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Spectral functions of the uniform electron gas via coupled-cluster theory
and comparison to the GW and related approximations
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We use ab initio coupled-cluster theory to compute the spectral function of the uniform electron gas at a Wigner-
Seitz radius of rs = 4. The coupled-cluster approximations we employ go significantly beyond the diagrammatic
content of state-of-the-art GW theory. We compare our calculations extensively to GW and GW -plus-cumulant
theory, illustrating the strengths and weaknesses of these methods in capturing the quasiparticle and satellite
features of the electron gas. Our accurate calculations further allow us to address the long-standing debate over
the occupied bandwidth of metallic sodium. Our findings indicate that the future application of coupled-cluster
theory to condensed phase material spectra is highly promising.

DOI: 10.1103/PhysRevB.93.235139

I. INTRODUCTION

Computing the electronic excitations and spectra of con-
densed phase systems with significant correlations from first
principles continues to be a premier challenge in computational
materials science. Currently, a widely used approach is time-
dependent many-body perturbation theory (MBPT). In this
approach, the electronic Green’s function G, the poles of
which yield the single-particle excitation energies, is obtained
by evaluating Feynman diagrams representing many-electron
interaction processes. Retaining only the lowest-order diagram
in an expansion in terms of the screened Coulomb interaction
W leads to the GW method [1]. The GW method greatly
improves band gaps obtained from density-functional theory
(DFT) [2,3], and further yields other accurate quasiparticle
properties, such as lifetimes and bandwidths [4,5], in a wide
range of weakly and moderately correlated materials.

Despite its successes, the GW method has well-known
limitations. Specifically, it has proven difficult to systemati-
cally improve GW theory by including higher-order Feynman
diagrams, so-called vertex corrections. While extensions of the
GW approach have been developed for specific applications
such as plasmon satellites [6–8] or magnetic systems [9–11],
there exists currently no universally accepted and applicable
“beyond-GW” approach. An additional problem in most
practical “one-shot” GW calculations (i.e., G0W0) is the
dependence of the results on the mean-field starting point;
at a greater numerical cost, self-consistent GW calculations
have been carried out with mixed success [12–16].

More common in ab initio quantum chemistry, methods
based on time-independent many-body perturbation theory
provide a different route to electronic excitations [17–20].
In this framework, coupled-cluster theory is an example
of a well-studied and systematically improvable hierarchy
within which to resum the corresponding classes of Goldstone
diagrams [20–22]. Electronic excited states are obtained by

equation-of-motion (EOM) coupled-cluster theory [23–25].
For molecules with weak to moderate correlations, coupled-
cluster theories at the singles, doubles, and perturbative triples
level are established as the quantitative “gold standard” of
quantum chemistry [22].

While such ab initio coupled-cluster theories have been
widely applied to atoms and molecules, they have traditionally
been thought too expensive to use in extended systems;
for example, coupled-cluster theory with single and double
excitations formally has a computational scaling O(N6).
However, with improvements in algorithms and increases in
computer power, the exciting possibility of applying these
methods to condensed-matter problems is now within reach.

In this paper we apply, for the first time, EOM coupled-
cluster theory to the uniform electron gas (UEG)—a paradig-
matic model of metallic condensed-matter systems—and study
its one-particle electronic excitations. We employ coupled-
cluster theory with single and double (and in some cases
triple) excitations; at this level, the diagrammatic content of
our treatment goes significantly beyond the standard GW level
of approximation. As such, our coupled-cluster spectra allow
us to assess the quality of vertex corrections to the GW method
in the UEG and our results at rs = 4.0 have strong implications
for photoemission experiments in metallic sodium.

II. METHODS

We study electronic excitations of the three-dimensional
UEG using a supercell approach, i.e., we place N electrons in
a cubic box of volume � = L3 with a neutralizing positive
background charge and periodic boundary conditions. The
thermodynamic limit is obtained, in principle, by increasing
N and � while keeping the density N/� fixed. Here, we
only present results for the UEG with a Wigner-Seitz radius
rs = 4.0 (kF = 0.480 a.u.) corresponding approximately to
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the valence electron density of metallic sodium. We treat
the divergent G = 0 component of the Coulomb potential
with the “probe-charge” Ewald summation method [26], i.e.,
v(G = 0) = α0/L where α0 = 2.837 297 479 is the Madelung
constant of a three-dimensional simple cubic lattice [27,28].
For this UEG Hamiltonian we calculate the one-electron
Green’s function Gk(ω) and the corresponding spectral func-
tion Ak(ω) = π−1|ImGk(ω)| using several methods: (i) mean-
field theory, i.e., Hartree-Fock (HF) and DFT in the local-
density approximation (LDA) [29]; (ii) time-dependent MBPT,
i.e., the GW and GW -plus-cumulant methods; (iii) EOM
coupled-cluster theory; and (iv) dynamical density matrix
renormalization group (DMRG), which provides numerically
exact spectral functions for small system sizes [30]; all
DMRG calculations were performed with a bond dimension
of M = 1000. Specifically, we compute spectral functions of
occupied states, which are the ones probed in photoemission
experiments.

The one-particle eigenstates of the mean-field theories
are plane waves, φk(r) = �−1/2eik·r , and these serve as a
finite basis set in the subsequent MBPT, CC, and DMRG
calculations. The corresponding eigenenergies are given by
εk = k2/2 + V xc

k , where V xc
k denotes the exchange-correlation

matrix element, evaluated either at the HF or DFT-LDA
level (the Hartree term exactly cancels the interaction energy
with the positive background charge density). Based on the
HF and DFT-LDA mean-field starting points, we carry out
one-shot GW (i.e., G0W0) calculations [2,3] where screening
is treated in the random-phase approximation, as well as
G0Wxc calculations where screening is treated with the DFT-
LDA dielectric function [11,31]. We also evaluate spectral
functions using the GW -plus-cumulant (henceforth GW+C)
method. This approximation yields the exact solution for a
dispersionless core electron interacting with plasmons [32] and
noticeably improves the description of plasmon satellite prop-
erties compared to GW , while retaining the accuracy of GW

for the quasiparticle energies. The GW+C formalism defines
the Green’s function as Gk(t) = G0,k(t) exp [−i�x

kt + Ck(t)],
where G0 is the Green’s function from mean-field the-
ory, �x

k is the bare exchange self-energy, and Ck(t) =
π−1

∫
dω|Im�k(ω + EGW

k )|(e−iωt + iωt − 1)/ω2 is the cu-
mulant function [6,7,33]. Here, EGW

k denotes the GW orbital
energy. The GW+C approach has been applied to a range
of bulk materials [8,34–36] and nanosystems [37,38] and
good agreement with experimental measurements on satellite
structures was found. However, comparisons of the GW+C
to other accurate numerical calculations have been difficult to
perform, and this is one of the objectives below.

We perform EOM coupled-cluster calculations of the one-
electron Green’s function starting from the mean-field ground-
state determinant |	0〉, defined by the occupied one-particle
eigenstates with k < kF . We briefly describe the relevant the-
ory and we refer to Refs. [20,39,40] for details. The coupled-
cluster ground state is defined as |
0〉 = eT |	0〉, where the
cluster operator is T = ∑

ia tai c
†
aci + 1

4

∑
ijab tab

ij c
†
ac

†
bcj ci +

. . . (with the indices i,j referring to occupied states and the
indices a,b referring to unoccupied states). Singles, doubles,
and triples coupled-cluster theories (denoted CCS, CCSD, and
CCSDT) correspond to truncating T after one, two, and three

electron-hole excitations. The T operator and coupled-cluster
ground-state energy are obtained through the relations

E0 = 〈	0|e−T HeT |	0〉 = 〈	0|H̄ |	0〉,
0 = 〈

	a
i

∣∣H̄ |	0〉 = 〈
	ab

ij

∣∣H̄ |	0〉 = . . . ,
(1)

where the notation 	a
i ,	

ab
ij , . . . represents Slater determinants

with one, two, ... electron-hole pairs, and H̄ is the non-
Hermitian coupled-cluster effective Hamiltonian. By construc-
tion from Eq. (1), |	0〉 is the right ground-state eigenvector
of H̄ ; its left ground-state eigenvector 〈	̃0| takes the form
〈	0|(1 + S), where S = ∑

ia sa
i cac

†
i + 1

4

∑
ijab sab

ij cacbc
†
j c

†
i +

... creates excitations in the bra, to the same level as in T .
Coupled-cluster excited states and energies are formally

determined by diagonalizing the non-Hermitian effective
Hamiltonian H̄ = e−T HeT in an appropriate space of exci-
tations. For the single-particle (ionization) energies here, we
diagonalize in the space of one-hole (1h) and two-hole one-
particle (2h1p) states for a CCSD ground state, additionally
including the space of three-hole two-particle (3h2p) states for
a CCSDT ground state [41,42]. The ionization contribution to
the CC Green’s function [39,40] is then defined in the same
space, as

Gk(ω) = 〈	̃0|c̄†kP
1

ω − (E0 − H̄ ) − iη
P c̄k|	0〉 (2)

where 〈	̃0| is the left ground-state eigenvector of H̄ and P

projects onto the space of 1h, 2h1p, and (for CCSDT) 3h2p

states. In practice, the CC Green’s function is calculated at each
frequency value with the aid of an iterative Arnoldi-style linear
solver in the EOM framework. We emphasize that although
the initial ground-state CCSD calculation scales as O(N6) the
excited state ionization-potential EOM-CCSD has a reduced
scaling O(N5); this should be compared to the O(N4) scaling
of GW methods.

With respect to other works, this paper represents multiple
significant methodological advances. Most importantly, we
present the first application of CCSD to the full spectrum of
excited states for a condensed phase system and establish its
accuracy in a parameter regime relevant for real materials.
These results complement recent work applying CCSD to the
ground state of the electron gas [43–45]. Remarkably, to the
best of our knowledge, our results are also the first report
of the full frequency-dependent CCSD spectral function (and
not just the energy of select ionization poles) for any system.
Furthermore, we present the first nonperturbative CCSDT
results for the ground state of the UEG, as well as the first
CCSDT Green’s function for any system.

III. ANALYSIS OF CC AND GW METHODS

Coupled-cluster theory with n-fold electron-hole excita-
tions in the T operator includes all time-independent diagrams
with energy denominators that sum at most n single-particle
energies. At the singles and doubles CCSD level (the lowest
level used in this work), this already includes more Feynman
diagrams than are in GW theory. In particular, the CCSD
energies and Green’s function include not only the ring dia-
grams, which dominate the high-density limit of the electron
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gas [46] and which yield the screened RPA interaction in
GW , but also ladder diagrams (such as generated in T -matrix
approximations) and self-energy insertions which couple the
two [44,47]. The dominance of ladder diagrams at low density
suggests that the results of CCSD will be superior in this limit.

Unlike GW theory, CC approximations are invariant to the
values of the single-particle energies and relatively insensi-
tive to the single-particle orbitals, because eT1 parametrizes
rotations from |	0〉 to any other determinant [48]. While CC
calculations typically start from a HF mean-field calculation,
in the UEG the HF and DFT mean-field theories share the same
plane-wave states as their one-particle eigenstates. This means
that the UEG CC calculations are completely invariant to the
mean-field choice (in the paramagnetic phase). Because this
complicates a fair comparison, we present GW calculations
with both HF and LDA as a reference; the former may be
considered a fairer comparison with CC when assessing the
diagrammatic quality of the theories.

IV. RESULTS

To establish the accuracy of the different methods, we
initially study a supercell containing 14 electrons in a minimal
single-particle basis of 19 spatial orbitals. The electrons
occupy seven orbitals, namely, the orbital with k = (0,0,0),
corresponding to the bottom of the band in the thermodynamic
limit, and the sixfold degenerate highest occupied orbital
k = (2π/L,0,0) corresponding to the Fermi level in the
thermodynamic limit. For this small system, we can compare
GW and CCSD to coupled-cluster theory with all triple
excitations (CCSDT) as well as numerically exact dynamical
density matrix renormalization group (DMRG) calculations of
the spectral function.

Figure 1(a) shows our results for the deeply bound k =
(0,0,0) state. All spectral functions (except for GW+C)
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FIG. 1. Spectral functions for the UEG with rs = 4.0 using a
supercell containing 14 electrons in 19 spatial orbitals. (a) For the
k = (0,0,0) state, the spectral function exhibits a prominent satellite
peak; the HF + GW result has been scaled down by a factor of 1.5.
(b) For the highest occupied state at k = (2π/L,0,0), the spectral
function exhibits a strong quasiparticle peak with a very weak satellite
structure; the satellite region between −18 and −7 eV has been
magnified by a factor of 30. A linewidth broadening of η = 0.2 eV is
used in all calculations.

exhibit two peaks: a quasiparticle peak near −6 eV and a
strong satellite peak near −10 eV. We find excellent agreement
between the CCSDT and the dynamical DMRG result. The
agreement between CCSD and the DMRG result is also very
good, in particular for the quasiparticle peak. Starting from the
same HF reference as typically used in coupled-cluster theory,
HF+GW yields a much less accurate result: the binding energy
of the quasiparticle is too large by about 1 eV and the spectral
weight is overestimated by almost a factor of 2. This error
is inherited from the underlying HF mean-field theory and
illustrates the starting point dependence of the method. Even
worse results are obtained for the satellite feature which is
at far too low an energy. However, when starting from a
DFT-LDA reference, the GW approximation gives results
with much improved accuracy, and is only slightly worse
than CCSD. Interestingly, GW+C yields several satellite
peaks with incorrect energies and underestimated peak heights,
illustrating some of the challenges in systematically improving
on GW theory through standard vertex corrections. By con-
struction, the GW+C approach produces a plasmon-replica
satellite structure (see below) even for small systems, which is
physically incorrect.

Consistent with Fermi-liquid theory, the spectral functions
of the k = (2π/L,0,0) state shown in Fig. 1(b) exhibit
significantly weaker electron correlations than those of the
k = (0,0,0) state. All methods predict a strong quasiparticle
peak with a binding energy of about 5 eV and weak satellite
features, although the inset of Fig. 1(b) shows that the detailed
structure of the satellites is quite complex and only CCSDT
accurately captures the features seen in the exact spectrum.

Next, to study the approach to the thermodynamic limit,
we carried out calculations on larger supercells for which
CCSDT and dynamical DMRG are no longer computationally
tractable. We performed CCSD, GW , and GW+C calculations
for supercells containing 38, 54, 66, and 114 electrons. The
quasiparticle features of all systems studied are similar (e.g.,
the occupied bandwidth), however the satellite features are
unsurprisingly different, and so here we will only discuss
the largest system studied. For the 114 electron system, we
used plane-wave basis sets with at least 485 spatial orbitals,
which is sufficiently large to converge all peak positions to
within 0.2 eV.

Figure 2(a) shows the spectral function of the k = (0,0,0)
state for the UEG with 114 electrons in 485 orbitals. The
CCSD spectral function exhibits a strong quasiparticle peak
near −6 eV. For the GW calculations, we observe again a
strong dependence on the mean-field starting point: while the
quasiparticle energy from LDA+GW agrees very well with
CCSD, that from HF+GW is significantly worse. This is not
surprising since DFT-LDA yields much more accurate metallic
bands than HF.

At higher binding energies, the CCSD spectral function ex-
hibits a rather complex satellite structure, however two major
regions of spectral weight can be identified near −12 and −18
eV. In contrast, both the HF+GW and the LDA+GW spectral
functions exhibit only a single, prominent satellite peak.
Lundqvist and coauthors [49,50] assigned this peak to a novel
excited state, the plasmaron, but it has recently become clear
that this prediction by GW is spurious. Vertex-corrected time-
dependent MBPT approaches, such as the GW+C method, do

235139-3



JAMES MCCLAIN et al. PHYSICAL REVIEW B 93, 235139 (2016)

0.00

0.05

0.10

0.15

0.20

-25 -20 -15 -10 -5

(a) k = (0, 0, 0)
÷1.5

0.00

0.10

0.20

0.30

-20 -15 -10 -5

(b)

-4

-3

-2

-1

0

0.0 0.2 0.4 0.6 0.8 1.0

(c)

A
(k

,ω
)

[e
V

−1
]

Energy ω [eV]

CCSD
HF+GW
LDA+GW
LDA+GW+C

0.00

0.05

0.10

0.15

0.20

-25 -20 -15 -10 -5

A
(k

,ω
)

[e
V

−1
]

Energy ω [eV]

0.00

0.10

0.20

0.30

-20 -15 -10 -5

E
(k

)
−

E
(k

F
)

[e
V

]

Momentum k /kF

CCSD
HF+GW
LDA+GW
LDA+GWxc

-4

-3

-2

-1

0

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. (a) Spectral function of the k = (0,0,0) state of the UEG
with rs = 4.0 and 114 electrons in 485 orbitals. The HF+GW result
is scaled down by a factor of 1.5 and a linewidth broadening of
η = 0.8 eV is used in all calculations. (b) Comparison of the spectral
functions of the k = (0,0,0) state in the thermodynamic limit (solid
curves) and the 114 electron system (dashed curves) from LDA+GW

(blue curves) and LDA+GW+C (green curves). (c) Complete basis
set limit quasiparticle energies as a function of wave vector for the
114 electron system (symbols) and quadratic fits (dashed curves).

not predict such a state and instead yield a satellite structure
that consists of an infinite series of peaks corresponding to the
“shake-up” of one or more plasmons [6,32]. Notably, the major
peaks in the CCSD spectral function are separated by roughly
6 eV corresponding to the classical plasma frequency of 5.9 eV
in an electron gas with rs = 4.0. Comparing the LDA+GW+C
result to CCSD in Fig. 2(a), we find a qualitatively similar
spectrum. However, at least at this system size, the CCSD
spectral function has a stronger quasiparticle peak, a larger
spectral width, and significantly more fine structure than the
GW+C spectral function.

To assess remaining errors of the 114 electron system
relative to the thermodynamic limit, we compare the k =
(0,0,0) spectral functions of the UEG with 114 electrons with
the results fully converged to the thermodynamic limit for
the LDA+GW and the LDA+GW+C methods. Figure 2(b)
shows good qualitative agreement between the two sets of
spectral functions for this class of methods.

Finally, Fig. 2(c) shows the quasiparticle energies as a
function of the electron wave vector, i.e., the energy dispersion
relation, for the 114 electron system with results extrapolated
to the complete basis set limit [51]. The inferred bandwidths
are 2.96 eV for CCSD, 3.79 eV for HF+GW , 2.77 eV for
LDA+GW , and 2.56 eV for LDA+GWxc; self-consistency
treated within the quasiparticle self-consistent GW scheme
gives only a minor bandwidth narrowing compared to

LDA+G0W0 [15]. While DFT-LDA gives a bandwidth of
3.13 eV, HF predicts a value of 7.29 eV, significantly larger
than any other method. The failure of HF to describe metallic
systems is well documented and results from the absence of
screening.

The bandwidth of simple metals, and in particular sodium,
has been the subject of a decades-long debate. Plummer
and coworkers [52,53] carried out angle-resolved photoe-
mission experiments on sodium and reported a bandwidth
of 2.5–2.65 eV, significantly smaller than the free-electron
and DFT-LDA value of ∼3.1 eV, and even the LDA+GW

value of ∼2.8 eV [1]. Interestingly, the experimental result
agrees quite well with the bandwidth from a LDA+GWxc

calculation [11,31], which contains vertex corrections for the
dielectric function; however, including vertex corrections also
in the self-energy increases the bandwidth again [54–56]. As
an alternative explanation, Shung and Mahan [57] and Shung
et al. [58] suggested that the measured bandwidth results
from many-body effects in combination with final-state effects
and an interference between surface and bulk photoemission.
The close agreement seen here between the quasiparticle
dispersion of LDA+GW and CCSD—especially the larger
bandwidth of CCSD—suggests that the theoretical description
of the quasiparticle peak positions may be adequate already
and supports Shung and Mahan’s thesis that the remaining
discrepancy in the observed bandwidth is due to final-state
and interference effects.

V. CONCLUSION

We have demonstrated the first application of coupled-
cluster techniques to the computation of spectra in condensed
phase systems, using the uniform electron gas as a model
system. For finite uniform electron gas models of various
sizes we find that coupled-cluster theory, even at the singles
and doubles level (CCSD), provides improvement over GW

and even GW -plus-cumulant theory. Interestingly, while the
latter exhibits good accuracy for large systems (producing
reasonable plasmon-like satellite structures), the former is
significantly more accurate for small systems; CCSD naturally
interpolates between these two limits. In conclusion, by
providing a systematic framework that goes beyond the
diagrammatic content of the GW approximation, coupled-
cluster theories represent a very promising, new direction in
the search for more accurate methods to compute the spectra
of real materials.

Note added. Since the submission of this paper, two relevant
papers have been published: Spencer and Thom have applied a
stochastic implementation of CCSDT to the 14-electron UEG
for rs � 2 [59] and Bhaskaran-Nair et al. have calculated the
CCSD Green’s function for small molecules at a few frequency
values [60].
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