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Chirality of materials in nature appears when there are asymmetries in their lattice structures or interactions in
a certain environment. Recent development of quantum simulation technology has enabled the manipulation of
qubits. Accordingly, chirality can be realized intentionally rather than passively observed. Here we theoretically
provide simple methods to create a chiral spin state in a spin-1/2 qubit system on a square lattice. First, we
show that switching on and off the Heisenberg and XY interactions produces the chiral interaction directly
in the effective Hamiltonian without controlling local fields. Moreover, when initial states of spin qubits are
appropriately prepared, we prove that the chirality with desirable phase is dynamically obtained. Finally, even
for the case where switching on and off the interactions is infeasible and the interactions are always on, we show
that, by preparing an asymmetric initial qubit state, the chirality whose phase is π/2 is dynamically generated.
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I. INTRODUCTION

Chirality specifies the properties of materials in which the
mirror image does not coincide with itself by simple rotations
and translations [1]. Recently, chirality has come to play an
important role in the stabilization of skyrmions [2,3], and, in
spintronic devices, chirality is observed in the domain-wall
motion through the Dzyaloshinsky-Moriya interaction [4,5].
When the chirality of a spin system supports a nonlocal
extension of the order parameter, it is called a chiral spin liquid
(CSL), which has attracted much attention in the research of
high Tc superconductors since the 1980s [6–10]. The research
of CSL has been developed in combination with topological
quantum computation [11,12].

The chiral spin state is represented by the chiral interaction
�Si · �Sj × �Sk (i,j,k indicate lattice sites) [8]. In the Hubbard
model, which can abstract the nature of strongly correlated
electrons, the chiral interactions appear only in the higher
order of t/U expansion and are much smaller than the major
Heisenberg couplings �Si · �Sj [13]. Numerical studies [14,15]
showed the spin-liquid phase appears only in the limited
parameter region of the Hubbard model. On the other hand,
theoretically designed Hamiltonians [11,16] whose ground
states are the CSL are mathematically well established.
However, it is difficult to synthesize corresponding materials.

Instead of finding materials that have target chiral prop-
erties, recent quantum simulation technologies [17–19] can
be applied to dynamically simulate the chirality of a spin
system. Here, we propose practical methods of controlling
the chirality in a spin-qubit system on a square lattice by
switching on and off the interaction between qubits, or initial-
izing the qubit states asymmetrically (spin-up or spin-down).
Spin Hamiltonians have been widely investigated in trapped
ions [17,20], nitrogen-vacancy centers [21], superconducting
circuits [22], and so on. Among them, spin qubits based on
semiconductor quantum dot (QD) systems can describe spin
Hamiltonians directly [23–26]. Each QD includes one excess
electron whose spin degree of freedom plays the role of qubit.
The exchange coupling J is caused by Coulomb interactions
between electrons and is controlled by the gate electrodes. The
switching on and off of the coupling J is more feasible than the
control of the arbitrary rotation of each qubit [27]. In addition,

because the coherence time is limited, the quantum operations
should be as simple as possible.

In this paper, we provide three methods to create a chiral
spin state in a spin-1/2 qubit system on a square lattice by
switching on and off of the coupling J . As mentioned above,
it is difficult to obtain the chiral interaction �Si · �Sj × �Sk as the
dominant term in the conventional perturbation theory. In the
first method, we show that effective chiral Hamiltonians can
be designed only by switching on and off the Heisenberg and
XY interactions. In the second and third methods, we derive
chiral states with arbitrary phase by preparing appropriate
initial qubit states. Here, we consider product states of spin
up or spin down as the initial qubit states. This is because
preparation of product states is much easier than that of
entangled states. Moreover, focusing on product states makes
the discussion simple and clear. In the second method, we show
analytical forms of chiral states for four qubits on a square
lattice. The third method shows how to control chiralities by
preparing appropriate initial qubit states in an always-on lattice
system. We show that asymmetrically arranged qubit states
periodically generate the chirality whose phase is π/2. In this
paper, we would like to describe the clear relationship between
the phase of the chirality and the asymmetric spin state.

This paper is organized as follows: In Sec. II we show
how to generate effective chiral Hamiltonians by switching
on and off the coupling between qubits. In Sec. III, we show
our second method in which analytical form of the chirality
is derived in a four-qubit system. In Sec. IV, we consider the
chiral spin state on the always-on lattice system. In Sec. V, we
mention experimental possibilities. Section VI is devoted to a
summary. In the Appendix, we show detailed derivations of
equations and related numerical calculations.

II. CONSTRUCTION OF EFFECTIVE CHIRAL
HAMILTONIAN

The chirality is defined around the loop with gauge-
invariant form following Ref. [8]. When χ̂ij ≡ ∑

s=↑↓ ĉ
†
is ĉjs ,

(ĉis is the electron annihilation operator), the chirality of a
square lattice is defined by

w1234 = 〈χ̂12χ̂23χ̂34χ̂41〉. (1)
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In this definition, qubit 1 is the origin and end of the loop. Thus,
the asymmetry is discussed from the view of qubit 1. The chiral
spin state is defined as a state where the imaginary part of w1234

has a finite phase (w1234 = |w1234| exp iφ and φ �= 0). The
phase φ of the loop is proportionate to the area of the loop and
is important for the topological aspect of the qubit system [28–
30]. We treat a spin-1/2 model �Si = (1/2)�σi , where �σi =
(σx

i ,σ
y

i ,σ z
i ) (σx

i , σ
y

i , and σ z
i show the Pauli matrices of the

lattice site i), focusing on the phase of the chirality rather
than the properties of the spin liquid. The expectation value of
E123 ≡ 〈�σ1 · �σ2 × �σ3〉 has a simple relation with the chirality
of the loop [8]: for the square lattice, we have

Imw1234 = 1
8 (−E123 − E134 − E124 + E234). (2)

Here, the asymmetry of the spin system is introduced
by the asymmetric switching of the nearest-neighbor qubit-
qubit interaction and the asymmetric spin configuration on
the square lattice. First, we show how to obtain the chiral
interaction �σ1 · �σ2 × �σ3 by switching on and off the nearest-
neighbor interactions between qubits. For the Heisenberg
model, we use the basic relation between three spins given
by

[�σ1 · �σ2,�σ2 · �σ3] = 2i �σ2 · �σ1 × �σ3. (3)

The point is that the left commutation relation of this equation
is obtained by simply multiplying the time-evolution operators
UHS

ij (t) ≡ eitHHS
ij = exp{iJ t �σi · �σj } in the Baker-Campbell-

Hausdorf formula given by

UHS
12 (t1)UHS

23 (t2) = exp{iJ (t1 �σ1 · �σ2 + t2 �σ2 · �σ3)

− J 2t1t2/2[�σ1 · �σ2,�σ2 · �σ3] + · · · }. (4)

This type of formula is useful and widely applicable in the field
of quantum information processing [20]. Figure 1(a) shows this

φφφφ

φφφφ φφφφ

φφφφ

FIG. 1. Dynamical creation of chiral interaction. (a) Schematic
illustration of generating the chiral interaction χ̂123 ≡ �σ1 · �σ2 × �σ3 by
switching on and off the Heisenberg interactions between qubits. In
the first step, the Heisenberg interaction is switched on between qubits
2 and 3. In the next step, after switching off the interaction between
qubits 2 and 3, the interaction between qubits 1 and 2 is switched
on. Then, the effective interaction χ̂123 is generated in addition to the
Heisenberg couplings. (b) Generating process of the chiral interaction
of the form of (−χ̂123 − χ̂134 − χ̂124 + χ̂234), the expectation value of
which corresponds to Eq. (2), assuming that spin qubits are placed on
each node of the square lattice. The interactions between two qubits
are switched on and off in the order of A → B → C → D, where
A ∼ D indicate the interactions between two qubits.

process: the first step is switching on the interaction between
spin 2 and 3, and the next step is, after switching off this
interaction, switching on the interaction between spin 1 and 2.
This process is generalized to obtain the chiral interactions as
the next dominant terms of the effective Hamiltonian:

Heff =
∑

ij

Jij �σi · �σj +
∑

ijk

J ′
ijk �σi · �σj × �σk, (5)

where J ′
ijk = JijJjkt0 under the condition of Jij t0 < 1 when

t1 = t2 = t0 in Eq. (4). As an example, the Hamiltonian whose
chiral interaction has the form of Eq. (2) is realized by the serial
operations given by UHS

34 (t)UHS
41 (t)UHS

12 (t)UHS
23 (t). Figure 1(b)

shows this process graphically.
For the XY Hamiltonian Hxy = ∑

i<j H
xy

ij =∑
i<j J [σx

i σ x
j + σ

y

i σ
y

j ], we can generate the pure chiral
Hamiltonian H ∝ �σ1 · �σ2 × �σ3 by using the equation given by

O
xy

ijk ≡ [
U

xy

jk

]−1(
σx

i σ x
j + σ

y

i σ
y

j

)
U

xy

jk = 1
2σ z

j

(
σx

k σ
y

i − σx
i σ

y

j

)
,

where U
xy

ij = exp i(π/4)[σx
i σ x

j + σ
y

i σ
y

j ]. The chiral Hamil-
tonian H ∝ �σ1 · �σ2 × �σ3 is obtained by the sequence of
switching on and off the XY interactions: O

xy

123O
xy

231O
xy

312.

III. CONSTRUCTION OF CHIRAL SPIN STATE STARTING
FROM PRODUCT STATES

The above-mentioned method is effective when the target
Hamiltonian is not complicated. Here, we provide a simpler
method to obtain the chirality directly. When we look at the
process of Fig. 1(a), it is found that switching on one interaction
can realize the finite chirality. That is, the expectation
value, wHS

1234(t) = 〈�0|UHS†
23 (t)χ̂(1234)UHS

23 (t)|�0〉 with
χ̂ (1234) ≡ χ̂12χ̂23χ̂34χ̂41 and |�0〉 = |s1s2s3s4〉, is given
by wHS

1234(t) = (1 + Z2Z3)(n1↑n4↓ + n1↓n4↑)/4 − [Z2 +
Z3 + i sin(4J t)(Z2 − Z3)](n1↑n4↓ − n1↓n4↑)/4, where
Zi = 〈si |σ z

i |si〉, and nis(∈ {0,1}) is the number of the s

spin for the site i (see Appendix A and Refs. [31,32]).
When Z3 = −Z2(s2 =↑, s3 =↓, or s2 =↓, s3 =↑), we have
wHS

1234(t) = −i sin(4J t)Z2(n1↑n4↓ − n1↓n4↑)/2. This means
that switching on one interaction itself generates the chirality
of a phase π/2. The same form is obtained for the XY

interaction. The chirality of the Ising XX interaction has a
similar form except for sin(2J t) instead of sin(4J t).

Thus, the chiral spin states can be dynamically created by
directly manipulating the interactions between qubits. This is
because the basic Eq. (3) appears many times in the calculation
of the expectation value w1234. Moreover, switching on two
interactions enables the generation of the chiral state with a
phase in the range of −π to π , as shown in Table I. The case
on the left in Table I shows the process shown in Fig. 1(a). The
time-saving method is shown in the case on the right in Table I,
in which the interaction between 1 and 4 and that between 2
and 3 are simultaneously switched on (the general expressions
are shown in the Appendix). For example, the flux state whose
phase is π [8,9] is given periodically when 4J t = π/2 for the
Heisenberg interaction.
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TABLE I. Switching on two interactions to create the chiralities with desired phases. The chirality on the square lattice for the three
interactions is shown. For simplicity, we show the cases of Z3 = Z1 = 〈s1|σ z

1 |s1〉 and Z4 = Z2 = 〈s2|σ z
2 |s2〉 (si ∈ {↑ , ↓}). Zi = 1 for si = ↑

and Zi = −1 for si = ↓. The general form of the left switching pattern is shown; see Appendices B and C for detail.

Chirality of Chirality of

Ising XX {e4iJ t − 1 − 2i sin(2J t)Z1Z2}/8 e−4iJ t (Z1 + Z2e
4iJ t )[Z2 − Z1]/8

XY ie2iJ t sin(4J t)[Z2 − Z1]2/8 ie−4iJ t sin(4J t)[Z2 − Z1]2/8

Heisenberg ie4iJ t sin(4J t)[Z2 − Z1]2/8 ie−4iJ t sin(4J t)[Z2 − Z1]2/8

IV. CHIRAL SPIN STATE WITH ALWAYS-ON
INTERACTIONS

Finally, let us consider a case of more restrictive condition in
which the interactions between qubits are always on [Fig. 2(a)].
This happens when the distances between qubits are small
in order to reduce decoherence. For this case, we generate
the chirality only by preparing asymmetric initial qubit
states. Because of the commutability of the Ising interactions
[σx

i σ x
j ,σ x

j σ x
k ] = 0, the time-dependent chirality of the XX

interaction can be derived analytically. On the other hand,
the time-dependent chiralities of the XY and the Heisenberg
interactions are obtained by numerical calculations.

The chirality of the XX interaction on the square lattice
wXX

1234(t) = 〈�0|Uxx†(t)χ̂(1234)Uxx(t)|�0〉 with Uxx(t) ≡
exp{iJ t

∑1,..,12
i<j XiXj } and |�0〉 = |s1s2s3s4〉 is given by

wXX
1234(t) = {cos2 2J t[Z3(Z2e

4iJ t + Z4e
−4iJ t )

−Z2(Z1 − Z4) − Z1(Z3 + Z4)

− cos2 2J tZ1Z2Z3Z4] + 1}/8. (6)

Note that wXX
1234(t) is irrelevant to the spin configurations of the

qubits around. Thus, when Z2 = −Z4 [the colored patterns
shown in Fig. 2(b)], we have wXX

1234(t) → iZ3Z2J t at t ∼ 0,
which means that the chirality of the Ising interaction has

φφφ φφφ

φφφ

φ φ

φ φφφφ

φφφφ=0=0=0=0φφφφ=0=0=0=0

φφφφ=0=0=0=0 φφφφ=0=0=0=0

FIG. 2. Configuration of spin qubits for the always-on interaction.
(a) The 12 qubit sites for numerical calculation of the chirality
w1234. The sites are connected by the always-on interactions. The
dashed line shows the mirror plane when the chirality is defined by
Eq. (1). (b) There are 24 = 16 initial states for the spin configurations
for the four qubits. Half of the spin configurations of the initial
states are illustrated. Other configurations have the same results
because of the symmetry. The circle and the double circles indicate
the spin-up (↑) and the spin-down (↓) states, respectively. Colored
patterns (0010,0011,0110,0111), the spin configurations of which are
asymmetric to the mirror plane of panel (a), have a phase π/2 at t ∼ 0
(see Fig. 3).

a phase π/2 at t ∼ 0. Because of the uniform interactions
between qubits, the asymmetry is introduced by the asym-
metric configuration of the qubit state seen from qubit 1.
Figures 3(a) and 3(b) show the time-dependent amplitude and
phase of wXX

1234 of Eq. (6). Compared with the switching on one
interaction mentioned above, we need to control the four qubit
states to obtain the π/2 phase.

Figures 3(c)–3(f) show the numerically calculated time-
dependent chiralities of the XY and the Heisenberg
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FIG. 3. The time-dependent behavior of the chirality w1234,
Eq. (1), of the square lattice. Always-on interactions are assumed
for the configuration of spin qubits shown in Fig. 2. The left and
right figures show the numerical results for the amplitudes |w1234|
and the phases φ of w1234 = |w1234| exp iφ, respectively. (a), (b) The
results for the Ising interaction calculated from the analytic form of
Eq. (6). (c),(d) The results of the average w1234 for the XY interaction
numerically calculated from Eq. (7). (e),(f) The results of the average
w1234 for the Heisenberg interaction numerically calculated from
Eq. (8). For the XY and the Heisenberg interactions, after obtaining
w1234 for all 212 configurations, the average values of w1234 are taken
over the spin states of sites 5–12. See Appendix D for details. As
seen from panel (b), the colored patterns (0010,0011,0110,0111) in
Fig. 2(b) have a phase π/2 at t ∼ 0.
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interactions given by

wXY
1234(t) = 〈�0|Uxy†(t)χ̂(1234)Uxy(t)|�0〉, (7)

wHS
1234(t) = 〈�0|UHS†(t)χ̂(1234)UHS(t)|�0〉, (8)

with Uxy(t) = exp{it ∑1,..,12
i<j H

xy

ij }, UHS(t) =
exp{it ∑1,..,12

i<j HHS
ij }, and |�0〉 = |s1s2s3s4〉 including the 12

spin qubits [Fig. 2(a)]. The number of qubits included in
these calculations comes from the limitation of the calculation
resource, and the calculated chiralities of all the states of
qubits 5 to 12 in Fig. 2(a) are summed and divided by 28. We
can see that when Z2 = −Z4 the chirality has the finite phase.
The π/2 phases around t ∼ 0 are analyzed by the expansion
w1234(t)∼〈�0|χ̂(1234) + it[χ̂(1234),H ] + O(t2)|�0〉, with
H = ∑12

i,j=1 Hij for Hij = HHS
ij or Hij = H

xy

ij . Because
〈�0|χ̂ (1234)|�0〉 = 0 and 〈�0|[χ̂(1234),H ]|�0〉 =
(1/2)Z3(Z2 − Z4), w1234(t) has a π/2 phase around
t ∼ 0. Thus, even in the case of the always-on interaction, the
chirality with finite phase can be obtained dynamically for
asymmetrical spin configurations.

V. DISCUSSIONS

The chiralities calculated here include no relaxation pro-
cess. In reality, qubit systems couple to the environment and
decohere. In the case of GaAs QDs, the coherence is lost
mainly through the interaction with the nuclear spins. For
J ≈ 0.1–1μeV [23], the coherent change of the chirality is
expected to be in the period of (2J )−1 ≈ 2.0–20 ns, which is
in the range of the experimental coherence times (<50 ns [24]).

As shown in Ref. [8], there is a relationship between the
expectation value Eijk and the Berry phaseBijkgiven byB123 −
B132 = (i/2)E123. Thus, when the Berry phase can be detected
as shown in Refs. [33,34], it might be possible to compare the
calculated results here with experiments based on Eq. (2).

In this paper, we considered only product states as the initial
states of the qubits. The time-dependent chirality of entangled
states is interesting and important. However, because there
are many types of entangled states, the chirality of entangled
states should be discussed in a separated paper for the sake
of clarity. Even if we focus on some specific entangled states,
there are still a lot of things to classify the results. As an
example, let us consider the chirality of the ground state of the
Ising ZZ interaction on a square lattice. The ground state of
the four qubits on a square lattice is a degenerated state given
by A|0101〉 + B|1010〉 with an eigenvalue of −4J (A and
B are arbitrary constants). Then the chirality is calculated as
−(A∗B + AB∗) = − sin(2p) cos(q) when A = cos(p), B =
sin(p) exp(iq). Thus, depending on the coefficients A and B,
the chirality changes variously.

VI. SUMMARY

In summary, we have shown simple methods to generate
the chiral spin Hamiltonian from conventional spin-spin
interactions. We have also shown that, even for the always-on
interaction (the conventional spin system), the chiral spin state
is realized if the initial state is appropriately prepared.
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APPENDIX A: DERIVATIONS OF CHIRALITIES
AND BASIC RELATIONS

The formulation of the chirality, Eq. (1), is derived by
assuming the half-filled case (one spin per site). The electron
annihilation operator ĉis (s ∈ {↑ , ↓}) and the Pauli matrices
have the relationship given by

σx
i = c

†
i↑ci↓ + c

†
i↓ci↑,

σ
y

i = −i(c†i↑ci↓ − c
†
i↓ci↑),

σ z
i = c

†
i↑ci↑ − c

†
i↓ci↓,

with σ
p

i ≡ 1
2 (σx

i + iσ
y

i ) = c
†
i↑ci↓, and σm

i ≡ 1
2 (σx

i − iσ
y

i ) =
c
†
i↓ci↑.

The explicit form of the chirality w1234 given by Eq. (1)
is directly derived by inserting χ̂ij ≡ ∑

s=↑↓ ĉ
†
is ĉjs , and we

have

χ̂12χ̂23χ̂34χ̂41 = apcp + bpdm + amcm + bmdp, (A1)

where

ap = n2↓n3↓ + σm
2 σ

p

3 ,

am = n2↑n3↑ + σ
p

2 σm
3 ,

bp = −σ
p

2 n3↓ − n2↑σ
p

3 ,

bm = −σm
2 n3↑ − n2↓σm

3 ,

cp = n1↑n4↓ − σ
p

1 σm
4 ,

cm = n1↓n4↑ − σm
1 σ

p

4 ,

dm = σm
1 n4↓ − n1↓σm

4 ,

dp = σ
p

1 n4↑ − n1↑σ
p

4 ,

with ni↑ = c
†
i↑ci↑, and ni↓ = c

†
i↓ci↓.

When we derive expectation values accompanying the
unitary transformations UHS

ij (θ ) = exp{iθ �σi · �σj }, UXY
ij (θ ) =

exp{iθ [σx
i σ x

j + σ
y

i σ
y

j ]}, and UXX
ij (θ ) = exp{iθσ z

i σ z
j }, we use

the equations given by [31]

UHS
12 (−θ )σ z

1 UHS
12 (θ ) = cos2(2θ )σ z

1 + sin2(2θ )σ z
2

+ 1
2 sin(4θ )

(
σx

1 σ
y

2 − σ
y

1 σx
2

)
: (A2)

and its cyclic relations (x → y → z → x), for the Heisenberg
interaction,

UXY
12 (−θ )σx

1 UXY
12 (θ ) = cos(2θ )σx

1 − sin(2θ )σ z
1 σ

y

2 , (A3)

UXY
12 (−θ )σy

1 UXY
12 (θ ) = cos(2θ )σy

1 + sin(2θ )σ z
1 σx

2 , (A4)

UXY
12 (−θ )σ z

1 UXY
12 (θ ) = cos2(2θ )σ z

1 + sin2(2θ )σ z
2

+ 1
2 sin(4θ )

[
σx

1 σ
y

2 − σ
y

1 σx
2

]
, (A5)
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for XY interaction, and

UXX
12 (−θ )σy

1 UXX
12 (θ ) = cos(2θ )σy

1 + sin(2θ )σ z
1 σx

2 , (A6)

UXX
12 (−θ )σ z

1 UXX
12 (θ ) = cos(2θ )σ z

1 − sin(2θ )σy

1 σx
2 , (A7)

for Ising interaction. The expectation values
〈�0|χ̂12χ̂23χ̂34χ̂41|�0〉 are estimated by the product states
|�0〉 = |s1s2s3s4〉 (si ∈ {↑ , ↓}).

APPENDIX B: GENERAL FORM OF THE LEFT METHOD
OF TABLE I

The general form for the Heisenberg interaction is given by

wHS
1234 = 1

8 {1 − Z1Z2Z3Z4 + Z4ZB − Z1ZA

+ e4iJ t (Z2Z3 − Z1[ZB + Z4] + Z4ZA

+ i sin(4J t)[Z4 − Z1][Z2 − Z3])}, (B1)

where ZA = cos2(2J t)Z2 + sin2(2J t)Z3 and ZB =
sin2(2J t)Z2 + cos2(2J t)Z3. For the XY interaction, we have

wXY
1234 = 1

8 {1 − Z1Z2Z3Z4 + Z4ZB − Z1ZA

+ e4iJ t (Z2Z3 − Z1[ZB + Z4] + Z4ZA)

+ ie2iJ t sin(4J t)[Z4 − Z1][Z2 − Z3])}. (B2)

For the Ising XX interaction, we have

wXX
1234 = 1

8 {(1 − e2iJ tZ1Z2)(1 + e−2iJ tZ3Z4)

+ (−Z1 + e2iJ tZ2)(Z3 + e2iJ tZ4)}. (B3)

APPENDIX C: GENERAL FORM OF THE RIGHT
METHOD OF TABLE I

The general expression of the chirality of the right method
of Table I is given by wXX

1234 = G−
23(θ )H+

14(θ ) + G+
23(θ )H−

14(θ )
for the Ising XX interaction, and the XY and Heisenberg cases
provide the same form of wXY

1234 = whs
1234 = F−

23(θ )H+
14(2θ ) +

F+
23(θ )H−

14(2θ ), where

F±
ij (θ ) ≡ ([1 ± Zi][1 ± Zj ] ± i sin 4θ [Zi − Zj ])/4, (C1)

G±
ij (θ ) ≡ (1 ± Zie

2iθ )(1 ± Zje
−2iθ )/4, (C2)

H±
ij (θ ) ≡ (1 − ZiZj ± e−2iθ [Zi − Zj ])/4. (C3)
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FIG. 4. Examples of the calculation of the time-dependent chiral-
ity for the Heisenberg Hamiltonian of the 12 qubits before averaging.
The numbers 2, 18, 34, 50, 66, and 82 express the qubit states over the
twelve sites when 0 =↑ and 1 =↓ such as 2 = 000000000010, 18 =
000000010010, 34 = 000000100010, 50 = 000000110010, 66 =
000001000010, and 82 = 000001010010. The last four digits 0010
correspond to the configuration of the pattern 0010 of Fig. 2(b). Other
states in the 28 configurations show similar behaviors. Figures 3(e)
and 3(f) show the average of these results.

Thus, in order to obtain a finite phase, Z4 = −Z1 or Z3 = −Z2

is necessary. Table I shows the results for the simple case of
Z4 = −Z3 = Z2 = −Z1.

APPENDIX D: NUMERICAL CALCULATIONS

In Figs. 3(c)–3(f), we have directly calculated Eq. (1)
for the XY and the Heisenberg interactions, as expressed
by Eqs. (7) and (8), respectively. There are 212 patterns of
the spin configurations in Fig. 2(a). Depending on the spin
configuration over the 12 sites of Fig. 2(a), the time-dependent
chirality changes in various ways. Figure 4 shows a sample
of the results of the Heisenberg interaction of the pattern
0010 of Fig. 2(b). The numbers 2, 18, 34, 50, 66, and 82
correspond to the spin configurations of the 12 sites. The
spin configuration can be expressed by a binary form of
i12i11i10i9i8i7i6i5i4i3i2i1, such that ij = 0 or 1 (j = 1, . . . ,12)
depending on spin-up or spin-down, respectively. Then the
binary form can be transformed to the decimal number given
by i12×212 + i11×211 + i10×210 + i9×29 + i8 × 28 + i7 ×
27 + i6 × 26 + i5 × 25 + i4 × 24 + i3×23 + i2 × 22 + i1. For
example, the number 2 corresponds to 0000 0000 0010, which
means that the spin of site 2 is flipped, and the number 18
corresponds to 0000 0001 0010, which means that the spins
of sites 2 and 5 are flipped. It is seen that the phase of
the chirality around t ∼ 0 is π/2 for all configurations. The
time-dependent behaviors for t > 0 are different depending
on their configuration. The results shown in Fig. 3 are the
averaged results over all the configurations.

[1] G. L. J. A. Rikken and E. Raupach, Nature (London) 390, 493
(1997).

[2] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899
(2013).

[3] Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Rnnow, D. Morikawa,
Y. Taguchi, and Y. Tokura, Nat. Commun. 6, 7638 (2015).

[4] K. S. Ryu, L. Thomas, S. H. Yang, and S. Parkin, Nat.
Nanotechnol. 8, 527 (2013).

[5] S. Emori, U. Bauer, S. M. Ahn, E. Martinez, and G. S. D. Beach,
Nat. Mater. 12, 611 (2013).

[6] X. G. Wen, Quantum Field Theory of Many-Body Systems
(Oxford University Press, New York, 2004).

235137-5

http://dx.doi.org/10.1038/37323
http://dx.doi.org/10.1038/37323
http://dx.doi.org/10.1038/37323
http://dx.doi.org/10.1038/37323
http://dx.doi.org/10.1038/nnano.2013.243
http://dx.doi.org/10.1038/nnano.2013.243
http://dx.doi.org/10.1038/nnano.2013.243
http://dx.doi.org/10.1038/nnano.2013.243
http://dx.doi.org/10.1038/ncomms8638
http://dx.doi.org/10.1038/ncomms8638
http://dx.doi.org/10.1038/ncomms8638
http://dx.doi.org/10.1038/ncomms8638
http://dx.doi.org/10.1038/nnano.2013.102
http://dx.doi.org/10.1038/nnano.2013.102
http://dx.doi.org/10.1038/nnano.2013.102
http://dx.doi.org/10.1038/nnano.2013.102
http://dx.doi.org/10.1038/nmat3675
http://dx.doi.org/10.1038/nmat3675
http://dx.doi.org/10.1038/nmat3675
http://dx.doi.org/10.1038/nmat3675


TETSUFUMI TANAMOTO PHYSICAL REVIEW B 93, 235137 (2016)

[7] F. Wilczek, Fractional Statistics and Anyon Superconductivity
(World Scientific, Singapore, 1990).

[8] X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413
(1989).

[9] I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).
[10] H. Karapetyan, J. Xia, M. Hucker, G. D. Gu, J. M. Tranquada,

M. M. Fejer, and A. Kapitulnik, Phys. Rev. Lett. 112, 047003
(2014).

[11] H. Yao and S. A. Kivelson, Phys. Rev. Lett. 99, 247203 (2007).
[12] N. Y. Yao, C. R. Laumann, A. V. Gorshkov, H. Weimer, L. Jiang,

J. I. Cirac, P. Zoller, and M. D. Lukin, Nat. Commun. 4, 1585
(2013).

[13] D. Sen and R. Chitra, Phys. Rev. B 51, 1922 (1995).
[14] Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad, and A.

Muramatsu, Nature (London) 464, 847 (2010).
[15] O. I. Motrunich, Phys. Rev. B 73, 155115 (2006).
[16] D. F. Schroeter, E. Kapit, R. Thomale, and M. Greiter, Phys.

Rev. Lett. 99, 097202 (2007).
[17] R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012).
[18] I. Bloch, J. Dalibard, and S. Nascimbne, Nat. Phys. 8, 267

(2012).
[19] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86,

153 (2014).
[20] A. Sorensen and K. Molmer, Phys. Rev. A 62, 022311 (2000).
[21] J. Cai, A. Retzker, F. Jelezko, and M. B. Plenio, Nat. Phys. 9,

168 (2013).

[22] A. A. Houck, E. T. Hakan, and J. Koch, Nat. Phys. 8, 292 (2012).
[23] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,

M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Science 309, 2180 (2005).

[24] F. H. L. Koppens, K. C. Nowack, and L. M. K. Vandersypen,
Phys. Rev. Lett. 100, 236802 (2008).

[25] B. M. Maune, A. E. Schmitz, M. Sokolich, C. A. Watson, M. F.
Gyure, and A. T. Hunter, Nature (London) 481, 344 (2012).

[26] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P.
Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson,
K. M. Itoh, A. Morello, and A. S. Dzurak, Nature (London) 526,
410 (2015).

[27] D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B.
Whaley, Nature (London) 408, 339 (2000).

[28] A. Kitaev, Ann. Phys. 321, 2 (2006).
[29] L. B. Ioffe, M. V. Feigel’man, A. Ioselevich, D. Ivanov, M.

Troyer, and G. Blatter, Nature (London) 415, 503 (2002).
[30] D. S. Rokhsar, Phys. Rev. Lett. 65, 1506 (1990).
[31] T. Tanamoto, Phys. Rev. A 88, 062334 (2013).
[32] T. Tanamoto, K. Ono, Y. X. Liu, and F. Nori, Sci. Rep. 5, 10076

(2015).
[33] R. A. Bertlmann, K. Durstberger, Y. Hasegawa, and B. C.

Hiesmayr, Phys. Rev. A 69, 032112 (2004).
[34] S. Filipp, J. Klepp, Y. Hasegawa, C. Plonka-Spehr, U. Schmidt,

P. Geltenbort, and H. Rauch, Phys. Rev. Lett. 102, 030404
(2009).

235137-6

http://dx.doi.org/10.1103/PhysRevB.39.11413
http://dx.doi.org/10.1103/PhysRevB.39.11413
http://dx.doi.org/10.1103/PhysRevB.39.11413
http://dx.doi.org/10.1103/PhysRevB.39.11413
http://dx.doi.org/10.1103/PhysRevB.37.3774
http://dx.doi.org/10.1103/PhysRevB.37.3774
http://dx.doi.org/10.1103/PhysRevB.37.3774
http://dx.doi.org/10.1103/PhysRevB.37.3774
http://dx.doi.org/10.1103/PhysRevLett.112.047003
http://dx.doi.org/10.1103/PhysRevLett.112.047003
http://dx.doi.org/10.1103/PhysRevLett.112.047003
http://dx.doi.org/10.1103/PhysRevLett.112.047003
http://dx.doi.org/10.1103/PhysRevLett.99.247203
http://dx.doi.org/10.1103/PhysRevLett.99.247203
http://dx.doi.org/10.1103/PhysRevLett.99.247203
http://dx.doi.org/10.1103/PhysRevLett.99.247203
http://dx.doi.org/10.1038/ncomms2531
http://dx.doi.org/10.1038/ncomms2531
http://dx.doi.org/10.1038/ncomms2531
http://dx.doi.org/10.1038/ncomms2531
http://dx.doi.org/10.1103/PhysRevB.51.1922
http://dx.doi.org/10.1103/PhysRevB.51.1922
http://dx.doi.org/10.1103/PhysRevB.51.1922
http://dx.doi.org/10.1103/PhysRevB.51.1922
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1103/PhysRevB.73.155115
http://dx.doi.org/10.1103/PhysRevB.73.155115
http://dx.doi.org/10.1103/PhysRevB.73.155115
http://dx.doi.org/10.1103/PhysRevB.73.155115
http://dx.doi.org/10.1103/PhysRevLett.99.097202
http://dx.doi.org/10.1103/PhysRevLett.99.097202
http://dx.doi.org/10.1103/PhysRevLett.99.097202
http://dx.doi.org/10.1103/PhysRevLett.99.097202
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1103/RevModPhys.86.153
http://dx.doi.org/10.1103/RevModPhys.86.153
http://dx.doi.org/10.1103/RevModPhys.86.153
http://dx.doi.org/10.1103/RevModPhys.86.153
http://dx.doi.org/10.1103/PhysRevA.62.022311
http://dx.doi.org/10.1103/PhysRevA.62.022311
http://dx.doi.org/10.1103/PhysRevA.62.022311
http://dx.doi.org/10.1103/PhysRevA.62.022311
http://dx.doi.org/10.1038/nphys2519
http://dx.doi.org/10.1038/nphys2519
http://dx.doi.org/10.1038/nphys2519
http://dx.doi.org/10.1038/nphys2519
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1103/PhysRevLett.100.236802
http://dx.doi.org/10.1103/PhysRevLett.100.236802
http://dx.doi.org/10.1103/PhysRevLett.100.236802
http://dx.doi.org/10.1103/PhysRevLett.100.236802
http://dx.doi.org/10.1038/nature10707
http://dx.doi.org/10.1038/nature10707
http://dx.doi.org/10.1038/nature10707
http://dx.doi.org/10.1038/nature10707
http://dx.doi.org/10.1038/nature15263
http://dx.doi.org/10.1038/nature15263
http://dx.doi.org/10.1038/nature15263
http://dx.doi.org/10.1038/nature15263
http://dx.doi.org/10.1038/35042541
http://dx.doi.org/10.1038/35042541
http://dx.doi.org/10.1038/35042541
http://dx.doi.org/10.1038/35042541
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1038/415503a
http://dx.doi.org/10.1038/415503a
http://dx.doi.org/10.1038/415503a
http://dx.doi.org/10.1038/415503a
http://dx.doi.org/10.1103/PhysRevLett.65.1506
http://dx.doi.org/10.1103/PhysRevLett.65.1506
http://dx.doi.org/10.1103/PhysRevLett.65.1506
http://dx.doi.org/10.1103/PhysRevLett.65.1506
http://dx.doi.org/10.1103/PhysRevA.88.062334
http://dx.doi.org/10.1103/PhysRevA.88.062334
http://dx.doi.org/10.1103/PhysRevA.88.062334
http://dx.doi.org/10.1103/PhysRevA.88.062334
http://dx.doi.org/10.1038/srep10076
http://dx.doi.org/10.1038/srep10076
http://dx.doi.org/10.1038/srep10076
http://dx.doi.org/10.1038/srep10076
http://dx.doi.org/10.1103/PhysRevA.69.032112
http://dx.doi.org/10.1103/PhysRevA.69.032112
http://dx.doi.org/10.1103/PhysRevA.69.032112
http://dx.doi.org/10.1103/PhysRevA.69.032112
http://dx.doi.org/10.1103/PhysRevLett.102.030404
http://dx.doi.org/10.1103/PhysRevLett.102.030404
http://dx.doi.org/10.1103/PhysRevLett.102.030404
http://dx.doi.org/10.1103/PhysRevLett.102.030404



