerant electrons in the correlated 2D electron system. At the
crossover T ∗(n), the spin magnetization per electron changes
sign, the in-plane field magnetoconuctance crosses over from
the conventional ballistic-type −(B2/T ) to the anomalous
−(B2/T 2) dependence, and the zero-field resistivity ρ(T )
exhibits an inflection, i.e., a transition from the linear-in-T to
the exponentially strong T dependence. The three respective
temperature borders develop critically, ∝(n − nc), and are
rather close to each other. Since the crossover at T ∗ in the
thermodynamic magnetization is related to the transition from
growth to decay of the SD phase, we conjecture that T ∗ might
be related with the energy spectrum of the spin droplets. The
latter makes a bridge between the features observed in transport
and thermodynamics.

We suggested a unified phenomenological description
of the transport and magnetotransport data, based on the
two-phase state (two scattering channels). The two parallel
dissipation channels in our models are presumably: (i) ordinary
scattering of the itinerant electrons by impurities in 2D
Fermi liquid and (ii) Coulomb scattering (and, possibly,
hybridization) of itinerant electrons by the collective localized
states (spin droplets).

Clearly, there is need for a microscopic theory that must
link the transport and thermodynamic features and explain
on the same footing all three critical behaviors: in the zero-
field resistivity, in the magnetoconductivity, and in the spin
susceptibility per electron. We believe that an adequate theory
should incorporate the two-phase state. A possible key to the
origin of T ∗ may be related with the structure of the collective
energy levels for the individual droplets of the minority phase,
which in analogy with the quantum dots may simultaneously
cause features in the thermodynamics and in the transport of
itinerant electrons.
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APPENDIX: ON THE ROLE OF PHONONS

In 3D metals, any residual weak temperature dependence
in ρ(T ) originates from phonon scattering, which produces
the Bloch-Gruneisen behavior, ρ(T ) = ρ0 + ρ1T

5, where the
temperature-independent contribution ρ0 arises from short-
range disorder scattering and the temperature dependence
(the second term)—from phonon scattering. By contrast,
the temperature-dependent transport in 2D metallic systems
at low temperatures, besides weak-localization effects, is
dominated mostly by electron-impurity scattering dressed with
electron-electron interaction effects (or on the complementary
language—by screened disorder scattering with temperature-
dependent screening).

The interaction effects in transport are proportional to (T τ )
and in order to diminish them and to highlight the effect
of phonons, we present in Fig. 8 the resistivity data for
the low-mobility Si-MOS sample (where τ is smaller by a
factor of 10 than for the high-mobility samples studied in
the paper). From Fig. 8(a), one can see that below about
2 K, logarithmic quantum corrections dominate (both WL
and interaction corrections) [97]. For higher temperatures,
up to the Fermi energy (dashed curve), ballistic interaction
corrections (or temperature-dependent screening) take over
and cause ρ(T ) growth, which flattens and then saturates as
T approaches TF , due to nondegeneracy effects [98]. For
temperatures higher than 100–200 K, resistivity again starts
growing, now due to electron-acoustic-phonon scattering. The
monotonic ρ ∝ T dependence is a consequence of the amount
of phonons excited at a given T . In GaAs heterostructures,
due to effective piezocoupling, the phonon scattering is rather
strong [98,99]. For Si, the phonon scattering contribution to

FIG. 8. Zero-field temperature dependencies of ρ(T ) for a low-mobility sample in a wide range of temperatures: (a) logarithmic and (b)
linear scales. Sample Si-46. Density: 1 – 16.5, 2 – 17.6, 3 – 19.8, 4 – 22, 5 – 24.2, 6 – 26.4, 7 – 30.8, and 8 – 36.3 × 1011 cm−2. Dashed line
depicts TF for various densities.
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the overall scattering rate is much lower, because of the weaker
electron-phonon coupling mechanism (that is the deformation
potential for Si).

To conclude, it is well-known that phonon scattering
in Si-structures contributes essentially to the transport only
in the vicinity of room temperature, and is irrelevant to
the low-temperature transport. Both the nondegeneracy and
phonon scattering are irrelevant to the inflection in ρ(T ), which

happens at much lower temperatures than the onset of phonon
scattering. Nevertheless, to be on the safe side, in our studies,
we analyze the data [kink in ∂2σ/∂B2 and inflection in ρ(T )]
only in the temperature range (i) well below EF and below the
ρ(T ) maximum in order to avoid the nondegeneracy effects
and (ii) always below 20 K for the explored densities, where
the phonon contribution to the resistivity in Si-MOSFETs can
be neglected with 1% or better accuracy.
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