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Electronic properties of asymmetrically doped twisted graphene bilayers
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2CEMES CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse, France
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Rotated graphene bilayers form an exotic class of nanomaterials with fascinating electronic properties governed
by the rotation angle θ . For large rotation angles, the electron eigenstates are restricted to one layer and the bilayer
behaves like two decoupled graphene layers. At intermediate angles, Dirac cones are preserved but with a lower
velocity and van Hove singularities are induced at energies where the two Dirac cones intersect. At very small
angles, eigenstates become localized in peculiar moiré zones. We analyze here the effect of an asymmetric
doping for a series of commensurate rotated bilayers on the basis of tight-binding calculations of their band
dispersions, density of states, participation ratio, and diffusive properties. While a small doping level preserves
the θ dependence of the rotated bilayer electronic structure, larger doping induces a further reduction of the band
velocity in the same way as a further reduction of the rotation angle.
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I. INTRODUCTION

What remains really surprising with graphene is that all
these outstanding electronic and mechanical properties come
from a system that is one atomic layer thick [1–3]. Few-layer
graphene and more precisely bilayers also present fascinating
properties. It has been known for years that in this case,
stacking plays a crucial role. While AA bilayers (all C atoms
are in the same position in the two layers) result in two Dirac
cones shifted in energy, AB stacking, as in graphite, breaks the
atom A/atom B symmetry and leads to a quadratic dispersion
[4–8]. Here, we focus on exotic bilayers that present neither
AA nor AB stacking but with a relative rotation of the two
layers.

Different approaches are used nowadays to obtain
graphene: mechanical peeling of graphite, annealing of SiC,
CVD on metals. These three approaches also give multilayers
with, in some cases, a rotation between successive layers.
Indeed, rotated bilayers have been obtained on graphite but also
on Ni and on the C face of SiC. A rotation between two layers
creates a (pseudo)periodicity that appears as a moiré pattern
on STM images [9–12]. All the theoretical works [13–30]
now agree on the fact that two graphene layers stacked with a
rotation between them show exotic electronic properties that
are angle dependant. The AA and AB stackings are the two
extreme cases: they correspond to rotations of 0◦ and 60◦. The
bilayer behavior is symmetric with respect to a rotation angle
equal to 30◦. At large angles (close to 30◦), the two layers
are decoupled and behave like independent graphene planes.
At smaller angles, graphene Dirac cones are conserved but
the velocity is renormalized (reduced). Van Hove singularities
(vHs) are found at energies where the Dirac cones from the
two layers intersect [31–34]. Eventually, for small angles the

*guy.trambly@u-cergy.fr
†omid.faizy@cemes.fr
‡didier.mayou@neel.cnrs.fr
§laurence.magaud@neel.cnrs.fr

two vHs merge at the Dirac energy and give a sharp peak
in the density of states (DOS). The corresponding states are
localized in a region of the supercell where stacking is close
to AA [23,24].

Here, we check the robustness of the theoretical predictions
with respect to doping which can be an important perturbation.
Indeed, bilayers often show an asymmetric doping, one
layer more doped than the other one, either the doping is
made on purpose if a potential bias is applied between the
layers or it results from charge transfer with a substrate.
In a tight-binding (TB) scheme, an asymmetric doping is a
shift in electrochemical potential between the two layers. An
asymmetric doping opens a gap in the band structure of an AB
bilayer. We will show that it is not the case for rotated bilayers
and that for not too small angles and reasonable doping, linear
dispersion, velocity renormalization, and vHs remain. The
main effect of doping is to shift one Dirac cone with respect
to the other one by an energy that varies with the doping rate
and the rotation angle. Localization of the states either on one
layer (large angle, decoupled layers) or on both but in AA
regions (small angles) is not drastically changed by doping.
The complex electronic structure of graphene bilayers is a
consequence of the local geometry of the system. A parallel can
be drawn with quasicrystals where the quasicrystals specific
properties develop when the size of the approximant cell
increases [35–37]. In the same way, here specific properties
arise when the commensurate cell size increases and the AA
and AB regions are better defined. The parallel is obvious
when one looks at transport properties and the importance of
the non-Boltzmann part either for neutral or doped bilayers.

The numerical method and atomic structures of rotated
bilayer are detailed in Sec. II and in the Appendix, then the
effect of doping on the band structure (Sec. III), average
velocity (Sec. IV), and the density of states (Sec. V) are
discussed. The participation ratios are convenient quantity to
characterize the states repartition as a function of the energy.
It is shown for neutral and doped bilayer in Sec. VI. Finally,
specific quantum diffusion due to confined states in doped and
undoped twisted graphene bilayers is presented Sec. VII. For
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TABLE I. Studied (n,m) bilayer structures. N is the number of
atoms, θ the rotation angle, and Vx/Vm the undoped rotated bilayer
velocity at K point along the x direction divided by the monolayer
velocity [24].

(n,m) θ (◦) N Vx/Vm

(1,3) 32.20 52 0.99
(5,9) 18.73 604 0.99
(2,3) 13.17 76 0.96
(3,4) 9.43 148 0.95
(6,7) 5.08 508 0.83
(8,9) 3.89 868 0.74
(12,13) 2.65 1876 0.48
(15,16) 2.13 2884 0.35
(25,26) 1.30 7804 0.02
(33,34) 0.99 13468 0.01

comparison, quantum diffusion in graphene is presented in the
Appendix.

II. NUMERICAL METHODS AND ATOMIC STRUCTURE

Tackling small rotation angles (smaller than 4◦) means
handling very large cells that can involve a huge number of
atoms, i.e., more than 10 000 (Table I). We use a tight-binding
(TB) scheme developed [23,24] for pz orbitals since we are
interested in what happens at energies within ±2 eV of ED,
the Dirac point energy whatever the rotation angle is. The TB
scheme is described in details in Ref. [24]. Since the planes are
rotated, neighbors are not on top of each other (as it is the case
in the Bernal AB stacking). Interlayer interactions are then not
restricted to ppσ terms but some ppπ terms have also to be
introduced. The Hamiltonian has the form

Ĥ =
∑

i

εi |i〉〈i| +
∑
〈i,j〉

tij |i〉〈j |, (1)

where |i〉 is the pz orbital with energy εi located at �ri , and 〈i,j 〉
is the sum on index i and j with i �= j . The coupling matrix
element tij between two pz orbitals located at �ri and �rj is [38]

tij = 〈i|Ĥ |j 〉 = n2
cVppσ (rij ) + (

1 − n2
c

)
Vppπ (rij ), (2)

where nc is the direction cosine, Vppσ and Vppπ the Slater-
Koster coupling parameters. In our scheme [24], Vppσ and
Vppπ are exponentially decaying function of the distance.
It is known that the results of the band calculations are
sensitive to a particular form of these parameters, and different
parametrizations of the Slater-Koster coupling parameters are
used in the literature [29,30]. However, many general aspects
of the band structure in rotated twisted bilayer are found
similarly with different TB parametrizations. Asymmetric
doping is modeled using different onsite energies on the two
layers. All orbitals of a layer have the same energy. In the
following, results are given as a function of the potential bias
�ε between the two layers. �ε is the difference between the
onsite energies ε1 = ε0 on the top and the onsite energies
ε2 = ε0 − �ε on the bottom layers. The coupling beyond first
neighbor induces an asymmetry between states above and
below the Dirac energy in each layer. All energies are then

given with respect to the Dirac energy ED1 of the top undoped
layer (top layer) which is set to zero.

The eigenstates obtained by diagonalization in reciprocal
space of the TB Hamiltonian are used to calculate transport
characteristic values (velocity, square spreading, diffusiv-
ity) as explained in the Appendix. In monolayer graphene
(Appendix 3), transport properties are well described by the
usual semiclassical Boltzmann approach (excepted at Dirac
energy), but in twisted bilayer with small rotation angle θ ,
very unusual effects occur at Dirac energy that are not taken
into account by Boltzmann approach (Sec. VII). The average
densities of states in each layer are presented briefly in Sec. V.
They are calculated by recursion method in real space starting
from a random phases state [39]. This method gives total
DOSs that are similar to the one obtained by diagonalization
in reciprocal space.

Our calculations require periodic boundary conditions. The
way a bilayer supercell is built and how it is labeled (n,m) is
described in Refs. [23,24]. We start from an AA bilayer and
choose the rotation origin O at an atomic site. A commensurate
structure can be defined if the rotation changes a lattice vector−→
OB(m,n) to

−−→
OB ′(n,m), where the integers n, m are the

coordinates with respect to the basis vectors �a1 (
√

3a/2,−a/2)
and �a2 (

√
3a/2,a/2), with a = 0.2456 nm. The rotation angle

is then defined by

cos θ = n2 + 4nm + m2

2(n2 + nm + m2)
, (3)

and the commensurate cell vectors correspond to

�t = −−→
OB ′ = n�a1 + m�a2 , �t ′ = −m�a1 + (n + m)�a2. (4)

The commensurate unit cell contains N = 4(n2 + nm +
m2) atoms. It is now well established [14,22–27] that the
rotation angle θ is a good parameter to describe the system,
but the number of atoms is not since cells of equivalent size
can be found for different angles. For θ values less than ∼15◦,
twisted bilayer forms a moiré pattern with (pseudo)period P

[40]:

P = a

2 sin(θ/2)
� 1.42

θ (deg)
in nm. (5)

Structures of the bilayers studied in this paper are listed in
Table I.

III. BAND DISPERSIONS

A. Large and intermediated angles

An asymmetrically doped bilayer with a bernal stacking
presents a gap due to the break of all atom A/atom B symmetry.
But in twisted bilayer, the situation is completely different
[41]. A schematic diagram of the asymmetrically doped rotated
bilayer is given in Fig. 1. It applies to the large and intermediate
angle cases which still show two Dirac cones. The small angle
limit is more complex because of the important state mixing
between the two layers. As a consequence of the asymmetric
doping, one Dirac cone is shifted and intersection between
bands no longer occurs at the midpoint between K1 and K2,
as it was the case in neutral systems. Then, the maximum of
the band (and then the van Hove singularity at E+ and E−,
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FIG. 1. Dirac cones and total DOS of a doped rotated bilayer,
schematic diagram.

see Sec. V) is no longer located at point M of the supercell
Brillouin zone (Figs. 2 and 3). No gap opens even for large
doping (�ε = 0.6 eV and even more). For a given doping,
the energy difference �ED = ED1 − ED2 between the two
Dirac points varies with the rotation angle which results from
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FIG. 2. Band dispersions for doped bilayers with �ε = 0.2 eV.
(a) (5,9) bilayer (θ = 18.73◦), (b) (6,7) bilayer (θ = 5.08◦), and
(c) (12,13) bilayer (θ = 2.65◦). Lines (dashed line) are TB calcu-
lations for bilayers (monolayer).
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FIG. 3. Band dispersions for doped bilayers: (a) (6,7) bilayer
(θ = 5.08◦), (b) (12,13) bilayer (θ = 2.65◦). The onsite energy
difference �ε between pz orbitals in the two layers is (solid line)
�ε = 0, (circle) �ε = 0.2 eV, (star) �ε = 0.4 eV, (square) �ε = 0.6
eV. Arrows show the energy difference �ED between bands at K
(Table II). E(�k) has been computed for more then 50 �k values in the
k scale shown in these figures.

interplane state mixing. These energy differences are shown
by arrows on Fig. 3 and they are given in Table II.

Considering the two Dirac cones in reciprocal space
(Fig. 1), whatever the values of �ε > 0 and of θ are, TB
calculations show that the bands of the shifted Dirac cone
never cross the bands of the nonshifted Dirac cone. Then,
�ED(�ε) has a maximum �EDm for every θ value (see
the inset of Fig. 4). This limit �ED value, corresponding to
�ε = �εm, is always found when one branch of the shifted
Dirac cone approaches the parallel branch of the second
cone [�ED(�εm) = �EDm]. If doping is small enough,
�ε < �εm, the energy difference �ED between the Dirac
cones increases with the onsite energy differences �ε. The
increase factor is smaller for smaller angles. If doping is larger,
�ε > �εm, �ED decreases when doping increases (Fig. 4).
For each angle θ , the maximum value can be understood in a

TABLE II. Energy bands splitting �ED at K point in doped (n,m)
bilayers. �ε is the onsite energy difference between pz orbitals in the
two layers.

(n,m) �ε (eV) �ED (eV)

(5,9) 0.2 0.20
0.4 0.40
0.6 0.60

(3,4) 0.5 0.45
1.0 0.87
1.25 1.00

(6,7) 0.2 0.15
0.4 0.29
0.6 0.39

(12,13) 0.2 0.06
0.4 0.07
0.6 0.02

(25,26) 0.2 0.011
0.4 0.004
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FIG. 4. �ED versus �ε in rotated doped bilayers. [Inset: maxi-
mum value �EDm of �ED versus the θ angle. Points line is guide
for the eyes. The dashed lines show �EvHs given by Eq. (7), i.e., here
�EvHs � 0.15 θ (deg) − 0.24.]

simple scheme as follows. For small doping (small �ε), it is
obvious that

�ED � �EDm < �EvHs = E+ − E−. (6)

This condition is satisfied for any doping (at least for doping
that preserves the existence of Dirac cone). From continuum
model [14,25,26,31], experimental measurements [33,34], and
our calculations (Sec. V), the energy of van Hove singularity is

�EvHs = �vF K1K2 − 2tθ = 2�vF �K sin(θ/2) − 2tθ (7)

for angles larger than ∼2◦. Where vF is the Fermi velocity for

monolayer graphene, �K = 1.703 Å
−1

is the wave vector of
Dirac point in monolayer graphene, and tθ is the modulus of the
amplitude of the main Fourier compoments of the interlayer
potential tθ � 0.12 eV [24,27]. The calculated maximum
value of �ED is drawn in the inset of Fig. 4, showing that
condition (6) is satisfied. It is interesting to remark also that for
(n,m) bilayer, such as |m − n| > 1 for instance (5,9) in Fig. 4,
when �ε increases a mixing of bands could occur before the
maximum value of �E estimated by the condition (6).

For doping small enough, �ε � �εm, slopes of the
band dispersions E(k) at Dirac point are not modified
[Figs. 2(a), 2(b), and 3(a)]. But, for larger �ε values, this slope
decreases as �ε increases, which results in a strong reduction
of the intraband velocity at Dirac points. Figure 5 shows
this renormalization for different θ values. Above this limit
[Figs. 2(c) and 3(b)] �ε > �εm, bands become flatter and
intraband velocity reaches a limit value ∼0.4Vmono (Fig. 5).
Therefore, for large rotation angles and physically rea-
sonable doping (�ε � �εm), the velocity renormalization
[14,18,19,22–28] is not modified; but, for intermediate rotation
angles, actual doping can lead to strong velocity renormaliza-
tion.

B. Very small angles

The case of very small angles, typically for θ <∼ 2◦, is
illustrated on Figs. 5 and 6 for different doping values in
(25,26) bilayer. The two Dirac cones at ED1 and ED2 are
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FIG. 5. Velocity at Dirac point (slope of the band along KM at K
and Dirac energy) versus �ε in rotated doped bilayers. The vertical
dashed lines show the values �εm for which �ED(�ε) is maximum.

still present and the maximum value of �ED is obtained for
�εm � 0.25 eV (Fig. 6), but the behavior of intraband velocity
at K point versus �ε differs from that for intermediate and
large angles (Fig. 5), showing that a new regime is obtained.
Bands with energy E around Dirac energies are very flat and
states at these energies are not only those of Dirac cones at K

points. Therefore, the velocity of electrons at these energies is
the average of velocity of all states �k at energy E(�k) = E as
discussed in the next section.

IV. AVERAGE INTRABAND VELOCITY

The average intraband velocity (Bloch-Boltzamnn velocity)
is calculated numerically from the velocity operator V̂x along
the x direction and Eq. (A8) as explained in the Appendix.
It is shown in Fig. 7 for several (n,m) bilayers. As expected,
for large rotated angles and small doping, this method gives
velocity values that are similar to those calculated directly from
the slope of bands E(�k) of Dirac cone (intraband velocity at K

shown in Fig. 5). For intermediate angles [Fig. 7(b)], the effect
of the renormalization of the intraband velocity at K points
is seen, but this effect is small because other bands contribute
also to the average velocity at same energies. For very small
angles [Fig. 7(c)], a very small average velocity is obtained
at Dirac energy (confined states), with velocity similar to
the intraband value at K points. This renormalization effect
remains strong for doped bilayers but energies of localized
states (small velocity) are shifted. This strong reduction of the
intraband velocity has consequences on electronic transport
properties as shown in Sec. VII.

V. DENSITY OF STATES

The shift of one Dirac cone in doped bilayers induces a
modification in the DOS as schematically shown in Fig. 1.
The van Hove singularities (vHs) are not at the M point of
the supercell Brillouin zone but fall somewhere on the K-M
line. Furthermore, the DOS is constant in-between the two
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FIG. 6. Band dispersions for (25,26) bilayer (θ = 1.30◦):
(a) undoped bilayer (�ε = 0), (b) doped bilayer �ε = 0.2 eV. (c)
Zoom around energy ED1: (dashed line) �ε = 0, (c.1) �ε = 0.05 eV,
(c.2) �ε = 0.1 eV, (c.3) �ε = 0.2 eV, (c.4) �ε = 0.3 eV, (c.5) �ε =
0.4 eV. The arrows show the energy difference �ED .

Dirac cones, as it is for this energy range in a AA bilayer.
These two characteristics are found on the DOS of bilayers
with large and intermediate angles [Figs. 8(a) and 8(b)]. For
realistic doping and not too small rotation angles, the variations
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FIG. 7. Average velocity Vx along the x axis (V = √
2Vx) versus

energy E. (a) (Dashed line) graphene and undoped (n,m) bilayers
(�ε = 0). (b) (6,7) bilayer and (c) (25,26) bilayer: (solid line)
undoped (�ε = 0), (circle) �ε = 0.2 eV, (star) �ε = 0.4 eV, and
(square) �ε = 0.6 eV.

of the vHs energies difference �EvHs, �EvHs = E+ − E−,
with the rotation angle are very similar to those of undoped
bilayers [Fig. 8(e)], as recently found from scanning tunneling
spectroscopy by Cherkez et al. [34]. For very small angles, the
localization in AA zone of the moiré is still present and the
sharp peak in the DOS is shifted [Figs. 8(d) and 7(c)].

DOSs in each layer of doped bilayers are presented Fig. 9 for
intermediate and small rotation angles. As expected, the global
shape of DOS in doped layer is shifted in energy by the doping.
In any cases, the peaks of vHs or the peak of localization
around Dirac energy are clearly seen in the two-layer DOSs at
the same energies. This suggests that corresponding states are
spread in the two layers as shown in the next section.
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FIG. 8. Total density of states (DOS) in (a) (5,9), (b) (6,7),
(c) (12,13), and (d) (25,26) bilayers. The onsite energy difference
�ε between pz orbitals in the two layers is (solid line) �ε = 0,
(circle) �ε = 0.2 eV, (star) �ε = 0.4 eV, (square) �ε = 0.6 eV. The
DOS curves have been shifted vertically for clarity (the origin of the
DOS for each curve is indicated by the horizontal line on the lower
left corner). (e) Energy difference between the energies �EvHs of
vHs, �EvHs = E+ − E−, versus rotation angle for different doping
values. The fine solid line is guide for the eye. Dashed line shows
�EvHs given by Eq. (7), i.e., here �EvHs(eV) � 0.15 θ (deg) − 0.24.

VI. PARTICIPATION RATIO

To analyze the nature of the eigenstates in the bilayers
and search for a possible doping effect, we compute the
participation ratio of each TB eigenstate |ψ〉 defined by

p(ψ) = 1

N
∑

i |〈i|ψ〉|4 , (8)

where |i〉 are the pz orbitals on atoms i and N is the number of
atoms in a unit cell. For a completely delocalized eigenstate,
p is equal to 1 as in graphene. If the state is restricted to one
graphene layer, p is equal to 0.5 and a state localized on 1 atom
has the smallest p value: p = 1/N . The average participation
ratio 〈p〉 as a function of the energy E is presented on Fig. 10(a)
for neutral bilayers and Figs. 11(a)–11(d) for doped ones.
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FIG. 9. Density of states (DOS) calculated by recursion in doped
(a) (6,7), (b) (25,26) bilayers with �ε = 0.4 eV: (solid line) total
DOS, (triangle up) average DOS in layer 1 (undoped layer), (triangle
down) average DOS in layer 2 (doped layer). (a) The total DOS in
(6,7) bilayer, calculated by diagonalization in reciprocal lattice, is
also shown with fine line with empty circle. It is very close with total
DOS calculated by recursion method.

The participation ratios for neutral systems clearly illustrate
the three regimes of the electronic structure of twisted bilayers
as a function of the rotation angle through the behavior of the
eigenstates.

For large angles θ [bilayers (1,3) (θ = 32.20◦) and (5,9)
(θ = 18.73◦) in Fig. 10(a)], 〈p〉 is equal to 0.5 which means
that the eigenstate is delocalized on one of the two layers.
The layers are then decoupled in agreement with the different
predictions [13–15,17–19,22–24,27]. Doping does not affect
this result as shown Fig. 11(a) for (5,9) bilayer.

For intermediate θ values [bilayers (6,7) (θ = 5.08◦) in
Fig. 11(b) and (12,13) (θ = 2.65◦) in Fig. 11(c)], the partici-
pation ratio of a state slightly depends on the energy. It is closer
to one in the energy range of the vHs where the interaction
between the two planes is stronger and closer to 0.5 in the
vicinity of the Dirac energy (interaction between layers is
smaller for these energies). When the bilayer is doped, the
energy region where the interaction between planes is weaker
is just shifted accordingly.

For very small θ values [bilayer (25,26) (θ = 1.30◦) in
Figs. 10 and 11(d) and (33,34) (θ = 0.99◦)], states with energy
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FIG. 10. TB (a) average participation ratio and (b) average layer
participation ratio in (n,m) undoped bilayers (�ε = 0).

around 0 are strongly localized (small 〈p〉 values). An analysis
of spatial repartition of eigenstates shows that theses states are
localized on the AA zones of the moiré (see Refs. [23,24]).
For instance, the participation ratio of one eigenstate at Dirac
point is p � 0.12 in (33,34) [23]. The peak remains but shifted
in the doped case [Fig. 11(d)].

We also define a participation ratio per layer by

p∗(ψ) = 1

2
(
P 2

1 + P 2
2

) , (9)

where Pl , l = 1 and 2 are the weight of the eigenstate ψ on
layers 1 and 2, respectively:

Pl =
∑

il

|〈il|ψ〉|2, (10)

where |il〉 are the pz orbitals on the atoms il of the layer
l. An eigenstate with nonzero weight only in one layer
corresponds to p∗ = 1

2 , whereas p∗ = 1 for an eigenstate
uniformly delocalized on the two layers. The average layer
participation ratio 〈p∗〉 at energy E is presented on Fig. 10(b)
for neutral bilayers and Figs. 11(a)∗–11(d∗) for doped ones.
For large θ angles, states exist only in one of the two layers
(〈p∗〉 � 1

2 ) whatever the doping is [Figs. 10(b) and 11(a∗)].
As θ decreases, 〈p∗〉 increases, which shows that states spread
more and more on the two layers. For very small θ , states
of undoped cases are uniformly distributed on the two layers
for all energies [Fig. 10(b)]. Figure 10(b) also shows that for
intermediate angles, the distribution of eigenstate on the two
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FIG. 11. TB average participation ratio 〈p〉 and average layer
participation ratio 〈p〉* in (a) (5,6), (b) (6,7), (c) (12,13), and
(d) (25,26) bilayers. The onsite energy difference �ε between pz

orbitals in the two layers is (black line) �ε = 0, (circle) �ε = 0.2
eV, (star) �ε = 0.4 eV, (square) �ε = 0.6 eV.

layers is weaker close to the Dirac energy than for energy in
the vicinity of the vHs. For intermediated θ and very small θ ,
higher doping also seems to decrease the distribution on the
two layers [Figs. 11(c∗) and 11(d∗)].

While doping does not change qualitatively the average
participation ratio 〈p〉, it significantly decreases the average
participation ratio per layer 〈p∗〉. Therefore, an asymmetric
doping in a rotated bilayer favors a decoupling of the states
between the layers. For very small angles [Figs. 11(d) and
11(d*), θ = 1.30◦), the localization in the AA zone is obtained
in the doped as in the undoped bilayer. At all energies
around Dirac energy, states are distributed on the two layers
0.9 � 〈p∗〉 � 1, and the doping reduces a little bit the equal
repartition of each eigenstate between the two layers in
undoped bilayer 〈p∗〉(doped) < 〈p∗〉(undoped) � 1.
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VII. QUANTUM DIFFUSION IN BILAYERS

In this section, we analyze the consequence on transport
properties of the “localization” mechanism [17–19,23,24,42]
induced by the small rotation angles. The conductivity along
the x axis is given by the Einstein formula

σxx(EF) = e2

S
n(EF)D(EF), (11)

where n(EF) and D(EF) are the total density of states per
surface S and the average diffusivity at the Fermi energy EF,
respectively. In the relaxation time approximation [35,43,44],
the effect of disorder is taken into account by a scattering
time τ . In this approach, τ contains both elastic scattering
times τe due to static defects (adatoms, vacancies,...) and
inelastic scattering time τi due to phonons or magnetic field
(...): τ−1 = τ−1

e + τ−1
i . τ decreases when the temperature

T increases and when the concentration of static defects
increases. As explained in the Appendix, the diffusivity D can
by determined at every energy E as function of the scattering
time τ . D is the sum of two terms

D(EF,τ ) = DB(τ ) + DNB(EF,τ ), (12)

where DB(EF,τ ) = V 2
Bτ/3 is the Boltzmann term and DNB

the non-Boltzmann term. DNB comes from nondiagonal terms
in the velocity operator [Eq. (A7) in the Appendix]. In
crystals, it is related to interband transitions activated by elastic
or inelastic scattering. For large τ , DNB decreases when τ

increases, and DNB → 0 when τ → +∞. Thus, in crystals,
D � DB when τ → +∞.

Diffusivity calculated for graphene and several bilayers is
presented in Fig. 12 for different EF values and for doped
or undoped bilayers. For graphene and bilayers with large
and intermediate rotation angles, D � DB at every energy.
The only effect of non-Boltzmann term is a change in the
slope of D(τ ) at scattering time τ � �/E as explained in
the Appendix. Eventually, at small scattering time τ � �/E,
the interband transition between the two bands of each Dirac
cone contributes significantly. In the case of graphene, with a
first-neighbor coupling Hamiltonian, the non-Boltzmann term
DNB is equal to Boltzmann term DB and then D = 2DB for
τ � �/E [see Eqs. (A14) and (A15) in Appendix 3]. This
effect is related with the phenomenon of jittery motion also
called Zitterbewegung [3] which is important in the optical
conductivity. In graphene and bilayers with large rotated
angles, it occurs for very small scattering time values to be
significant experimentally. But, in rotated bilayers with very
small rotation angle θ , for states at energy where velocity is
very small (i.e., energies close to Dirac energy), the Boltzmann
term in Eq. (12) goes down and the non-Boltzmann term
becomes significant in the total diffusivity. For instance,
Fig. 12(a) shows that for (25,26) bilayers (θ = 1.3◦) at
EF = 0, D is strongly affected by the non-Boltzmann term
for realistic [45] τ values. It results in a smaller diffusivity
with respect to the graphene case, that is almost independent
on scattering time for τ � 10−14–10−13 s. In asymmetric
doped bilayer [Figs. 12(d) and 12(c)] similar effect occurs at
energies with small Boltzmann velocity (Fig. 7). This regime,
called small velocity regime, where non-Boltzmann terms
dominate transport properties, has already been observed in
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FIG. 12. Diffusivity D versus scattering time τ in graphene (5,9),
(6,7), and (25,26) bilayers. For (25,26) bilayers, the Boltzmann (B)
term and non-Boltzmann (NB) term are shown. �ε = 0 for (a) energy
EF close to the Dirac energy (ED = 0), (b) EF = 0.1 eV. (c) �ε = 0.2
and EF = −0.1 eV, (d) �ε = 0.6 and EF = −0.3 eV.

systems with complex atomic structure such as quasicrystals
and complex metallic alloys (see Refs. [35–37,46,47] and
references therein). Roughly speaking, small velocity regime
is reached when mean-free path l = V τ of charge carriers
is smaller than spatial extension Lwp of the corresponding
wave packet. In this case, semiclassical approximation breaks
down and a pure quantum description is necessary to calculated
transport properties. Twisted bilayer with very small rotation
angle have a huge unit cell and a huge cell of the moiré, in
which states at E � ED are confined in the AA zone [24] and
have then a very small velocity (Fig. 7). Typically, the size of
the AA zone is ∼0.5P , where P is the moiré period [Eq. (5)],
and then the extension of confined states in the AA zone is
Lwp � 0.5P . As P increases when θ increases, the condition
V τ < Lwp of the small velocity regime should be satisfied for
θ small enough.

In doped and undoped twisted bilayers, for energy which
does not correspond to the a peak of localization in the DOS,
the Boltzmann velocity is larger, and the non-Boltzamnn effect
is neglectable [Fig. 12(b)].

VIII. CONCLUSION

To sum up, numerical calculations show that doped rotated
layers with large rotation angle and reasonable doping (in-
ducing a shift of the Dirac point smaller than 0.8 eV) still
behave like decoupled layers as found experimentally [34].
This result is of particular importance for epitaxial graphene
on the C face of SiC, at least for large rotation angles. In
this case, the C plane closest to the interface dominates the
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transport because it is doped due to charge transfer from the
interface. This charge transfer corresponds to a shift of the
Dirac point of 0.2–0.3 eV above the Fermi level. Experiments
and theory [48] showed that it is decoupled from the substrate
and thanks to a large rotation angle stacking, it can also be
decoupled from the other C planes. Here, we show that actual
asymmetric doping does not alter the layer decoupling so that
this plane can exhibit isolated graphene like properties even if
it is sandwiched between the interface and other C layers as
observed experimentally [49,50].

Thanks to the tight-binding scheme, we have been able
to address the important question of the effect of doping
on rotated graphene bilayers with intermediate angle values
corresponding to large cells of moiré. For a small symmetric
doping, twisted layers with large and intermediate rotation
angles keep their characteristics: linear band dispersions,
renormalized band velocity at Dirac point (K point), and
van Hove singularities, as expected experimentally [34]. But,
a large enough doping increases the renormalization of the
velocity. For large angles, this new effect occurs for unphysical
doping values, but for intermediate angles, it occurs for
accessible doping values, typically when �ε = few 0.1 eV.

For very small angles, electronic states remain confined
in the AA region of the moiré whatever the doping is,
as in undoped bilayers [23,24]. Therefore, the regime of
confinement by very large cells of the moiré is not destroyed
by the doping, but localization energies are shifted with the
doping rate. In this latter case, by conductivity calculations, we
show that the Bloch-Boltzmann model breaks down and strong
interference quantum effects dominate transport properties.
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APPENDIX: QUANTUM TRANSPORT CALCULATION

1. Average square spreading in perfect crystal
at zero temperature

In the framework of the Kubo-Greenwood approach for
calculation of the conductivity, a central quantity is the average
quadratic spreading of wave packets of energy E at time t along
the x direction [35,36,43,44,51–53]

�X2(E,t) = 〈(X̂(t) − X̂(0))2〉E, (A1)

where X̂(t) is the Heisenberg representation of the position
operator X̂. 〈Â〉E means an average of diagonal elements of
the operator Â over all states with energy E. The diffusivity at
zero temperature D(E) at energy E is deduced from �X2,

D(E) = lim
t→+∞ D(E,t), (A2)

with

D(E,t) = �X2(E,t)

t
, (A3)

where D(E,t) is called diffusion coefficient. In a two-
dimensional system with surface S, the dc conductivity σxx at
zero temperature along the x direction is given by the Einstein
formula

σxx(EF) = e2

S
n(EF)D(EF), (A4)

where n(E) is the total density of states per S and EF the Fermi
energy.

In pure crystals at zero temperature, once the band structure
is calculated from the tight-binding Hamiltonian, the average
quadratic spreading can be computed exactly in the basis of
Bloch states [35,43]. The average square spreading is the sum
of two terms [35,43]:

�X2(E,t) = V 2
B t2 + �X2

NB(E,t). (A5)

The first term is the ballistic (intraband) contribution at the
energy E. VB is the Boltzmann velocity in the x direction.
The semiclassical theory is equivalent to taking into account
only this first term. The second term (interband contributions)
�X2

NB(E,t) is a nonballistic (non-Boltzmann) contribution. It
is due to the nondiagonal elements in the eigenstates basis
{|n〉} of the velocity operator V̂x :

V̂x = 1

i�
[X̂,Ĥ ]. (A6)

From the definition (A1), one obtains [43]

�X2
NB(E,t) = 2�

2

〈 ∑
�k,n′(n′ �=n)

[
1 − cos

(
(E�k,n − E�k,n′ )t

�

)]

× |〈n�k|V̂x |n′ �k〉|2
(E�k,n − E�k,n′ )2

〉
E�k,n=E

, (A7)

where E�k,n is the energy of the eigenstate |n�k〉 computed by
diagonalization of the tight-binding Hamiltonian in reciprocal
space. The average velocity, i.e., Boltzmann velocity, along
direction x of the electrons at energy E is obtained numerically
from diagonal elements of V̂x :

VB(E) =
√

〈|〈n�k|V̂x |n�k〉|2〉E�k,n=E. (A8)

2. Relaxation time approximation

The effect of static disorder and/or decoherence mecha-
nisms such as electron-electron scattering, electron phonon
interaction (temperature), is not considered in the above
section. This effect can be treated in a phenomenological
way by introducing an inelastic scattering time τ in the
relaxation time approximation (RTA) [35]. τ may include
elastic scattering time τe (due to static defects such as vacancies
or adatoms) and inelastic scattering time τi (due to phonon,
electron-electron scattering, effect of magnetic field): τ−1 =
τ−1
e + τ−1

i . τ decreases when the temperature increases and/or
static defects concentration increases. In actual graphene at
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room temperature, realistic values of τi are a few 10−13 s [45].
The conductivity can then be estimated by

σxx(EF,τ ) = e2

S
n(EF)D(EF,τ ), (A9)

with diffusivity

D(EF,τ ) = 1

2τ 2

∫ ∞

0
�X2(EF,t) e−t/τ dt , (A10)

where �X2(E,t) is the average square spreading in crystal
without defects [Eq. (A1)]. Here, the Fermi-Dirac distribution
function is taken equal to its zero-temperature value. This is
valid provided that the electronic properties vary smoothly on
the thermal energy scale kBT . From Eqs. (A5) and (A10), D is
the sum of a Boltzmann contribution DB and a non-Boltzmann
contribution DNB:

D(EF,τ ) = DB(τ ) + DNB(EF,τ ). (A11)

RTA has been used successfully to compute [35] conductivity
in approximants of quasicrystals where quantum diffusion and
localization effect play an essential role [35–37,54,55] and
conductivity in organic semiconductors [56]. In this paper, we
show that quantum interferences have also a strong effect in
transport properties of rotated bilayers with very small angles.

3. Quantum transport in graphene

In pure graphene, assuming a restriction of the Hamiltonian
[Eq. (1)] to the first-neighbor interactions only, �X2

NB(E,t) is
given by

�X2
NB(E,t) = V 2

B�
2

2E2

(
1 − cos

2E

�
t

)
, (A12)

with

VB = 3aγ0

2
√

2�
, (A13)

where γ0 is the coupling term between first-neighbor pz

orbitals. At small time t , t � �/E, the non-Boltzmann

term is equal to Boltzmann term �X2
NB(E,t) � V 2

B
t2, thus

�X2(E,t) � 2V 2
B
t2 and D(E,t) � 2V 2

B
t . Whereas for large

t , the Boltzmann term dominates and �X2(E,t) � V 2
B
t2 and

D(E,t) � V 2
B
t . The non-Boltzmann term is due to matrix

elements of the velocity operator between the two bands (i.e.,
interband coupling between the hole and electron states having
the same wave vector). These matrix elements imply that the
velocity correlation function has also two parts: one constant
and the other oscillating at a frequency 2E/� where E is the
energy of the state. This is precisely the phenomenon of jittery
motion also called Zitterbewegung. Note that in any crystal
having several bands there are also components of the velocity
correlation function which are oscillating at frequencies
(E�k,n − E�k,n′ )/�. Therefore, Zitterbewegung is quite common
in condensed matter physics. For example, approximants of
quasicrystals present very strong Zitterbewegung effect and
the non-Boltzmann contribution dominates the Boltzmann
contribution [35,37,46,47].

With defects (static defects or phonons . . . ) in RTA, the
diffusivity D(EF,τ ) is also the sum of a Boltzmann term

DB(τ ) = 1
3V 2

Bτ (A14)

and a non-Boltzmann term

DNB(EF,τ ) = 1

3
V 2

Bτ

(
�

2

�2 + 4E2
Fτ

2

)
. (A15)

For small scattering time τ � �/E, the non-Boltzmann term
DNB is equal to Boltzmann term DB and D = 2DB. For large
τ , τ � �/E, DNB → 0 and D = DB. When EF = 0 (i.e.,
Dirac energy), the non-Boltzmann term equals the Boltzmann
term for all scattering times. On Figs. 12(a) and 12(b), this
modification ofD(τ ) at τ = �/E is clearly seen. But, this limit
case should be very difficult to obtain experimentally. Similar
results are obtained for twisted bilayers with large angle of
rotation θ , whereas for small θ this modification becomes
larger showing that the non-Boltzmann term is not neglectable
anymore.
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O. Pankratov, Electronic structure of twisted graphene flakes,
Phys. Rev. B 87, 075433 (2013).

[30] A. O. Sboychakov, A. L. Rakhmanov, A. V. Rozhkov and F.
Nori, Electronic spectrum of twisted bilayer graphene, Phys.
Rev. B 92, 075402 (2015).

[31] G. Li, A. Luican, L. M. B. Lopes dos Santos, A. H. Castro
Neto, A. Reina, J. Kong, and E. Y. Andrei, Observation of Van

Hove singularities in twisted graphene layers, Nat. Phys. 6, 109
(2010).

[32] A. Luican, G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov,
A. K. Geim, and E. Y. Andrei, Single-layer Behavior and its
Breakdown in Twisted Graphene Layers, Phys. Rev. Lett. 106,
126802 (2011).

[33] I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly de
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tronic structure and transport in approximants of the Penrose
tiling, Acta Phys. Pol. 126, 617 (2014).

[38] J. C. Slater and G. F. Koster, Simplified LCAO method for the
periodic potential problem, Phys. Rev. 94, 1498 (1954).

[39] S. Roche and D. Mayou, Conductivity of Quasiperiodic Sys-
tems: A Numerical Study, Phys. Rev. Lett. 79, 2518 (1997).

[40] J. M. Campanera, G. Savini, I. Suarez-Martinez, and M.
I. Heggie, Density functional calculations on the intricacies
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