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Theory of triplon dynamics in the quantum magnet BiCu2PO6
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We provide a theory of triplon dynamics in the valence bond solid ground state of the coupled spin ladders
modeled for BiCu2PO6. Utilizing the recent high-quality neutron scattering data [K. W. Plumb et al., Nat. Phys.
12, 224 (2016)] as guides and a theory of interacting triplons via the bond operator formulation, we determine
a minimal spin Hamiltonian for this system. It is shown that the splitting of the low-energy triplon modes
and the peculiar magnetic field dependence of the triplon dispersions can be explained by including substantial
Dzyaloshinskii-Moriya and symmetric anisotropic spin interactions. Taking into account the interactions between
triplons and the decay of the triplons to the two-triplon continuum via anisotropic spin interactions, we provide a
theoretical picture that can be used to understand the main features of the recent neutron scattering experimental
data.

DOI: 10.1103/PhysRevB.93.235130

I. INTRODUCTION

There has been considerable interest in the emergence of
nontrivial paramagnetic ground states of quantum magnets
with interacting spin S = 1

2 local moments. Such nontrivial
quantum paramagnets would occur in low-dimensional sys-
tems or on geometrically frustrated lattices. Two prominent
examples of such quantum paramagnetic ground states are
quantum spin liquids and valence bond solids [1]. The
determination of the underlying Hamiltonian in such systems,
however, has been a challenge as this often requires the detailed
information about the spectra of the elementary excitations as
well as the ground state.

More specifically, the dispersion of the S = 1
2 charge-

neutral spinon excitations or more accurately the two-spinon
continuum would be an essential information to determine
the Hamiltonian for quantum spin liquids. In the case of the
valence bond solids, the triplon dispersions and dynamics
would play similar roles. In two- and three-dimensional
quantum magnets, such information is quite scarce and this has
remained as one of the main challenges both in experimental
and theoretical studies of these systems. This is in contrast to
magnetically ordered systems where accurate determination
of spin wave spectrum has been around for a long time, which
is often used to infer the minimal spin Hamiltonian.

In this work, we present a theoretical study of triplon
dynamics in the valence bond solid ground state of the coupled
spin-ladder system, designed to explain magnetic properties
of BiCu2PO6 [2–12]. In particular, we investigate a possible
minimal spin Hamiltonian that is consistent with previous
experimental results. The recent high-quality neutron scatter-
ing experiments reported in Ref. [12] enable us to construct
the model using the valuable information on triplon disper-
sions and two-triplon continuum. Combining the theoretical
results obtained in the bond operator formulation [13–15]
of the spin model and the spectra of the collective modes
measured in the experiments, we determine various anisotropic
spin interactions. It is found that the low-energy properties
of the triplons can only be explained in the presence of
substantial Dzyaloshinskii-Moriya and symmetric anisotropic

spin interactions [16]. It is shown that the interactions between
the triplons renormalize the triplon dispersions, and more
importantly the anisotropic spin interactions are primarily
responsible for the triplon decay into two-triplon continuum.
Our study of the triplon dynamics in this system provides a
useful framework to understand the roles of various anisotropic
spin interactions and presents an opportunity to determine the
spin Hamiltonian of the valence bond solid (VBS) ground
states in considerable details.

The rest of the paper is organized as follows. We introduce
our model Hamiltonian for BiCu2PO6 and the VBS ground
state in Sec. II. The VBS state and its triplon excitations are
described using the bond operator formulation in Sec. III,
where the importance of anisotropic spin interactions is
discussed in comparison with the experimentally measured
triplon dispersions. In Sec. IV, it is shown that the anisotropic
spin interactions are responsible for the triplon decay into the
two-triplon continuum. Finally, our results are summarized
with an outlook in Sec. V.

II. MODEL HAMILTONIAN AND VBS STATE

We start by describing our model Hamiltonian for
BiCu2PO6 and the VBS ground state.

A. Hamiltonian

We consider the lattice structure in Fig. 1 and introduce the
spin model described in Eq. (1) with two types of anisotropic
spin interactions, which are the Dzyaloshinskii-Moriya (Dij )
and anisotropic and symmetric (�μν

ij ) interactions, as well as
the isotropic Heisenberg interactions (Jij ):

H =
∑
i>j

(
Jij Si · Sj + Dij · Si × Sj + �

μν

ij S
μ

i Sν
j

)
, (1)

where Si is a S = 1
2 moment at site i, μ,ν ∈ {x,y,z}, and

summation convention for repeated Greek indices is assumed.
We set the x,y,z directions along the crystallographic a,b,c

axes (Fig. 1), respectively. Based on the crystal symmetry
Pnma of BiCu2PO6 [2,3], there are five independent links
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FIG. 1. Lattice structure of the spin- 1
2 moments in BiCu2PO6.

as denoted with different colors in the figure. Accordingly,
there are five independent Heisenberg interactions: J1 along
the zigzag legs (magenta), J2 and J ′

2 along the straight legs
(green and orange, respectively), J4 on the rungs of the
ladders (blue), and J3 as the interladder couplings (gray).
Distinction between J2 and J ′

2 arises from the existence of two
inequivalent Cu sites (denoted with different colored balls).
The antiferromagnetic couplings J1, J2, J ′

2 form triangular
structures on the lattice and generate magnetic frustration in
the system. Superexchange pathways are given by Cu-O-Cu
for J1 and J3, and Cu-O-O-Cu for J2, J ′

2, and J4 [2,3,5]. As
pointed out in Refs. [3,5], the Cu-O-Cu bond angle for the
J3 exchange is close to 90◦ in contrast to the other exchange
interactions, implying that J3 can be weak antiferromagnetic
or ferromagnetic according to the Goodenough-Kanamori
rule [17]. We assume that the coupling J3 is weak in magnitude
compared to the other exchange interactions J1, J2, J ′

2, J4,
dominated by the antiferromagnetic superexchange.

The Dzyaloshinskii-Moriya (DM) vectors {Dij } can also
be determined by the crystal symmetry [16]. We list the
symmetry-constrained DM vectors in Table I for 12 links

TABLE I. Coupling constants {Jij ,Dij } determined by the crystal
symmetry Pnma of BiCu2PO6. The table lists the coupling constants
at 12 interaction links in a unit cell. DM vectors are decomposed
along the a,b,c axes, i.e., Dij = Da

ij â + Db
ij b̂ + Dc

ij ĉ with â,b̂,ĉ being
orthonormal vectors along the crystallographic axes. Listed sites i,j

are denoted with numbers in Fig. 1. The other links on the lattice can
be generated by acting lattice translations on the 12 links in the table.

(i,j ) Jij Da
ij Db

ij Dc
ij

(3,1) J1 Da
1 Db

1 Dc
1

(1′,3) J1 Da
1 −Db

1 Dc
1

(4,2′) J1 Da
1 −Db

1 Dc
1

(2,4) J1 Da
1 Db

1 Dc
1

(1,1′) J2 Da
2 0 Dc

2

(4′,4) J2 Da
2 0 Dc

2

(2′,2) J ′
2 D′a

2 0 D′c
2

(3,3′) J ′
2 D′a

2 0 D′c
2

(1′′,2) J3 0 Db
3 0

(4,3′′) J3 0 Db
3 0

(1,2) J4 0 Db
4 0

(4,3) J4 0 Db
4 0

in a unit cell. In the table, DM vectors are decomposed
along the a,b,c axes: Dij = Da

ij â + Db
ij b̂ + Dc

ij ĉ with â,b̂,ĉ

being orthonormal vectors along the crystallographic axes.
The minus signs and zero values in the vector components
arise from the pseudovector nature of Dij , and mirror and
inversion symmetries in the system.

We constrain the coupling constant matrix �
μν

ij of the
anisotropic and symmetric interaction by requiring the fol-
lowing condition:

�
μν

ij = D
μ

ijD
ν
ij

2Jij

− δμνD2
ij

4Jij

. (2)

Here, underlying assumption is that the spin exchange inter-
action is generated by the antiferromagnetic superexchange
mechanism. Then, the condition comes from the fact that
both of D and � interactions originate from the spin-orbit
coupling in the microscopic Hubbard model (see Ref. [16] or
Appendix A). As mentioned earlier, J3 is not dominated by
the antiferromagnetic superexchange. Hence, Eq. (2) is not
applied to the J3 links (gray in Fig. 1). We find that D3 and �3

are not essential for describing overall magnetic anisotropies
in the system so that we will ignore D3 and �3 afterwards
(D3 = �3 = 0).

We will investigate the magnetic field response of the
system later. In this case, we consider the Zeeman interaction

HZ = −gμBH ·
∑

i

Si , (3)

with H being the magnetic field. In principle, we could
consider symmetry-allowed g tensors for two inequivalent
Cu2+ ions to allow anisotropy in the Zeeman interaction as
well. However, this will introduce more parameters needed to
be determined, rendering the theory more complicated. For
simplicity, we assume an isotropic g factor with g = 2.

B. Valence bond solid

Now, we discuss the valence bond solid phase as the ground
state of BiCu2PO6. The VBS phase is depicted in Fig. 2. Here,
the valence bonds are formed at the J4 links or the rungs of
the spin ladders (denoted with thick black lines). We call this
phase the rung-VBS in this paper.

FIG. 2. Dimer covering of the rung-VBS phase. Dimers (thick
black lines) denote the valence bonds formed along the link. The
figure also shows the convention for the dimer index (1,2) and the
spin index (L, R) within a dimer in the bond operator theory.
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The existence of a VBS phase in BiCu2PO6 has been hinted
through earlier studies. A finite spin gap and elementary spin-1
excitations in the compound are evidences for a VBS state. The
finite spin gap was observed in various experiments such as
the heat capacity, magnetic susceptibility, NMR, and neutron
scattering [2–5,11]. The spin-1 excitations have been detected
in recent inelastic neutron scattering experiments [11,12]. The
spin-1 character of the excitations was inferred by investigating
their behaviors under external magnetic fields. The structure
of the VBS state was investigated in the elaborate work by
Tsirlin et al. [5]. They constructed a Heisenberg spin-ladder
model and studied it by using various numerical techniques and
experimental informations. It was shown that the ground state
of the Heisenberg spin-ladder model has strong bond strength
〈Si · Sj 〉 at the rungs in the exact diagonalization studies. This
numerical result suggests that the rung-VBS phase arises in
their model, where they did not consider anisotropic spin
interactions. The spin model in Eq. (1) is a generalization
of the Heisenberg spin ladder model with anisotropic spin
interactions, which turns out to be extremely important to
describe the neutron scattering data.

In the next section, we show that the model in Eq. (1)
provides an excellent description of the triplon excitations seen
in the scattering experiments on BiCu2PO6. In the following,
we will describe the triplon excitations in the bond operator
theory developed for the rung-VBS phase.

III. BOND OPERATOR FORMULATION

Bond operator theory [13–15] is a useful framework for
describing a valence bond solid phase and its spin-1 triplon
excitations. The theory is built upon the bond operator repre-
sentation of the spin operators SL,R forming a valence bond:

Sα
L = 1

2 (s†tα + t†αs − iεαβγ t
†
βtγ ),

Sα
R = 1

2 (−s†tα − t†αs − iεαβγ t
†
βtγ ), (4)

where α,β,γ ∈ {x,y,z}, and εαβγ is the totally antisymmetric
tensor. The bond operators s† and t†α create the spin-singlet
and spin-triplet states of SL,R , respectively, and follow the
boson statistics. In order to keep the physical Hilbert space
consisting of the four states (the singlet and triplet), the
hard-core constraint should be imposed: s†s + t†αtα = 1.

We express the original spin Hamiltonian (1) in terms of the
bond operators by using the representation (4) with the dimer
covering for the rung-VBS state in Fig. 2. In the resulting bond
operator Hamiltonian, the rung-VBS state can be described by
condensing the s bosons at all the dimers: 〈s〉 = 〈s†〉 = s̄. The
hard-core constraint is incorporated at each dimer with the
Lagrange multiplier μ as −μ(s†s + t†αtα − 1). Exploiting the
crystal symmetry of BiCu2PO6, we set the parameters {s̄,μ}
to be uniform across all the dimers. Then, we end up with the
following form of the bond operator Hamiltonian:

H + HZ = Hquad + Hcubic + Hquartic. (5)

Here, the Hamiltonian is arranged according to the order of
the t-boson operator. Hquad consists of the quadratic terms like
t†t , t†t†, and their Hermitian conjugates. Hcubic contains the
cubic terms t†t†t and t†t t . Hquartic has the quartic terms of
the form t†t t†t . In the above expression, we also included the

Zeeman interaction [Eq. (3)], which only has quadratic terms
since possible linear terms are canceled.

Below, we develop a simple quadratic bond operator theory
by keeping only the quadratic part Hquad in the Hamiltonian.
Via this quadratic theory, we describe the low-energy triplon
excitations around the spin gap observed in experiments. We
will consider higher-order interactions later in this paper.

A. Quadratic Hamiltonian

The quadratic bond operator Hamiltonian has the following
form in the momentum space after the Fourier transformation:

Hquad = Eo + 1

2

∑
k

	†(k)M(k)	(k), (6)

where Eo is a function of s̄ and μ, and

	(k) =

⎛
⎜⎜⎜⎝

t1(k)
t2(k)

t†1(−k)

t†2(−k)

⎞
⎟⎟⎟⎠ (7)

with

t1(k) =
⎛
⎝t1x(k)

t1y(k)
t1z(k)

⎞
⎠, t†1(−k) =

⎛
⎜⎝

t
†
1x(−k)

t
†
1y(−k)

t
†
1z(−k)

⎞
⎟⎠, (8)

and similarly for t2(k) and t†2(−k). Here, the subscripts 1 and 2
in the t operators indicate the two dimers in a unit cell (shown
in Fig. 2). As mentioned earlier, the x,y,z directions are taken
parallel to the crystallographic a,b,c axes. The J , D, �, and H

interactions in the original spin Hamiltonian are transformed
to the triplon hopping and pairing amplitudes contained in the
12 × 12 matrix M(k). The quadratic Hamiltonian has two
notable features: (i) its dependencies on J2 and J ′

2 appear only
through the sum J2 + J ′

2, and (ii) the D1 interactions cancel
each other at the quadratic level without any contribution to
Hquad. These features will be discussed again later. The detailed
form of Hquad is provided in Appendix B.

The quadratic Hamiltonian is diagonalized via the Bogoli-
ubov transformation leading to the following form:

Hquad = Egs +
∑

k

6∑
n=1

ωn(k)γ †
n (k)γn(k). (9)

Here, γ
†
n (k) is the Bogoliubov quasiparticle operator or the

triplon with the excitation energy ωn(k). The constant term
corresponds to the ground-state energy Egs = 〈Hquad〉. With
this setting, the parameters s̄ and μ for the ground state are
determined by the saddle-point equations

∂〈Hquad〉
∂s̄

= 0,
∂〈Hquad〉

∂μ
= 0. (10)

In the ground state, we also compute the magnetization M
under nonzero magnetic fields as follows:

M = 1

N

〈
gμB

∑
i

Si

〉
, (11)

with N being the number of the spin moments.
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Before discussing the results of the quadratic theory, we
comment on our conventions about the Brillouin zone and
momentum vectors. For direct comparisons of our theoretical
computations with experimental results, we use the extended
zone scheme for the Brillouin zone and denote momentum
vectors in reciprocal lattice unit as q = (h,k,l), which means
q = hGa + kGb + lGc with Ga,b,c being the reciprocal lattice
vectors corresponding to the lattice vectors Ra,b,c along the
a,b,c axes, respectively.

B. Triplon dispersions

The triplon dispersions obtained in the quadratic theory can
be fitted with the experimental results [12] by controlling the
coupling constants {J,D,�}. Figure 3 shows the best fit (black
lines) with the neutron scattering data (color dots) along the
momentum direction q = (h = 0 and 3,k,l = 1), yielding the
following set of the coupling constants:

J1 = J2 = J ′
2 = J4 = 8 meV, J3 = 0.2J1,

�aa
1 = −�bb

1 = 0.039J1, �ab
1 = �ba

1 = 0.135J1,(
Da

1 = 0.6J1, Db
1 = 0.45J1

)
. (12)

The other coupling constants not shown here are set to
zero since they are found to be irrelevant for describing
essential features of the neutron scattering data. As mentioned
earlier, the D1 couplings cancel each other in the quadratic
Hamiltonian Hquad whereas the �1 couplings survive at the
quadratic level. Hence, we control the �1 couplings instead of
the D1 couplings. The D1 couplings in Eq. (12) are the values
obtained from the �1 couplings and the relationship (2). As
will be shown later, the D1 interactions appear in the cubic
terms of Hcubic. Their effects on the triplon excitations will be
investigated in a later part of this paper. Further discussions on
the parameter regime of Eq. (12) are provided in Appendix C.

ω
n(

q)
 [m

eV
]

q=(h=0 and 3, k, l=1) r.l.u.

 0

 5

 10

 15

 20

 25

 30

 35

 0  0.5  1  1.5  2

H=0

FIG. 3. Triplon energy dispersions ωn(q) in the quadratic bond
operator theory. The dispersions are compared with the neutron
scattering results in Ref. [12] (denoted wth color dots). The spin-gap
positions ±q� = ±(0,0.425,0) are marked by the arrows. The gray
region indicates the multitriplon continuum computed with Eq. (13).
Error bars in the neutron scattering data represent the energy widths
(or decay rates) of the measured quasiparticle peaks.

The quadratic theory with the coupling constants in Eq. (12)
yields six nondegenerate, triplon dispersions (see Fig. 3). It is
due to the fact that the anisotropic and symmetric couplings �1

completely break the SO(3) spin rotation symmetry existing
at the level of Heisenberg model, and there are two dimers
in a unit cell. The spin gap (minimum excitation energy)
occurs at the incommensurate momentum positions: ±q� =
±(0,0.425,0) and their equivalent momenta translated by
reciprocal lattice vectors (denoted with arrows in the figure).
We find that the lowest three dispersions are in good agreement
with the neutron scattering results around the spin gap. Among
the other higher-energy three dispersions, only one of them is
experimentally observed and qualitatively consistent with the
theoretical result (see the highest line of blue dots).

In regions away from the spin gap, however, the quadratic
theory cannot fully explain the results from the experimental
measurements. To be specific, inside the gray region, the
lowest dispersion bends downward (red), and the lowest two
triplon modes decay at certain momenta (red and green). These
features are believed to be the effects of triplon interactions
coming from, for example, the cubic terms generated by the
D1 interactions. These effects will be discussed later. At the
moment, we focus on the low-energy part around the spin gap
(below the gray region) and see if the quadratic theory provides
a satisfactory description of the low-energy spin dynamics in
BiCu2PO6. As we have already seen, the theory is in good
agreement with the neutron scattering results in the low-energy
region. This fact supports the idea that the spin excitations
observed in the neutron scattering are triplon excitations,
confirming the rung-VBS state in BiCu2PO6. In the following
subsections, we provide more evidences for this conclusion.

C. Magnetic field response

As another means to check that the observed excitation
modes are the triplons in the rung-VBS phase, their field
responses can be examined in the theory and compared with
the experimental data. Turning on the Zeeman interaction in
the quadratic bond operator Hamiltonian, we compute the
triplon excitation spectrum as a function of the magnetic field.
The obtained spectra are plotted in Fig. 4 at the spin-gap
positions ±q�. Existing experimental data [12] are only for
the fields along the a axis, which are also denoted in the figure
with color dots. One can find that the theoretical result is
consistent with the experimental data both qualitatively and
quantitatively (left panel). For example, it was observed in
experiments that the lowest mode (red) is almost not reacting to
the magnetic field whereas the other two higher-energy modes
are moving downward (green) and upward (blue), respectively.
These behaviors are well captured in the theoretical result.
The observed magnetic field response also tells us that the
triplon modes do not possess any degeneracy as predicted in
the theory.

Notice that, in general, the magnetic field dependence of
the triplon dispersion is not linear in magnetic field, especially
for the two higher-energy triplon modes (green and blue dots
in Fig. 4). Indeed, the magnetic field dependence of the two
higher-energy modes follows c0 + c1H + c2H

2 behavior. This
is due to the fact that the triplon modes do not possess
well-defined spin quantum number (S · Ĥ , spin component
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FIG. 4. Magnetic field dependence of the triplon excitations in the quadratic bond operator theory. The three plots show the triplon excitation
energies at the spin-gap positions ωn(±q�) as a function of the magnetic field H for the field directions along the a,b,c axes, respectively. In the
case of the field along the a axis (the left), the theoretical results are compared with the neutron scattering data in Ref. [12] (colored dots). For
an estimation of the critical field Hc in each plot, the theoretical results are extrapolated with a functional form (c0 + c1H + c2H

2) as depicted
with a dashed line [18].

along the field direction) as a result of magnetic anisotropies.
Instead, the usual spin quantum numbers (S · Ĥ = +1,0, − 1)
in the spin isotropic case are mixed in the triplon modes. The
nonlinear magnetic field dependence can also be found in other
field directions.

It can be seen that certain triplon modes have almost
constant energy in magnetic field. For instance, when the
magnetic field is applied along the a axis, the energy of the
lowest-energy triplon mode is basically constant (red dots
in Fig. 4), implying that the spin character of this mode is
dominated by the quantum number S · â = 0. Similar behavior
is also found in the second/third lowest mode under the
magnetic field along b/c axis (see the middle and right panels in
Fig. 4). Accordingly, we can characterize three triplon modes
approximately as the S · â = 0, S · b̂ = 0, S · ĉ = 0 states from
the lowest- to the highest-energy modes (the spin characters
can be directly identified by taking the spin projections of
the triplon mode eigenvectors). In other words, three triplon
modes have their own approximate spin quantization axes. If
the applied magnetic field is not along the quantization axis,
triplon modes follow nonlinear magnetic field dependence and
can be characterized by mixed spin states.

D. Magnetization and critical field

We now discuss the magnetization process of the system.
Recent high magnetic field experiments in Ref. [7] show
that BiCu2PO6 undergoes a cascade of field-induced phase
transitions with anisotropic magnetic responses to different
field directions. Upon increasing the field, the magnetization
monotonically increases with different slopes depending on the
field direction until the system reaches the transition where
the spin gap is closed. The average slope or susceptibility
χavg = �M

�H
has the sequence of χc

avg > χb
avg > χa

avg and con-
comitantly the critical field Hc has the opposite sequence of
Ha

c (=23 T) > Hb
c (=21 T) > Hc

c (=20 T), where the super-
scripts denote the applied field direction.

The above experimental features can be explained in the
quadratic bond operator theory. Figure 5 shows the magnetiza-
tions predicted from the theory, which are consistent with the
susceptibility sequence pattern observed in the experiments.
On the other hand, the critical fields can be read from the
previous triplon energy plots in Fig. 4. Extrapolating the
triplon spectra (gray dashed lines), we find that Ha

c (=27 T) >

Hb
c (=20 T) > Hc

c (=19 T) in the quadratic theory. Although
the value of Ha

c is a bit larger than the measured value, the
right trend in the sequence of the critical fields is well captured
in the theory.

E. Importance of triplon interactions

In the previous sections, we have observed remarkable
consistency between the quadratic bond operator theory and
experiment in the low-energy regions. This fact implies that

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10  12  14

M
 [1

0-3
μ B

/C
u]

H [T]

H//a
H//b
H//c

FIG. 5. Magnetization M as a function of magnetic field H

obtained in the theory. The magnetization is computed with Eq. (11)
for the magnetic fields along the a,b,c axes. The figure shows
the the magnetization components along the field directions. Other
components perpendicular to the field are zero.
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BiCu2PO6 has the rung-VBS ground state with the triplons as
the elementary excitations. Moreover, the theory tells us that
the couplings in Eq. (12) are minimal interactions.

On the other hand, the experimental data deviate from
the theoretical calculations in the gray region of Fig. 3 with
the following features: (i) downward bending of the lowest
triplon dispersion (red), (ii) abrupt decays of the lowest two
triplon modes at certain momenta (red and green), and (iii)
broadened energy width or increased decay rate in the third
lowest dispersion (blue). Notice that the gray region in the
figure denotes multitriplon continuum with the lower boundary
computed as the minimum energy of two-triplon excitations:

E2(q) = min
k,m,n

[ωm(q − k) + ωn(k)], (13)

where ωn(k) is the single-triplon dispersion in the quadratic
theory with m,n being band indices. This fact proposes a
picture that the triplons are strongly interacting within the
triplon continuum region so that they lose their prominence
as quasiparticle modes inside the region. Thus, we need to
consider the interactions between triplons to capture triplon
decay processes.

IV. EFFECTS OF TRIPLON INTERACTIONS

Now, we consider the influence of triplon interactions on the
triplon dynamics in BiCu2PO6. Two main effects are expected
from the triplon interactions: triplon energy renormalization
and decay [19,20]. These two effects are closely related with
the triplon phenomenology observed in the neutron scattering
experiments (substantial energy splittings around the spin gap
and decay phenomena inside the triplon continuum).

The triplon interactions are taken into account by extending
the previous quadratic bond operator theory. For the spin
Hamiltonian [Eq. (1)] with the couplings in Eq. (12), we
arrange the corresponding bond operator Hamiltonian in the
following way:

H = Hquad[�1] + Hcubic[D1] + Hquartic[D1,�1], (14)

where we have denoted the dependence on the anisotropic
couplings in the square brackets. We will take the mean
field approximations for Hquartic and use the cubic interactions
Hcubic to describe the triplon decay processes. In this approach,
the triplon modes and their decays are identified via the peak
structures in the spectral weight function of the triplon Green’s
function. This approach reveals that the D1 couplings have
noticeable contributions on the energy splittings around the
spin gap as well as the decay phenomena inside the triplon
continuum. Readers interested in the results rather than the
calculational details are advised to directly move to Sec. IV F.

A. Mean field approximations for Hquartic

The quartic terms in Hquartic provide two-body scatterings
of the t bosons. We include the two-body interactions in the
mean field approximations, leading to the following mean field
Hamiltonian:

Hquad + Hquartic → HMF. (15)

For the mean-field decouplings, we employ particle-particle
(Q = 〈t t〉) and particle-hole (P = 〈t t†〉) channels. Details of
the decoupling scheme are explained in Appendix D.

B. Triplon decay channels of Hcubic

The cubic terms in Hcubic provide decay and fusion
processes of the t bosons (t† � t†t†). The processes are
induced by the cubic terms from the D1 and J3 couplings
whereas the other couplings J1, J2(= J ′

2), J4, and �1 do not
have such cubic terms because of symmetry reasons. More
details about the existence of the cubic terms and the associated
symmetry are provided in Appendix E.

We will investigate the effects of the cubic interactions via
the Green’s function approach [19–21]. In this approach, the
triplons determined from the mean field Hamitonian HMF are
taken as the bare particles. We express the interaction part
Hcubic in terms of the bare triplons (γ ) from HMF, which leads
to the following form:

Hcubic

=
6∑

l,m,n=1

∑
k+p−q=0

1

2!
Y2(kl,pm; qn)γ †(kl)γ

†(pm)γ (qn)+H.c.

+
6∑

l,m,n=1

∑
k+p+q=0

1

3!
Y3(kl,pm,qn)γ †(kl)γ

†(pm)γ †(qn)+H.c.

(16)

Here, we use the shorthand notations kl = (k,l), and so forth
for pm, qn. In addition to the decay and fusion terms for the
triplons (Y2 and Y ∗

2 ), we have the source and sink terms for
the γ triplons (Y3 and Y ∗

3 ) in the above expression. The vertex
functions Y2(kl,pm; qn) and Y3(kl,pm,qn) are functions of the
singlet condensation (s̄), the Bogoliubov transformation ma-
trix ofHMF, the coupling constants (J ’s, D1, �1), and the lattice
vectors (Rb,c). The vertex function Y3(kl,pm,qn) is totally
symmetric whereas the other Y2(kl,pm; qn) is symmetric only
for the first two arguments: Y2(kl,pm; qn) = Y2(pm,kl ; qn).

C. Green’s function formalism

It is convenient to recast the total Hamiltonian as follows:

H = H0 + V, (17)

with the kinetic partH0 = HMF (fromHquad + Hquartic) and the
interaction part V = Hcubic. We now define the triplon Green’s
function

G(k,t) = −i〈T [�(k,t)�†(k,0)]〉, (18)

where the average 〈. . . 〉 is taken for the ground
state of H with the time-ordering operator T . Here,
we set � = 1, and �(k,t) = eiHt�(k)e−iHt with �(k) =
[γ1(k), . . . ,γ6(k)|γ †

1 (−k), . . . ,γ †
6 (−k)]T . The Green’s func-

tion is written as the following 12×12 matrix:

G(k,t) =
[

G11(k,t) G12(k,t)
G21(k,t) G22(k,t)

]
, (19)

with the normal Green’s function parts G11,22 and the anoma-
lous function parts G12,21 as the 6×6 submatrices. The triplon
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self-energy has the same matrix structure:

�(k,t) =
[

�11(k,t) �12(k,t)
�21(k,t) �22(k,t)

]
. (20)

The Green’s function and the self-energy are related by the
Dyson equation

G(k,ω) = G0(k,ω) + G0(k,ω)�(k,ω)G(k,ω). (21)

In the momentum-frequency space, the bare Green’s function
G0(k,ω) for the Hamiltonian H0 is a diagonal matrix with the
matrix elements

[
G11

0 (k,ω)
]
mn

= δmn

ω − ωm(k) + iη
, (22)

where ωm(k) (m = 1, . . . ,6) are the triplon eigenvalues ob-
tained from HMF and η = 0+. The other piece of the diagonal
elements is given by the relationship G22

0 (k,ω) = G11
0 (−k, −

ω). Using the Dyson equation, we can express the full
Green’s function in terms of the bare Green’s function and
the self-energy. For example, one can obtain

(G11)-1 = (
G11

0

)-1 − �11 − �12
[(

G22
0

)-1 − �22
]-1

�21,

G21 = [(
G22

0

)-1 − �22
]-1

�21G11, (23)

and similarly for G22,12.

D. One-loop self energy

Let us consider one-loop self-energy correction. One-loop
diagrams are drawn in Fig. 6 for the part �11(k) of the
self-energy. The diagrams are translated into the following
equation:

[�11(k)]mn

= 1

2

∑
p

∑
a,b

Y ∗
2 [pa,(k-p)b; km]Y2[pa,(k-p)b; kn]

k0 − ωb(−k + p) − ωa(p) + iη

+ 1

2

∑
p

∑
a,b

Y3[pa,(-k-p)b,km]Y ∗
3 [pa,(-k-p)b,kn]

−k0 − ωb(k + p) − ωa(p) + iη
. (24)

Here, we are using the abbreviated notation k = (k0,k) with
k0 and k being the frequency and the momentum, respectively,
and m,n,a,b(=1, . . . ,6) are triplon band indices. Aside from
the two diagrams in the figure, there is one more possible
diagram having the vertices Y2 and Y ∗

2 . However, it vanishes
with no contribution to the self-energy. Other parts of the
self-energy can be calculated in similar ways.

FIG. 6. One-loop diagrams for the self-energy �11(k).

E. Spectral function

The Green’s function can be calculated by inserting the one-
loop self-energy into the Dyson equation [Eq. (21) or (23)]. We
will extract information about the triplon modes by computing
the spectral weight function of the Green’s function. For
positive frequencies of our interest, the spectral function is
defined as

A(k,ω > 0) = − 1

π
Im{tr[G(k,ω)]}. (25)

As a simple example, one can check that A0(k,ω) =∑6
n=1 δ[ω − ωn(k)] for the noninteracting Hamiltonian H0.

With the triplon interaction V , the delta-function peaks rep-
resenting the bare triplon modes are modified into finite-size
peaks having renormalized energy and nonzero width. If the
peak is still well defined with large height and narrow width,
the associated triplon mode survives as a quasiparticle with a
finite lifetime. In the next section, we analyze the triplon modes
and their decay processes by looking at the peak structures of
the spectral function.

F. Results

Here, we present the results of the interacting triplon theory.
We control the coupling constants such that the quasiparticle
peak structures in the spectral function A(q,ω) match the
neutron scattering data. The resulting renormalized coupling
constants are then obtained as follows:

J1 = J2 = J ′
2 = J4 = 10 meV, J3 = 0.2J1,

Da
1 = Db

1 = 0.3J1, �ab
1 = �ba

1 = 0.045J1. (26)

Compared to the previous estimation in Eq. (12), the
Heisenberg couplings have been increased and the anisotropic
couplings D1 and �1 have been somewhat reduced with the
inclusion of the triplon interactions. Such reductions of the
anisotropic couplings reflect the fact that the D1 couplings
have sizable energy renormalization effects contributing to the
energy splittings around the spin gap.

The spectral function A(q,ω), calculated for the coupling
constants [Eq. (26)], is plotted in Fig. 7 with the two different
styles: (a) line and (b) color map. In Fig. 7(a), we find
that the triplon phenomenology mentioned before is well
captured in the spectral function. First of all, the spin gap is
found at k = 0.575 with the energy �th 	 1.1 meV, which is
comparable to the measured value �ex = 1.67 meV. Around
the spin gap, three separated triplon modes are found with
the energy splittings of �ωth ∼ 2 meV consistently with the
experimental result �ωex = 2 ∼ 3 meV. The energy splittings
around the spin gap are mainly the energy renormalization
effects of the D1 couplings among the anisotropic couplings
in Eq. (26). One can notice this from the comparable sizes of
�ωex and D

a,b
1 (=3 meV) and the small ratio �1/D1 = 0.15.

Next, moving inside the triplon continuum region (gray),
the triplon modes undergo substantial decay processes as
shown in significantly broadened quasiparticle peak structures.
Remarkably, the triplon continuum predicted in the bond
operator theory matches well the region where the decay
processes are found in the neutron scattering experiments.
This can be seen in comparison with the experimental data in
Fig. 7(b). The second (green) and third (blue) lowest triplon
modes observed in the experiments disappear or lose their
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FIG. 7. Spectral function A(q,ω) in the interacting triplon theory. The spectral function is computed for the coupling constants in Eq. (26)
and plotted in the two different styles: (a) with lines and (b) with a color map. It is compared with the neutron scattering data of Ref. [12]
(denoted with color dots). The gray shaded region in (a) and the solid gray line in (b) denote the multitriplon continuum computed with
Eq. (13) and the bare triplon dispersions from H0(=HMF). The dashed gray line represents the lower boundary of the continuum obtained in
the quadratic theory. In the plot (b), the triplon continuum is partially revealed by two-triplon states generated by the triplon fusion channels in
V(=Hcubic). The two-triplon states are spread down to the solid gray line with weak intensities in the plot.

prominence above the solid gray line that represents the lower
boundary of the triplon continuum calculated with HMF. For
comparison, we also show the lower boundary obtained in
the quadratic theory (dashed gray line) in the same plot. The
decay processes are mainly caused by the D1 couplings with
a minor contribution from the J3 coupling (see Sec. IV B). It
is confirmed by conducting computations with one of the two
couplings being turned off.

G. Discussions

Among several experimental features in the triplon dy-
namics, the downward bending of the lowest triplon energy
dispersion [red dots in Fig. 7(b)] is not clearly explained
in the current theory. For the bended part of the dispersion,
we can think of two possibilities: (i) two-triplon bound state
and (ii) the level repulsion by the triplon continuum. The
former idea naturally arises by noting that the bended part
has a similar shape to that of the gray line. Although the
bended part disappears at certain momentum, it could be a
matrix element effect. Such two-triplon state contributions to
the spin structure factor have been observed in the compound
SrCu2(BO3)2 [22,23].

On the other hand, the bended dispersion could be an
effect of the level repulsion by the continuum as proposed in
Ref. [12]. In our theory, the effects of the couplings between
the single- and two-triplon excitations were implemented via
the one-loop self-energy in the single-triplon propagator; the
level repulsion effect appears to be rather small at the one-loop
level. To investigate the full level repulsion effect, it may
be necessary to take into account higher-order corrections or
consider the single- and two-triplon sectors on equal footing.

In both cases, these considerations would provide a unique
opportunity to investigate interesting multiparticle dynamics

caused by anisotropic spin interactions. We leave this problem
as an interesting subject of future study.

Now, we comment on the coupling constants estimated
from the triplon theory. Due to many independent exchange
couplings in the spin model, we considered the simplest
parameter regime [Eq. (26)] that captures essential features
of the neutron scattering data (see Appendix C). Nonetheless,
we find that the overall energy scale of the parameter regime
is consistent with a previous estimation in Ref. [5]. Table II
shows our results in comparison with theirs. Despite various
differences between the two works, both results have an almost
same average value of the Heisenberg couplings per a unit
cell: (4J1 + 2J2 + 2J ′

2 + 2J3 + 2J4)/12 	 8.6 meV. A major
difference is that in Ref. [5] J ′

2 is evaluated to be much smaller
than J2 while in our triplon theory such a dissimilarity between
J2 and J ′

2 is not crucial for describing the neutron data. We
hope this point is clarified in future studies.

TABLE II. Comparison of our work with Ref. [5]. The second and
third rows indicate experimental results and theoretical approaches
employed in the two works.

Ref. [5] This work

Magnetic susceptibility Neutron scattering
(polycrystal) (single crystal)

Exact diagonalization Bond operator theory
(Heisenberg model) [generic model in Eq. (1)]

J1=140 K 	 12 meV J1 = J2 = J ′
2 = J4 = 10 meV

J2 = J1 J3 = 0.2J1

J ′
2 = 0.5J1 Da

1 = Db
1 = 0.3J1

J4 = 0.75J1 �ab
1 = �ba

1 = 0.045J1
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The DM interactions responsible for magnetic anisotropies
in BiCu2PO6 were estimated in our study. Although various
experimental results could be well described and understood
by our theory, the magnitudes of the estimated DM interactions
are quite large (Da,b

1 /J1 = 0.3) compared to the values usually
found in copper oxides. This may change once higher-order
contributions are taken into account in the triplon self-energy
(beyond the one-loop level). For a more accurate estimation
of the coupling constants, the microscopic spin model may
be directly studied with numerical techniques. Further exper-
imental information such as electron spin resonance (ESR)
measurements will be also helpful for determining the DM
interactions more precisely [24–26].

V. SUMMARY AND OUTLOOK

In this paper, we provided theoretical analysis of the
rung-VBS ground state in BiCu2PO6 by constructing a
minimal spin Hamiltonian and developing a comprehensive
theory of triplon dynamics. In comparison with the neutron
scattering experiment data, it is shown that the anisotropic
spin interactions (D1 and �1) are crucial to explain the
unusual quantum numbers carried by the triplons and the decay
processes of the triplons to the multitriplon continuum.

Our results would provide essential information for various
ongoing studies of BiCu2PO6. In particular, the recent high-
field experiments found a series of field-induced quantum
phase transitions [7]. Nature of the field-induced phases has
not been clearly understood, in part due to the lack of the
spin Hamiltonian incorporating anisotropic spin interactions.
We believe that the spin Hamiltonian presented here, together
with the information about the spin content of the triplons, is
a good starting point for the study of the field-induced phases.
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APPENDIX A: ANISOTROPIC SPIN INTERACTIONS

The low-energy spin Hamiltonian in Eq. (1) can be derived
from the microscopic Hubbard model consisting of the electron
hopping h and the onsite Coulomb repulsion U :

H =
∑
i>j

c
†
iαhij,αβcjβ + U

∑
i

ni↑ni↓. (A1)

The electron hopping amplitude generically consists of the
spin-independent (t) and spin-dependent (v) parts:

hij,αβ = tij δαβ + ivij · σ αβ, (A2)

where σ are the Pauli matrices and α,β ∈ {↑,↓} are the spin
indices. The spin-dependent hoppings have their origin in
the atomic spin-orbit coupling. The corresponding hopping
amplitude vij is a three-component pseudovector satisfy-
ing vji = −vij . Taking the large Coulomb interaction limit
(U/h  1) with the half-electron filling (one electron per
site) and developing a degenerate perturbation theory, one
can obtain the spin Hamiltonian in Eq. (1) as a low-energy
effective model [16,27]. The coupling constants are defined in
the following way:

Jij = 4t2
ij

/
U, Dij = 8tij vij /U,

�
μν

ij = (
8v

μ

ij v
ν
ij − 4δμνv2

ij

)/
U. (A3)

It is clear from the expressions that the Dzyaloshinskii-Moriya
and anisotropic and symmetric interactions share the same
origin in the spin-orbit coupling. Their relationship in Eq. (2)
is obtained from the above microscopic expressions for the
coupling constants.

APPENDIX B: QUADRATIC HAMILTONIAN

The quadratic Hamiltonian takes the following form:

Hquad = 2Nuc

[
−3

4
J4s̄

2+μ(1−s̄2)

]
+

∑
r

2∑
m=1

(
1

4
J4−μ

)
t†mα(r)tmα(r) − s̄2

4

∑
r

(
J αβ

1 +J βα

1

)
[t†1α(r)t2β(r)+t

†
1α(r)t†2β(r)]+H.c.

− s̄2

4

∑
r

(
J̃ αβ

1 +J̃ βα

1

)
[t†1α(r)t2β(r−Rb)+t

†
1α(r)t†2β(r−Rb)]+H.c.

+ s̄2

4

∑
r

(
J αβ

2 + J ′βα

2

)
[t†1α(r)t1β(r + Rb) + t

†
1α(r)t†1β(r + Rb)] + H.c.

+ s̄2

4

∑
r

(
J αβ

2 + J ′βα

2

)
[t†2α(r)t2β(r − Rb) + t

†
2α(r)t†2β(r − Rb)] + H.c.

− s̄2

4

∑
r

J αβ

3 [t†1α(r)t1β(r−Rc)+t
†
1α(r)t†1β(r−Rc)]+H.c.− s̄2

4

∑
r

J αβ

3 [t†2α(r)t2β(r+Rc)+t
†
2α(r)t†2β(r+Rc)]+H.c.

− s̄2

4

∑
r

2∑
m=1

(
J αβ

4 − J4δ
αβ

)
[t†mα(r)tmβ(r)+t†mα(r)t†mβ(r)]+H.c. + i

∑
r

2∑
m=1

gμBHαεαβγ t
†
mβ(r)tmγ (r). (B1)
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Here, Nuc is the number of unit cells and r denotes a lattice
vector. The coupling constant matrices denoted with J ’s are
combinations of the J , D, � couplings. For example,

J αβ

1 = J1δ
αβ + D

γ

1 εγαβ + �
αβ

1 , (B2)

with �1 related to J1 and D1 through Eq. (2). The J̃1 matrix
is defined by flipping the sign of Db

1 (Db
1 → −Db

1 ) in the
expression of J1. The other J matrices are defined in similar
fashions. As mentioned in Sec. III A, the D1 couplings cancel
each other in the quadratic Hamiltonian. To be specific, due to
the antisymmetric nature of the DM matrix (Dγ

1 εγαβ), we have
J αβ

1 + J βα

1 = 2(J1δ
αβ + �

αβ

1 ) and similarly for J̃ αβ

1 + J̃ βα

1 .

APPENDIX C: DETERMINATION OF EXCHANGE
COUPLINGS IN THE QUADRATIC THEORY

In the quadratic theory, we focus on a low-energy re-
gion around the spin gap. The measured spin-gap positions
[±q� = ±(0,0.425,0)] provide a useful constraint on the
Heisenberg coupling constants. The constraint can be obtained
by comparing the measured value with the analytic expression
for the spin-gap position:

kth = 1

π
cos−1 J1

2(J2 + J ′
2)

. (C1)

Notice that kth only depends on the ratio of J1 to J2 + J ′
2

[6]. The above expression is derived from the quadratic bond
operator theory only with the Heisenberg interactions. Upon
the inclusion of anisotropic interactions, the spin-gap position
remains almost the same with a slight shift, which means
that the position is determined mainly by the Heisenberg
interactions J1, J2, J ′

2, that generate frustration in the system.
Comparison of the theory prediction kth with the measured
value kex = 0.425 leads to the condition J1 	 (J2 + J ′

2)/2.
We choose the simplest case J1 = J2 = J ′

2 that satisfies the
condition. Additionally, we impose another condition J1 = J4.
These constraints are overall consistent with the previous
estimation for the Heisenberg couplings in Ref. [5]. Although
the latter argued that J2 = 2J ′

2 with J1,2,4 being comparable to
each other, J2 and J ′

2 are not distinguished in the bond operator
Hamiltonian (as pointed out in Sec. III A). For simplicity, we
set J2 = J ′

2.
We find that the relatively weak coupling J3 should

be antiferromagnetic (J3 > 0) to reproduce experimentally
observed curvatures of the triplon dispersions at ±q�.

As for the DM vectors, at least two components along
different directions are necessary in order to completely
break the spin rotation symmetry as observed in the neutron
scattering experiments. Da

1 and Db
1 (and associated �1) are

found to be enough to describe low-energy triplon physics as
shown in Secs. III B and III C.

APPENDIX D: MEAN FIELD DECOUPLING

We explain the mean-field decouplings of the quartic terms
in Hquartic. The quartic terms of the spin interactions at the link
ij are given as follows:

J αβ

ij Sα
i S

β

j → − 1
4J

αβ

ij εαμνεβρσ t
†
iμtiν t

†
jρtjσ , (D1)

where J αβ

ij is a coupling constant matrix containing all the
couplings (J,D,�) at the link ij . The quartic term is decoupled
with two mean field channels in the following way:

t
†
iμtiν t

†
jρtjσ → 1

2

[
Qνσ

ij t
†
iμt

†
jρ + Q

∗μρ

ij tiν tjσ − Q
∗μρ

ij Qνσ
ij

]
+ 1

2

[
P

νρ

ij t
†
iμtjσ + P

∗μσ

ij tiν t
†
jρ − P

∗μσ

ij P
νρ

ij

]
,

(D2)

where the mean field parameters are defined as

Qνσ
ij = 〈tiν tjσ 〉, P

νρ

ij = 〈tiν t†jρ〉. (D3)

Although we used the site notation i,j in the above for
notational simplicity, in practice the computation is done with
dimer indices, e.g., i = (m,a) with the dimer index m(=1,2)
and the spin index a(=L,R) in the dimer. At each interdimer
interaction link, there are two mean field parameters Q and P ,
each of which is represented by a 3×3 matrix.

APPENDIX E: TRIPLON DECAY AND FUSION CHANNELS

Cubic terms in the bond operator theory survive when the
system has couplings that are not invariant under the global
site interchange at each dimer. Under the site interchange, the
bond operators, based on the spin-singlet and spin-triplet basis,
transform as (

s

tα

)
→

(−s

tα

)
(E1)

with α = x,y,z. Since each cubic term contains one s boson
and three t bosons, the cubic term changes its sign under
the site interchange. If all the couplings in the system are
invariant under the site interchange, then the cubic terms
vanish. However, the spin model (1) has various couplings
that can generate the cubic terms. We list below such couplings
with the conditions for the nonzero cubic terms:

(i) J2 and J ′
2 when J2 �= J ′

2;
(ii) J3;
(iii) D1 = (Da

1 ,Db
1 ,D

c
1);

(iv) D2 = (Da
2 ,0,Dc

2) and D′
2 = (D

′a
2 ,0,D

′c
2 ) when

D2 �= −D′
2;

(v) D3 = (0,Db
3 ,0);

(vi) D4 = (0,Db
4 ,0).

For simplicity, we have presented only the J and D

couplings without the less important � couplings in the decay
processes.
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