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We study layered systems and heterostructures of s-wave superconductors by means of a suitable generalization
of dynamical mean-field theory. In order to reduce the computational effort, we consider an embedding scheme in
which a relatively small number of active layers is embedded in an effective potential accounting for the effect of
the rest of the system. We introduce a feedback of the active layers on the embedding potential that improves on
previous approaches and essentially eliminates the effects of the finiteness of the active slab allowing for cheap
computation of very large systems. We extend the method to the superconducting state, and we benchmark the
approach by means of simple paradigmatic examples showing some examples on how an interface affects the
superconducting properties. As examples, we show that superconductivity can penetrate from an intermediate
coupling superconductor into a weaker coupling one for around ten layers, and that the first two layers of a
system with repulsive interaction can turn superconducting by proximity effects even when charge redistribution
is inhibited.
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I. INTRODUCTION

The advances in manufacturing and handling heterostruc-
tures are in the forefront of solid state research. In particular,
heterostructure based on oxides have a huge potential thanks
to the rich physics of their constituents. Combining different
oxides one can even engineer and tailor electronic and
magnetic states which can be completely different from those
of the bulk constituents. The possibility to control these
emergent and intrinsic properties of the constituents opens
an avenue towards the realization of new devices based on
correlated electrons.

One of the most studied examples of the novel physics
at oxide interfaces is the appearance of a high-mobility
electron gas at the interface between the band insulator
SrTiO3 (STO) and the Mott insulator LaTiO3 (LTO) [1].
This nearly two-dimensional metal can be easily manipulated
through gate voltages and turned into a superconductor [2,3]
which strikingly appears combining two nonsuperconducting
materials. Superconductivity has also been observed at inter-
faces between two band insulators such as STO and LaAlO3

(LAO) [4], while interfaces between different copper-based
superconductors have a critical temperature higher than the
bulk constituents [5,6].

The aim of this work is to develop a reliable formal-
ism to study superconductivity in heterostructures beyond
simplifying limits such as the Bardeen-Cooper-Schrieffer
(BCS) approximation. In order to test the methods, we limit
ourselves to s-wave superconductors with an instantaneous
attraction. In order to treat superconductivity beyond any
perturbative approach we use dynamical mean-field theory
(DMFT) [7]. DMFT has proven successful to treat electron-
electron interactions [7], electron-phonon coupling [8–11] and
their interplay [12–20], as well as for the attractive Hubbard
model [21–28], where the evolution of superconductivity well
beyond the weak-coupling BCS regime has been studied in
detail.

The extension of DMFT to treat surface and interface
effects has been pioneered by Potthoff and Nolting [29,30]
who introduced a layer generalization of DMFT and applied

it to a solid-vacuum interface in the presence of a short-range
Coulomb interaction as described by the Hubbard model.
Josephson junctions formed by superconductors and either
normal or correlated metals have been studied treating the
superconducting system by means of the Bogoliubov–de
Gennes equations [31–34]. Including long-range Coulomb
interactions Okamoto and Millis [35,36] and Kancharla and
Dagotto [37] have considered charge-transfer effects and
proposed that the charge leakage from one layer to another is
responsible for the metallic interface between LTO and STO.

As we discuss in more detail in the following, when
DMFT is extended to inhomogeneous systems, the inclusion
of more and more layers is the bottleneck of the calculation.
Therefore the main limitations are finite-size effects and a
slow convergence to the bulk limit (infinite number of layers).
Ishida and Liebsch have proposed and implemented [38,39]
a strategy to overcome this limitation. The idea is to treat
explicitly only a finite slab with a relatively small number of
layers and to effectively describe the rest of the system with
an energy-dependent embedding potential. This strategy has
been shown to reduce the finite-size effects with respect to a
finite slab calculation.

In this work we extend previous studied in two directions:
(i) we extend the embedding potential to the superconducting
state and (ii) we introduce a “feedback” effect of the slab
onto the rest of the system which is shown to improve the
performance of the embedding method making the finite-size
effects essentially negligible already for relatively small slab
sizes.

As mentioned above, the first purpose of this paper is to
demonstrate the feasibility of this approach for superconduct-
ing state and to study the evolution of the physics as a function
of the coupling strength. To this aim we present results for
different heterostructures (solid-vacuum interface, interface
between two superconductors with different coupling, inter-
face between Mott insulator and superconductor) and we char-
acterize the proximity effects in the three cases, showing how
different observables are differently impacted by the presence
of an interface. This method can be straightforwardly extended
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to electron-phonon superconductors. In principle our method
can also be extended to d-wave superconductors using cluster
extension of DMFT. Yet we believe that our benchmarks for
s-wave superconductors are precious to disentangle the effect
of intermediate and strong coupling which will certainly be
present for d-wave superconductors.

The paper is organized as follows. In Sec. II we introduce
the model and the general concept of layered DMFT and the
embedding approach. Section III is dedicated to the extension
of the approach to superconducting systems and to our recipe
for the embedding potential. Section IV describes our results
for different physical configurations, while Sec. V contains
conclusions and perspectives.

II. MODEL AND METHOD

In this section we introduce our approach to extend previous
DMFT-based approaches to heterostructure to allow for super-
conductivity. For the sake of clarity, in the first subsection we
briefly review the DMFT formalism in the superconducting
state and some aspects of the exact diagonalization solution of
DMFT that we employ in our practical implementation.

A. Single-site DMFT and superconductivity

Dynamical mean-field theory is one of the most popular
and successful theoretical methods to treat strongly correlated
electron systems. It extends the classical mean-field approach
to the quantum dynamical domain by mapping a lattice
model onto an effective impurity model. In the latter an
interacting lattice site is hybridized with a noninteracting bath,
self-consistently determined.

In this section we present the DMFT method for super-
conducting solutions in the specific case of the attractive
Hubbard model, which can be considered the simplest model
for an s-wave superconductor. However, the same equation
would be found for example for an electron-phonon model
or even for models without an explicit source of pairing,
where superconductivity may arise from the balance between
competing interactions.

The Hamiltonian reads

H = −t
∑
〈ij〉σ

(c†iσ cjσ + H.c.) −
∑

i

μ(ni↑ + ni↓)

−U
∑

i

ni↑ni↓, (1)

where the sums run over the sites i and j of a lattice, ciσ (c†iσ )
are annihilation (creator) operators for fermions with spin σ

on site i,t is a nearest-neighbor hopping amplitude, U is a
positive energy measuring the strength of the on-site attractive
interaction, and μ is the chemical potential. This model is
known to have an s-wave superconducting ground state for
any value of the coupling U and it has been extensively
studied by means of DMFT [21–28]. We mention that the
half-filled attractive Hubbard model can be mapped exactly
onto the repulsive Hubbard model. Under this transformation,
the superconducting state maps onto a two-component (XY )
antiferromagnetic state. Therefore our study can also be

representative of heterostructure with anisotropic (easy plane)
magnetic ordering.

Within DMFT, the lattice model is mapped onto an impurity
model that may be written as

Himp =
Nb∑
lσ

[εl ĉ
†
lσ ĉlσ + (Vlĉ

†
lσ ĉ0σ + H.c.)]

+ �l

2
(ĉlσ ĉlσ̄ + H.c.)] − Un̂0↑n̂0↓ − μ(n̂0↑ + n̂0↓),

(2)

where ĉ
†
0σ and n0σ are the creation and number operators

of a particle with spin σ on the impurity site 0, where the
interaction is present, while ĉ

†
lσ creates a particle in lth level of a

noninteracting bath which is parametrized by the energy levels
εl , the superconducting amplitudes �l , and the hybridizations
Vl . The amplitudes �l give rise to an anomalous component
of the hybridization function between the impurity and the
bath which is necessary to treat the superconducting phase.
The impurity model is completely characterized by the two
functions

G−1
o(11)(iωn) = iωn + μ +

∑
l

|Vl|2 iωn + εl

ω2
n + ε2

l + �2
l

,

G−1
o(12)(iωn) =

∑
l

|Vl|2 �l

ω2
n + ε2

l + �2
l

, (3)

which are the two independent component of a dynamical
Weiss field.

We then see below the Green’s function at the impurity
site G = −〈T c0σ (τ )c†0σ 〉 and its anomalous component F =
−〈T c

†
0σ (τ )c†0σ ′ 〉 from which we build the impurity Green’s

function matrix in the Nambu spinor basis:

Ĝ =
(

G(iωn) F (iωn)
F (iωn) −G(iωn)�

)
. (4)

From (5) and the Weiss field matrix

Ĝ−1
o =

(
G−1

o(11)(iωn) G−1
o(12)(iωn)

G−1
o(12)(iωn) −G−1

o(11)(iωn)�

)
(5)

we construct the self-energy as �̂ = Ĝ−1
o − Ĝ−1.

The DMFT approximation is enforced requiring that the
local Green’s functions [Eq. (5)] coincide with the local
components of the lattice Green’s function Ĝlat(iωn) =∫

dερ(ε)[iωn1(2) + (μ − ε)σ̂3 − �̂(iωn)]
−1

,ρ(ε) being the
noninteracting density of states.

A practical implementation of DMFT requires us to
recursively solve the impurity model calculating G and F .
This allows us to compute the self-energy matrix and a new
Weiss field (Ĝ−1

o )new = �̂ + Ĝ−1
lat . The process is iterated until

the Weiss fields and the other quantities are converged. In the
present implementation of DMFT, we find the ground state
and the Green’s function of the impurity Hamiltonian using
a Lanczos algorithm [40,41]. In order to obtain a finite and
affordable matrix, the sums over l in Eq. (2) are truncated to
a finite value Nb. The particle-hole symmetry is implemented
at half-filling and the Hamiltonian is block diagonal according
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to the value of Sz, while the particle number is not conserved
in the superconducting state. Small values of Nb have been
shown to be sufficient to obtain converged thermodynamic
observables [42]. For the calculations presented in this
paper we used Nb = 7 and we checked that results do not
change increasing the number of bath sites up to Nb = 9.
The exact diagonalization solution of DMFT involves one
more step with respect to the algorithm we described. After
the self-consistency condition is used to find the new Weiss
field, these functions need to be cast in the form (3) with a
discrete value of Nb. This can be achieved by fitting the new
Weiss fields with Eq. (3) which has to be interpreted as a
function of the “Anderson parameters” εl,Vl , and �l . The fit
procedure is performed through a conjugate gradient routine
in which a distance between the new Weiss field obtained via
the self-consistency and the generic form Eq. (3) is minimized
as a function of the Anderson parameters. The distance can be
written as

χ =
NMAX∑

n

w(iωn)
∣∣(Ĝ−1

o

)
new(iωn) − (

Ĝ−1
o

)
(iωn)

∣∣. (6)

Different distances can be defined by changing the number of
frequencies NMAX, the fictitious temperature β used to define
the Matsubara frequency, and the frequency-dependent weight
w(iωn). All the results obtained here are robust with respect
to changes of the above parameters [41,42].

B. Superconducting DMFT applied to heterostructures
and embedding potentials

In the previous subsections we introduced single-site
DMFT for bulk superconductors, in which full translational
invariance is enforced and any lattice site is equivalent. In order
to study layered systems we need to use a suitable extension
of DMFT able to treat inhomogeneous systems with a layered
geometry. We focus on a simple cubic lattice partitioned into
N layers stacked along the (001) direction. Within each layer
translational invariance is assumed and the two-dimensional
wave vector k‖ = (kx,ky) is a conserved quantity.

The Green’s function ĜS of a slab made of N super-
conducting layers can be expressed as a 2N × 2N matrix
corresponding to the two components of Nambu spinors and
to the N layers

ḠS(k,iωn) = [(iωn1(2) + μσ̂3) ⊗ 1(N) − ε̄k − �̄(iωn)]−1,

(7)
where 1(N) is the N -dimensional identity matrix and σ̂3 is the
third Pauli matrix. 2N × 2N matrices are identified by a bar.
The single-particle dispersion matrix is given by

ε̄k =

⎛
⎜⎝

ε
‖
1σ̂3 ε⊥

12σ̂3 0

ε⊥
21σ̂3 · · · · · ·
0 · · · ε

‖
N σ̂3

⎞
⎟⎠ (8)

whose elements are ε‖
αα = −2tα[cos (kx) + cos (ky)] and

ε⊥
αβ = tz. The self-energy matrix is instead a block-diagonal

matrix

�̄(iωn) =
⎛
⎝�̂1 0 0

0 · · · 0
0 0 �̂N

⎞
⎠, (9)
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FIG. 1. Validation of our embedding scheme with feedback. We
plot � for a ten-layer embedded system with uniform U/t = −9 at
half-filling. The red line with squares is for the open slab, the green
with dots marks the results with the embedding potential, while the
blue line with triangles denotes the data corrected with the feedback
of the slab. Black crosses on the two sides of the slab report the
bulk DMFT result. The embedding+feedback results are essentially
uniform.

where each element is a 2 × 2 block with normal and
anomalous components corresponding to the local self-energy
of an individual layer. The underlying approximation is that
the self-energy remains local �̄ij = δij �̄i and it is uniform
within each layer, while the different layers are allowed to
have different self-energies �̄α , each associated with a local
effective impurity problem. An explicit solution requires us to
solve as many impurity models as the number of layers, from
which the individual self-energies are obtained and plugged
into Eq. (7). Summing over the momenta within each layer
leads to a set of local Green’s functions which are then imposed
to coincide with the impurity Green’s functions.

As opposed to single-site DMFT, we are therefore limited
to a finite system along the z direction, which can lead to
finite-size effects, that are enhanced if we use an open slab,
where the electrons on the outmost layers become effectively
more interacting because of the missing neighbors (Fig. 1). A
possible solution to overcome this limitation is to sandwich
the finite slab of N layers into two media [38,39], effectively
accounting for the presence of bulk layers.

Using the notations of Ref. [43] we define the matrix inverse
of (7)

ÂS(k,iωn)ĜS(k,iωn) = 1(2N). (10)

Partitioning the infinite three-dimensional system into a slab
(S) and two “bulk” samples (BR and BL) we can rewrite
Eq. (10) as⎛
⎝ ÂBL

ÂBL1 0
Â1BL

ÂS ÂBRN

0 ÂNBR
ÂBR

⎞
⎠

⎛
⎝ ĜBL

ĜBL1 0
Ĝ1BL

ĜS ĜBRN

0 ĜNBR
ĜBR

⎞
⎠ = 1,

(11)
where the matrices are now (2N + 4) × (2N + 4). The diag-
onal elements of the two matrices are the Green’s functions

235125-3



FRANCESCO PETOCCHI AND MASSIMO CAPONE PHYSICAL REVIEW B 93, 235125 (2016)

and the A functions for the slab (S) and the two semi-infinite
substrate which embed the interacting slab. The nonzero
off-diagonal elements describe the processes connecting the
“left” effective substrate with layer 1 of the slab and the “right”
substrate with layer N of the slab. From this we can single out
the equation for the slab Green’s function(

ÂS − Â1BL
Â−1

BL
ÂBL1 − ÂNBR

Â−1
BR

ÂBRN

)
ĜS = 1(2N), (12)

which shows how the 1 and N indices are affected directly by
the presence of the two semi-infinite bulks. The explicit result
is

ĜS(k,iωn) = [(iωn1(2) + μσ̂3) ⊗ 1(N) − ε̂k − �̂(iωn)

− δα1ŜBL
(k,iωn) − δαN ŜBR

(k,iωn)]−1,

(13)

where we have defined the complex embedding potentials

ŜBL,R
(k,iωn) = t2

z σ̂3ĜBL,R
(k,iωn)σ̂3 (14)

acting on the first and last layer only if the interlayer hopping
is limited to nearest neighbors. Comparing with (7) it is
evident that the only difference is introduced by the embedding
potential at the boundaries of the slab.

C. Choice of the substrate Green’s functions

Here we introduce an optimized strategy to describe
heterostructures in terms of a few “active” layers embedded
between two semi-infinite systems. The starting point is
naturally the surface Green’s function of a semi-infinite
system. We partition a bulk system in two semi-infinite halves
along the piling direction of the layers [44]. As in the rest of
this work, the Green’s functions are assumed to be translational
invariant along each layer and they are labeled according to
the layer index. We denote the surface layer with 0 and, for the
sake of definiteness, we focus on the left system with negative
layer index.

The relation between the Green function of the αth layer in
the left semi-infinite bulk Ĝα and the same layer in the bulk
crystal Ĝbulk

α can be written as

Ĝα = Ĝbulk
α +

∑
β

Ĝbulk
α V̂αβĜβ, (15)

where Vαβ are the hopping matrix elements connecting the
right and left sides with indexes α ∈ 0,−1,−2, . . . and β =
1,2, . . .. We are only interested in the surface layer 0 which is
connected only with the next layer 1 by the diagonal (in the
Nambu space) hopping matrix T̂01, which leads to

Ĝ0 = Ĝbulk
0

(
1(2) − Ĝbulk

1 T̂01
)−1

, (16)

which requires the knowledge of the bulk Green’s function for
the surface layer and for the first layer on the left, which can
easily be computed within DMFT as

Ĝbulk
α =

∫
dk

2π

eikα

iωn1(2) + (μ − ε‖ − 2tz cos k)σ̂3 − �̂(iωn)
,

(17)

where the Green’s function depends on the momenta along the
layers k‖ while the integral on the left-hand side is performed

over the transverse momentum. The self-energy in Eq. (17)
is determined self-consistently solving two more impurity
models coupled with the slab. The Ĝ0 in Eq. (16) defines
the left embedding potential in Eq. (13). The right potential is
obviously identical.

D. Observables

To characterize the superconducting states of our layered
superconductor and its spatial dependence we focused on a
few relevant observables. The most direct evidence of the
superconducting state and its strength is the layer-resolved
zero-temperature pairing amplitude, simply obtained as the
integral of the anomalous part of the αth layer Green’s function

�α = T
∑

n

Fα(iωn) = 〈c†α↑c
†
α↓〉. (18)

Which indeed correspond to the equal-time pair amplitude.
The nature of the superconducting state (for example if the
system is in an effective weak- or strong-coupling regime) can
be characterized in terms of the different contribution to the
total energy. The layer-resolved potential energy is simply

Eα
pot = U 〈n̂o↑n̂o↓〉α, (19)

while the kinetic energy reads

〈
Eα

k

〉 = T
∑

n

∫
dερ(ε)Tr{εσ̂3Ĝα(ε,iωn)}. (20)

Notice that while the global order parameter and potential
energy are simply obtained by summing the contributions from
the different layers, the bulk kinetic energy also includes the
contributions from the interlayer hoppings, which do not con-
tribute to the above 〈Ek〉. Finally we can compute the quasipar-
ticle weight, namely zα = [1 − ∂�11

α (iωn)/∂(iωn)|iωn→0]
−1

.
Where �11

α (iωn) is the normal component of the αth layer
self-energy. We use zα as a measure of the coherence of the
low-lying excitations at the gap edge. In a BCS superconductor
these excitations are completely coherent and we recover
z = 1, while increasing the coupling it decreases even if
slightly.

E. Benchmark for homogeneous systems

Figure 1 presents results for a ten-layer slab for uniform
parameters U/t = −9 and half-filling. In the absence of any
embedding potential, the slab breaks translational symmetry
and the order parameter � becomes larger at the edges. In-
troducing the embedding potential according to the described
scheme, we obtain the results shown as a dotted green line
with large dots in Fig. 1. Here we consider completely uniform
interaction strength, and noticed that the embedding potentials
strongly reduces the inhomogeneity, even if a minor enhance-
ment of the order parameter is clear at the edges of the slab.

In order to further reduce the effects of the finiteness of
the slab, in this work we propose a simple strategy to improve
the scheme, introducing a feedback of the slab on the semi-
infinite bulks. The idea is simply to define a potential created by
the slab onto the semi-infinite bulks on the two edges. This is
simply realized by adding a potential term similar to Eq. (14)
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to the self-energy of each semi-infinite systems

ŜFBL,R
(k,iωn) = t2

z σ̂3ĜS1,N
(k,iωn)σ̂3. (21)

The data in Fig. 1 demonstrate that the feedback further
reduces the inhomogeneity and it allows us to essentially
reproduce the uniform bulk even with a very limited number
of layers.

In Fig. 2 we demonstrate that our feedback performs
accurately for different observables and for any value of the
parameters. We consider again homogeneous parameters and
we vary the value of the interaction U . Here we plot the
average over the slab of �,Z, and of the double occupancy
D as a function of U and we compare with a bulk cubic
lattice (which should be reproduced when the finite-slab
effect are canceled) and, for reference with a two-dimensional
calculation corresponding to a single layer. To illustrate the
general validity of our approach we consider both a negative
U , for which we find superconductivity, and a positive U

model, in which s-wave superconductivity cannot establish
and therefore represents the normal state. The three panels
of Fig. 2 clearly show that for every value of U the three
observables coincide with their bulk counterparts.

III. RESULTS

In this section we present some results using the
embedding+feedback procedure for an attractive Hubbard
model. In this work we limit ourselves to paradigmatic
situations and we postpone to future applications more realistic
setups corresponding to actual materials and heterostructure.
We fix the local density to one electron per site on each layer
by imposing particle-hole symmetry. This obviously freezes
charge redistribution across the interface. We chose to start
with this situation to single out the intrinsic effects due to the
proximity from the effects due to charge transfer across the in-
terface, which would obviously affect the results. Interestingly,
we find important proximity effect even in this case.

A. Weak/strong interacting superconductor

As a first example we consider the interface between two
semi-infinite systems with different values of the attractive
interaction, considering ten active layers for both systems.
In Fig. 3 we present results in which we fix the interaction
at a relatively small interaction U/t = −3 on the left side,
while on the right side we tune the interaction from U/t = −3
to a much larger attraction U/t = −7.5. We present layer-
resolved pairing amplitude �α , quasiparticle weight zα , double
occupancy Dα , and in-plane kinetic energy 〈Ekα〉 as a function
of the layer index α. On the right side of the figure the bulk
values are shown for reference.

We first observe that also in this case our
embedding+feedback scheme provides an essentially
continuous connection between the leads (corrected by the
feedback) and the first layers which we explicitly treat with
layered DMFT. The evolution across the slab is rather smooth,
especially for the order parameter, shown in Fig. 3(a), for
which a significant proximity effect leads to an enhancement
of the order parameter on the left side which penetrates for
almost ten layers. The effect is quantitatively significant.
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FIG. 2. (a) Order parameter �, (b) quasiparticle weight z, and (c)
double occupations expectation value D = 〈n̂o↑n̂o↓〉 vs interaction
strength U at half-filling. Red and blue lines refers, respectively, to
the square and cubic lattice, single site DMFT calculations. Green
dots represents the results for the central plane of an homogeneous
system made of seven layers, similar to the blue one in Fig. 1.

For example the order parameter in the first layer of the
weak-coupling superconductor can be increased by 50%
when the pairing amplitude of the right system is U = −7t .
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FIG. 3. �α,zα,Dα , and −〈Ek〉 in a 20-layer thick heterostructure
formed by two semi-infinite halves. The left half (index � 10) is kept
at U/t = −3, while for the right half (index � 11) we used different
values of the attraction with equal or larger absolute value. The points
outside the heterostructure are those computed starting from the leads’
Green’s functions used to compute the embedding potential ĜB . The
crosses are the results for a bulk DMFT calculation for the cubic
lattice.

Also the right side is substantially affected by the presence
of the weakly coupled superconductor. The reverse effect on
the strong-coupling superconductor is however smaller in
absolute and relative terms with an order parameter which
is reduced at most of 10%. Interestingly the spatial extent
over which the order parameter is affected is not strongly
dependent on the value of the interaction in the right half.
The double occupancy, which is also related to the potential
energy has a similar evolution, but the proximity effects are
limited to a thinner slice of the slab of around three layers and
the relative change induced by proximity is much smaller. A
similar behavior is shown by the layer kinetic energy, which
is negative and larger in amplitude on the left (weak-coupling
side). Interestingly, the presence of the stronger-coupling
superconductors leads to a slight increase of the modulus of
the kinetic energy in the first layers of the weak-coupling
side. Finally, the quasiparticle weight, which can be used
to measure the coherence of the electronic excitations, is
slightly increased in the weak coupling side, and it decreases
in the strong-coupling region, even if all these variations are
relatively small.

In Fig. 4 we present an analogous analysis in which the
left side has a constant U/t = −10 while on the right side the
interaction goes from −10t to −3t . The qualitative results are
similar to the previous even if the proximity effects are reduced
both in their spatial extension and in the strength of the effect
because of the stronger coupling on the left side, which leads
to a short coherence length and the physics becomes more
local. Still, a clear intermediate region, where the physical
quantities smoothly connect, appears. Also in this case, the
effect is quantitatively stronger for the superconducting order
parameter, which is again increased up to a factor 2 on the
weaker-coupling side (now the right half).

B. Correlated metal/superconductor

We now move to a different situation where one of the two
halves of the system would not be superconducting by itself.
On the left side we consider a metal with a finite repulsion
U/t = 4, which would lead to a moderately correlated metal
in a bulk system, while on the right we tune the attractive
interaction from 0 to U = −6t . The results, plotted in Fig. 5,
show that despite the repulsive interaction superconductivity
can penetrate for a few layers of the metal, and that important
effects are observed on the superconducting side. This is a clear
qualitative violation of the local-density approximation even
in the absence of charge redistribution across the interface. The
effect on the order parameter is small but clearly visible (one
obtains an order parameter which is around 0.05 the bulk value
on the superconducting side), while the double occupancy is
essentially unaffected by the connection between the two semi-
infinite systems. The kinetic energy presents an interesting
increase (in modulus) in the first layers of the metallic system,
the same region where superconductivity is able to penetrate
in the repulsive metal.

These results clearly demonstrate that the approach we have
devised is able on one hand to reproduce the bulk results when
we are sufficiently far from the interface and on the other
hand to display nontrivial and interaction dependent proximity
effects, which can lead to important effects in real systems. The
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FIG. 4. �α,zα,Dα , and −〈Ek〉 in a 20-layer thick heterostructure.
The left half (index � 10) is kept at U/t = −10, while for the right
half (index � 11) we used smaller or equal values of the attraction
strength.

FIG. 5. �α,zα,Dα , and −〈Ek〉 in a 20-layer thick heterostructure.
Here on the left side we have a correlate metal with a repulsive
U/t = 4, while on the right side we tune an attractive interaction.
The wiggles in the quasiparticle weight are a numerical artifact due
to the small energy scales involved in the calculation of the derivative.
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effect is generally stronger for the order parameter than for the
other observables we considered.

IV. CONCLUSION

In the present work we have introduced an effective
extension of the embedding approach which allows us to
study heterostructure of interacting systems by means of a
small number of active layers. Our extension is twofold. We
extend the formalism to the superconducting state, and we
also introduce a “feedback” of the slab onto the embedding
potential which reduces the finite-size effects introduced by the
finiteness of the slab. We have demonstrated that the feedback
correction indeed dramatically reduces the effects of a finite
slab and it produces essentially exact results for all the relevant
layer-resolved observables when treating homogeneous bulk
systems.

After having established the accuracy of the refined em-
bedding approach, we have also presented two applications of
the method to paradigmatic situations where a heterostructure
is formed out of two semi-infinite systems separated by
a two-dimensional interface. In particular, we consider a
superconductor with different values of the attractive strength
connected with either a superconductor or a metal with
intermediate repulsive interactions. We find that in the first
case important proximity effects take place and stronger
superconductor increases the superconducting order parameter
for around ten layers for a wide range of parameters. In
the second case superconductivity penetrates in the repulsive
system for around two layers, qualitatively changing the
physics of the system. In both cases the strongest effects are
seen on the order parameters, while the kinetic and potential
energies remain closer to the results for two disconnected
systems. It is worth mentioning that, imposing particle-hole
symmetry and fixing every layer to be half-filled, we freeze

the charge redistribution which would naturally enhance the
effects we describe.

In this paper we limited to the simple attractive Hubbard
model at half-filling in order to benchmark our method and,
more importantly, to single out the effects associated with
the strength of the coupling from the variety of effects
happening at a real interface. Indeed our results demonstrate
that this approach can be used to study interface or heterostruc-
tures involving two superconductors with different coupling
strength, which can be seen as a greatly simplified version
of heterostructures involving copper oxides with different
doping, or heterostructures involving Mott insulators and s-
wave superconductors. However, our method can be extended
to include several realistic features. For example, the approach
can be applied to the paradigmatic LTO/STO system, where the
STO can be modeled as a Mott insulator with positive U , while
LTO can be described as a band insulator with a weak electron-
phonon interaction. The latter can be either approximated with
an attractive Hubbard interaction or with an actual coupling
between the electrons and phononic degrees of freedom.
Indeed our approach can be straightforwardly extended to
models in which the s-wave superconductivity arises from
electron-phonon coupling of the Holstein type. In this case
one could study if the presence of STO can turn LTO into
a superconductor by providing carriers to the band insulator,
thereby activating the BCS pairing as in doped bulk LTO.
Furthermore, the present approach can also be combined with
density-functional theory to introduce the realistic electronic
structure and close the gap with actual materials.
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