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We present a formalism for strongly correlated systems with fermions coupled to bosonic modes. We construct
the three-particle irreducible functional XC by successive Legendre transformations of the free energy of the system.
We derive a closed set of equations for the fermionic and bosonic self-energies for a given KC. We then introduce
a local approximation for X', which extends the idea of dynamical mean-field theory (DMFT) approaches from
two- to three-particle irreducibility. This approximation entails the locality of the three-leg electron-boson vertex
A(iw,i2), which is self-consistently computed using a quantum impurity model with dynamical charge and spin
interactions. This local vertex is used to construct frequency- and momentum-dependent electronic self-energies
and polarizations. By construction, the method interpolates between the spin-fluctuation or GW approximations
at weak coupling and the atomic limit at strong coupling. We apply it to the Hubbard model on two-dimensional
square and triangular lattices. We complement the results of [T. Ayral and O. Parcollet, Phys. Rev. B 92, 115109
(2015)] by (i) showing that, at half-filling, as DMFT, the method describes the Fermi-liquid metallic state and the
Mott insulator, separated by a first-order interaction-driven Mott transition at low temperatures, (ii) investigating

the influence of frustration, and (iii) discussing the influence of the bosonic decoupling channel.
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I. INTRODUCTION

Systems with strong Coulomb correlations such as high-
temperature superconductors pose a difficult challenge to
condensed-matter theory. One class of theoretical approaches
to this problem emphasizes long-ranged bosonic fluctuations,
e.g., close to a quantum critical point as the main ingredient
to account for the experimental facts. This is the starting
point of methods such as spin fluctuation theory [1-6],
two-particle self-consistent theory [7-11], or the fluctuation-
exchange approximation [12]. These methods typically rely
on an approximation of the electronic self-energy as a one-
loop diagram with a suitably constructed bosonic propagator,
neglecting vertex corrections.

Another class of approaches focuses instead, following
Anderson [13], on the fact that the parent compounds of high-
temperature superconductors are Mott insulators and assumes
that Mott physics is essential to describe the doped compounds.
In recent years, dynamical mean-field theory (DMFT) [14]
and its cluster extensions like cellular DMFT [15,16] or
the dynamical cluster approximation [17-19] have emerged
as powerful tools to capture the physics of doped Mott
insulators. Formally based on a local approximation of the
two particle-irreducible (2PI, or Luttinger-Ward) functional &,
they consist in self-consistently mapping the extended lattice
problem onto an impurity problem describing the coupling of
a small number (N,) of correlated sites with a noninteracting
bath. The coarse-grained (short-ranged) self-energy obtained
by solving the impurity model is used as an approximation of
the lattice self-energy.

Cluster DMFT methods have given valuable insights into
the physics of cuprate superconductors, in particular via the
study of the Hubbard model: they have allowed to map
out the main features of its phase diagram, to characterize
d-wave superconductivity or investigate its pseudogap phase

“thomas.ayral @cea.fr

2469-9950/2016/93(23)/235124(25)

235124-1

with realistic values of the interaction strength [20-43].
Moreover, they come with a natural control parameter, the
size N, of the impurity cluster, which can a priori be used to
assess quantitatively the accuracy of a given prediction as it
interpolates between the single-site DMFT solution (N, = 1)
and the exact solution of the lattice problem (N, = o0).
Systematic comparisons with other approaches, in certain
parameter regimes, have started to appear [44]. Yet, cluster
methods suffer from three major flaws, namely (i) they
cannot describe the effect of long-range bosonic fluctuations
beyond the size of the cluster, which can be experimentally
relevant (e.g., in neutron scattering [45—47]); (ii) the negative
Monte Carlo sign problem precludes the solution of large
impurity clusters, (iii) the cluster self-energy is still quite
coarse-grained (typically up to 8 or 16 patches in regimes of
interest [29,31,43,48]) or relies on uncontrolled periodization
or interpolation schemes (see, e.g., Ref. [16]).

Recent attempts at incorporating some long-range corre-
lations in the DMFT framework include the GW+EDMFT
method [49-54] (which has been so far restricted to the
charge channel only), the FLEX+DMFT method [55,56]
and the dual boson method [57-59], all of which introduce
bosonic variables to describe long-range fluctuations. Another
path is taken by the dynamical vertex approximation (DI"A
[60-64]), the dual fermion [65] and the multiscale [66] and
1PI approaches [67], which resort to (approximate) four-leg
vertex functions. In particular, DI"A consists in approximating
the fully irreducible two-particle vertex by a local, four-leg
vertex computed with a DMFT impurity model. This idea has
so far been restricted to very simple systems [63] (“parquet
DTI"A”) or further simplified so as to avoid the costly solution of
the parquet equations (“ladder DI'A” [61]). This makes DT" A
either (for parquet DI'A) difficult to implement for realistic
calculations, at least in the near future (the existing “parquet
solvers” have so far been restricted to very small systems
only [68,69]), or (for the ladder variant) dependent on the
choice of a given channel to solve the Bethe-Salphether equa-
tion. In either case, (i) rigorous and efficient parametrizations
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of the vertex functions only start to appear [64], (ii) two-
particle observables do not feed back on the impurity model in
the current implementations [70], and (iii) most importantly,
achieving control like in cluster DMFT is very arduous: since
vertex-based methods require the manipulation of functions of
three frequencies, their extension to cluster versions [71] raises
serious practical questions in terms of storage and speed.

The TRILEX (TRiply-Irreducible Local EXpansion)
method, introduced in Ref. [72], is a simpler approach. It ap-
proximates the three-leg electron-boson vertex by alocal impu-
rity vertex and hence interpolates between the spin-fluctuation
and the atomic limit. This vertex evolves from a constant in
the spin-fluctuation regime to a strongly frequency-dependent
function in the Mott regime. The method yields frequency and
momentum-dependent self-energies and polarizations which,
upon doping, lead to a momentum-differentiated Fermi surface
similar to the Fermi arcs seen in cuprates.

In this paper, we provide a complete derivation of the
TRILEX method as a local approximation of the three-particle
irreducible functional K, as well as additional results of its
application to the Hubbard model (i) in the frustrated square
lattice case and (ii) on the triangular lattice.

In Sec. II, we derive the TRILEX formalism and describe
the corresponding algorithm. In Sec. III, we elaborate on the
solution of the impurity model. In Sec. IV, we apply the method
to the two-dimensional Hubbard model and discuss the results.
We give a few conclusions and perspectives in Sec. V.

II. FORMALISM

In this section, we derive the TRILEX formalism. Starting
from a generic electron-boson problem, we derive a functional
scheme based on a Legendre transformation with respect to
not only the fermionic and bosonic propagators, but also the
fermion-boson coupling vertex (Sec. II A). In Sec. II B, we
show that electron-electron interaction problems can be stud-
ied in the three-particle irreducible formalism by introducing
an auxiliary boson. Finally, in Sec. I C, we introduce the main
approximation of the TRILEX scheme, which allows us to
write down the complete set of equations (Sec. II D).

Our starting point is a generic mixed electron-boson action

with a Yukawa-type coupling between the bosonic and the
fermionic field:
Seb = Ca[~Gy ' ], 0 + 30a[ W5 '] 505 + AavaCacoa, (1)
¢z and ¢, are Grassmann fields describing fermionic degrees
of freedom, while ¢,, is a real bosonic field describing bosonic
degrees of freedom. Latin indices gather space, time, spin and
possibly orbital or spinor indices: u = (R, 7,0y, ...), Wwhere
R, denotes a site of the Bravais lattice, 7, denotes imaginary
time, and o, is a spin (or orbital) index (o, € {1,]} in a
single-orbital context). Barred indices denote outgoing points,
while indices without a bar denote ingoing points. Greek
indices denote « = (R, 7y,1,), where I, indexes the bosonic
channels. These are for instance the charge (I, = 0) and the
spin (I, = x,y,z) channels. Repeated indices are summed
over. Summation ), is shorthand for ) g p > foﬂ dr.
Go,up (respectively, Wy 4p) is the noninteracting fermionic
(respectively, bosonic) propagator.
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The action (1) describes a broad spectrum of physical
problems ranging from electron-phonon coupling problems
to spin-fermion models. As will be elaborated on in Sec. II B,
it may also stem from an exact rewriting of a problem with only
electron-electron interactions such as the Hubbard model or an
extension thereof via a Hubbard-Stratonovich transformation.

A. Three-particle irreducible formalism

In this section, we construct the three-particle irreducible
(3PI) functional X[G,W,A]. This construction has first been
described in the pioneering works of de Dominicis and
Martin [73,74]. It consists in successive Legendre transfor-
mations of the free energy of the interacting system.

Let us first define the free energy of the system in the
presence of linear (A, ), bilinear (B, F3,) and trilinear sources
(Aave) coupled to the bosonic and fermionic operators,

Q[h,B,F,\]

1 —
= _lnfD[E’C’(p]ef&wha%fg%anﬁfcﬁchv. 2)

We do not need any additional trilinear source term (similar
to h, B and F) since the electron-boson coupling term already
plays this role.

Q[h,B,F,)\] is the generating functional of correlation
functions, viz.,

02
Yo = (Go) = o ; (3a)
ol Fa
0
Was = —(Patp) = =27 : (3b)
B lp F oo
Q2
Gy = —{cuCs) = . (30)
9 Fou h,B,x

The above correlators contain disconnected terms as denoted
by the superscript “nc” (nonconnected).

1. First Legendre transform: with respect to propagators
Let us now perform a first Legendre transform with respect
toh, B,and F:
Dole,G, W™ 1] = Q[h,F,B,A] — Tt(FG)
+ T (BW™) + hoe )
with TrAB = A;,Byi. By construction of the Legendre

transformation, the sources are related to the derivatives of
I' through

ar’ F (52)
= — Ly, a
8lei @, Wne n
ar L (5b)
aTinc = S Dap>
SWE; 6.GA 2
ar’
= hy,. (5¢)
0
(pa G,Wne )
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In a fermionic context, I'; is often called the Baym-Kadanoff
functional [75,76]. We can decompose it in the following way:

Dole,G, W™ 1] = Tap,G, W™ A = 0] + W[p,G, W™ ,A].
(6)
The computation of the noninteracting contribution
I [e,G,W,A = 0] is straightforward since in this case rela-
tions (3a)—(3c¢) are easily invertible (as shown in Appendix C),
so that

Dalp,G. WAl = —TrIn[G '+ Te[(G™' — G, ')G]
+3TrIn [W'T+ 4 Te[(W — oH) W, ']
+Wp,G,W,A], @)

where we have defined the connected correlation function:
Wap = —((¢ — 9)(dp — 9)) = Wi + ¢ (8)

and ¢? denotes the matrix of elements [¢*], s = @y9p. The
physical Green’s functions [obtained by setting F = B = 0 in
Egs. (5a) and (5b)] obey Dyson equations:

Za = [Go']p, — [67 ] (%)
Pag = [W '] = [W '], (9b)

where we have defined the fermionic and bosonic self-energies
¥ and P as functional derivatives with respect to W:

ow
Gy

v
8W5a.

Eﬁv =

(10a)

Pyp=-2 (10b)

The two Dyson equations (9a) and (9b) and the functional
derivative equations (10a) and (10b) form a closed set
of equations that can be solved self-consistently once the
dependence of W on G and W is specified.

The functional W[e,G,W,\] is the Almbladh func-
tional [77]. It is the extension of the Luttinger-Ward functional
®[G][76,78], which is defined for fermionic actions, to mixed
electron-boson actions. While ®[G] contains two-particle
irreducible graphs with fermionic lines G and bare interactions
U [see, e.g., diagram (a) of Fig. 1], ¥[¢,G,W,A] contains
two-particle irreducible graphs with fermionic (G) and bosonic

(a)

FIG. 1. Simplest contribution to 2PI functionals: (a) Luttinger-
Ward functional @ and (b) Almbladh functional W.
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(W) lines, and bare electron-boson interactions vertices A [see,
e.g., diagram (b) of Fig. 1].

Both ® and W can be approximated in various ways, which
in turn leads to an approximate form for the self-energies,
through Egs. (10a) and (10b). Any such approximation, if
performed self-consistently, will obey global conservation
rules [75]. A simple example is the GW approximation [79],
which consists in approximating W by its most simple diagram
[diagram (b) of Fig. 1]. The DMFT (respectively extended
DMFT, EDMFT [80-82]) approximation, on the other hand,
consists in approximating ®[G] (respectively, V[p,G,W,1])
by the local diagrams of the exact functional:

O"VI[G] = )~ O[Gral, (11a)
R

WEPMET [ G, W] = ) " W[p,Gre, Wkl (11b)
R

The DMFT approximation becomes exact in the limit
of infinite dimensions [14]. Motivated by this link between
irreducibility and reduction to locality in high dimensions,
we perform an additional Legendre transform to go one step
further in terms of irreducibilty.

2. Second Legendre transform: with respect to the three-leg vertex
We introduce the Legendre transform of I', with respect

to A:
F3[¢!G$W’ch] = FZ[(P»Gva)\] +)\ﬁuax;gav (12)

where x [  is the three-point correlator:

uvo
02
a)"f)ua

Xuta = (CuCitpa) = — 13)

h,F,B
We also define the connected three-point function x and the
three-leg vertex A as

Xuva = <Cu6ﬁ(¢a - (poz)) = X;ga + Gul’)(pou (14)
Asua = G GoaWog Xusp- (15)

A is the amputated, connected correlation function. It is the
renormalized electron-boson vertex. These objects are shown
graphically in Fig. 2. G;U' is a shorthand notation for [G™'];,.

We now define the three-particle irreducible functional /C

as
’C[(paG’WvA] = lp[(p7G7W’)"] + )Lﬁllax;ga
_%AiuaGwiGuﬁ WaﬂAﬁwﬁ- (16)

Note that in the right-hand site, A is determined by A, G, W,
and ¢ (by the Legendre construction). K is the generalization of
the functional .#3/? introduced in Ref. [74] to mixed fermionic
and bosonic fields. We will come back to its diagrammatic
interpretation in the next subsection.

Differentiating /C with respect to the three-point vertex A
yields K, the generalization of the self-energy at the three-
particle irreducible level, defined as

g OK
Kl_)uot = _G)?ule)ul)WOtﬁl OA - 5 :

a7
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Was

FIG. 2. Graphical representation of the diagrammatic objects of
the electron-boson model [Eq. (1)]: the fermionic propagator G,;
[Eq. (3c)], the bosonic propagator W,s [Eq. (8)], the three-point
correlation function x,s« [Eq. (13)], and the three-leg vertex Agy
[Eq. (15)].

Before proceeding with the derivation, let us first state the
main results: K and A are related by the following relation:

Ajue = Ajua + Ko (18)

This is the equivalent of Dyson’s equations at the 3PI level.
This relation is remarkably simple: it does not involve any
inversion, contrary to the Dyson equations (9a) and (9b). This
relation is illustrated in Fig. 3.

The fermionic and bosonic self-energies ¥ and P are
related to A by the following exact relations:

Eﬁv = _)\ﬁwawa Woz,BA)Ev,B + )Lﬁvut(pay
Paﬁ = )\ﬁwanﬁGw)?A)Euﬂ-

(19a)
(19b)

The second term in X is nothing but the Hartree contribu-
tion. These expressions will be derived later. The graphical
representation of these equations is shown in Fig. 4.

3. Discussion

The above equations, Egs. (17), (18), (19a), (19b), (9a)
and (9b), form a closed set of equations for G, W, A, X, P,
and K. The central quantity is the three-particle irreducible
functional K[¢,G,W,A], obtained from the 2PI functional
algebraically by a Legendre transformation with respect to the
bare vertex X, or diagrammatically by a “boldification” of the
bare vertex.

KC has been shown to be made up of all three-particle
irreducible (3PI) diagrams by de Dominicis and Martin [74]
in the bosonic case. A 3PI diagram is defined as follows: for
any set of three lines whose cutting leads to a separation of
the diagram in two parts, one and only one of those parts is a
simple three-leg vertex A. The simplest 3PI diagram is shown
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FIG. 4. (a) Graphical representation of the self-energy (beyond
the Hartree term) and (b) polarization .

in Fig. 5(a). Conversely, neither diagram (b) of Fig. 1 nor
diagram (b) of Fig. 5 are 3PI diagrams.

Most importantly, the hierarchy is closed once the func-
tional form of K is specified: there is no a priori need for a
higher-order vertex. This contrasts with, e.g., the functional
renormalization group (fRG [83]) formalism (which requires
the truncation of the flow equations) or the Hedin formal-
ism [79,84,85], which involves the four-leg vertex § X /8G via
the following Bethe-Salpether-like expression for K:

K =°266A (20)
== .

Of course, one must devise approximation strategies for /C
in order to solve this set of equations. In particular, any approx-
imation involving the neglect of vertex corrections, like the
FLEX approximation [12], spin fluctuation theory [1,86,87],
the GW approximation [79], or the Migdal-Eliashberg theory
of superconductivity [88,89] corresponds to the approximation

Kle,G,W,Al~ 0 21
which yields, in particular, the simple one-loop form for the
self-energy:

Zﬁv = _)‘ﬁwaGwi Waﬂ)‘ivﬂ + )\ﬁvot(pou
Paﬂ = )\ﬁwanﬁGwX‘)\fcvﬁ~

(22a)
(22b)

These approximations only differ in the type of fermionic
and bosonic fields in the initial action, Eq. (1): nor-
mal/superconducting fermions, bosons in the particle-
hole/particle-particle sector, in the spin/charge channel, etc.
The core idea of the DMFT and descendent methods is to
make an approximation of @ (or W) around the atomic limit.

¢ K

= >'\,+>>ry }r\/ ...

FIG. 3. Graphical representation of the diagrammatic content
of A.

A

[
L4

FIG. 5. Three-particle irreducibility (a) simplest contribution to
the 3PI functional /C and (b) an example of diagram not contributing
to K.
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TRILEX is a similar approximation for /C, as will be discussed
in Sec. II C.

4. Derivation of the main equations

In this section, we derive Eqs. (18), (19a) and (19b).
Combining (7), (12), and (16) leads to

F3[¢7G$W9A] = F2[¢7G7W9)" = O] + ’C[¢5G9W7A]
+ %A)‘cuwGwi Guﬁ WaﬂADwﬁ- (23)
By construction of the Legendre transform I'; [Eq. (12)],

al's
aXMl_)Ot

Adua =

»,G,W
We note that at fixed G and ¢, this is equivalent to differentiat-
ing with respect to x ¢ . Using the the chain rule and then (23)

uva”

and (15) to decompose both factors yields

al's
aAiwﬂ

dA;
Adua = P

©,G,W 8Xuf)a 0,.G,W

oK el p—
— (G + s Wy Ay ) (Gl Gl W)

oK
aAiwﬂ

Using the definition of K, [Eq. (17)], this proves Eq. (18).

Let us now derive Egs. (19a) and (19b). They are well-
known from a diagrammatic point of view, but the point of this
section is to derive them analytically from the properties of K.
In order to obtain the self-energy ¥, we use Eq. (10a). We first
need to reexpress W in terms of C using (16): thus

-1 —1y—1
= GﬁwGiu Wﬁa

+ Af)ua-

V[p,G, WAl = ¥[p,G,W,1, Al
= Klp,G,W,A]
+ Adua Xuse — %AiuaGwiGuﬁWaﬁADwﬁs

where A is a function of ¢, G, W, A. Thus Eq. (10a) becomes

aW[p,G,W,x,A]

Eﬁ‘u =
Gy

o, W,A

This derivative must be performed with care since the electron-
boson vertex now appears in its interacting form A. This yields

v
BGUIZ

BN
Agpy

8A6py
0G y;

Say = (24)

©.W.AA ©,W.,G,A o, W.a

The second term vanishes by construction of the Legendre
transform. Indeed, using (16), (18) and (14):

oV K
aqu,s aqu8

|:]C — )»gry()(rfy - Gri‘py)
o, W,G,\

1
+ EAfuaGwi Guﬁ WaﬂAf)wﬂ:|

= _Gqup&WySKiry - Gr(]Gp§Wy6)¥§ry
+ Grq pr Wyé Afry
=0.
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As a result,

_ 0
3G,

EIZU I:’C - )"Ery(Xriy - Gri(py)

1
+ —A)'cyawaGyZ WaﬁAZwﬁ]

2 o, WA A
K
- - Aﬁya GyZ WaﬁAZvﬂ - Aﬁya GyZ W/Sa)“Zvﬂ
anﬁ

+ )\ﬁvawa + AﬁyaGyZ WaﬂAZvﬂ .
Finally, using (18), we obtain

Ygy = _)"ﬁwaGwi WaﬂAivﬁ + )"f)utx(pa

K
+<3G B + AﬁwaGwi Waﬂvaﬂ>- (25)

Similarly, using (10b), one gets for P

28@[¢,G,W,X,A]

Pop =
p IWa

0,G, A A

=-2

8Wﬁa |:K: - )\iry(Xriy - Grfgoy)

1
+§Aiy8waGyZ Wéy AZwy:|

¢,GA A
K
= -2 + ZAﬁwanﬁGw)?A)‘cvﬁ
IWa
_Aﬁwoz GvﬁGw)?Aivﬂ-

Thus, using (18), we get

Paﬁ = }"ﬁwantZGwiAivﬂ

K
—(28Wﬂa + KuwanquxAxvﬂ)- (26)

Let us now prove that the bracketed terms in Eqgs. (25)
and (26) vanish. We first note from the diagrammatic interpre-
tation of /C that /C is a homogeneous function of

Yuwut = Gwl_)Al_)MCh (273)
XuﬁwZ = AﬁuaWaﬁAZwﬁ’ (27b)
i.e., KC can be written as
K= fl(Yuwa7Waﬂ), (28a)
K= fZ(Xuﬁw@Gm'))v (28b)

where f; and f, are two functions. This is illustrated in Fig. 6
for the simplest diagram of /.
From (28a), one gets

oK afi
Eze = AyuaGwzm, (29a)

oK afi
T = AyuaGme- (29b)
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b d
Ll -

FIG. 6. Homogeneity properties of the simplest diagram of /.
(Left) Dependence on X (red). (Right) Dependence on Y (red and
green). The lines are defined in Fig. 2

From (28b), in turn, one gets

LN CY N 02
XUSaA)Evy o v ZWﬁaxvx,wE
af2
A‘uaWot PO
+ r yaxuﬁ,ufc)
0
= 2Aiv8 Way Aﬁua (Tf:z_)’ (303)
vx,up
oK af2
mww = Asys WayAﬁuama (30b)

where we have used the property that W is symmetric twice:
first by trivially using W, = Wp,, and second to prove that

afa af2

axvf,uﬁ - aXuﬁ,w? ’

This latter property can be proven by noticing that when
W is symmetric, f is a homogeneous function of the
symmetrized X: f2(Xap) = f2(X5p), with A = (v,X), B =

(u.p). and X}y = J[Xap + Xpal. Then, one has ;2L =

3 f s
1(8cadpp + SCBSDA);,X'CA'B = ﬁ
We thus obtain the following relations:

K K
— Gy = Ajua s (313)
anﬁ aAfwct
K K
2———Wys = —— Azpp. 31b
8Wﬁa od 8Aiv8 xvp ( )

Right multiplying (31a) by G~! and (31b) by W~! and
replacing d/C/d A using the definition of K [Eq. (17)] shows
that the bracketed terms in Eqs. (25) and (26) vanish. Thus
these expressions simplify to the final expressions for the
self-energy and polarization, Eqs. (19a) and (19b). Finally,
these exact expressions can be derived in an alternative fashion
using equations of motion, as shown in Appendix D.

B. Transposition to electron-electron problems

In this section, we show how the formalism described above
can be used to study electron-electron interaction problems.
We shall focus on the two-dimensional Hubbard model, which
reads

H = Z tRR’CI{(,CR’a +U ZnRTnm. (32)
RR'o R
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R denotes a point of the Bravais lattice, o = 1,, frr’ is the
tight-binding hopping matrix [its Fourier transform is e(k)], U
is the local Hubbard repulsion, CI{a and cg, are creation and
annihilation operators, n = ny + n, with n, = cf¢,. In the
path-integral formalism, the corresponding action reads

See = €a[—Gy'].,co + Unrycngye. (33)

Here, Gg;(k,ia)) =iw+ un—ek), where iw denotes
fermionic Matsubara frequencies, 1 the chemical potential and
the bare dispersion reads e(k) = 2z(cos(k,) + cos(ky)) in the
case of nearest-neighbor hoppings. ¢; and ¢, are Grassmann
fields. We remind that u = (R, 7,0).

The Hubbard interaction in Eq. (33) can be decomposed
in various ways. Defining s’ = ¢,0/ ¢, (where ¢ =1 and
o*/¥/% denotes the Pauli matrices), the following expressions
hold, up to a density term:

Unyn, = %UChnn + %USpszsz, (34a)
Unyn, =%l7°hnn+%l75p§-§ (34b)
with the respective conditions:
U=U"-U®, (35a)
U=0"-30%. (35b)

In Eq. (34a), the Hubbard interaction is decomposed on
the charge and longitudinal spin channel (“Ising” or “z”
decoupling), while in Eq. (34b) it is decomposed on the charge
and full spin channel (“Heisenberg” or “xyz” decoupling).
The Heisenberg decoupling preserves rotational invariance,
contrary to the Ising one. In addition to this freedom of
decomposition comes the choice of the ratio of the charge
to the spin channel, which is encoded in Egs. (35a) and (35b).

The two equalities (34a) and (34b) can be derived by writing
that for any value of the unspecified parameters UM and U*P:

1 1
E(UChnn + UPs*s?) = EUCh(rM + nl)2
1
+ EUSP(HT — n¢)2
n ch sp
— (nm + §>(U —uw),
where we have used: nf, = n,. Similarly, we can write
1 rrch 1 Frspz 2 1— = Frch
EU nn + EU Py .§ = Ec,,cucqu,walU
1 -
+§Eucv5wcl(28ul§vw - auv‘swl)Usp

1 -
= Eéucuévcv o™

+§(25L¢Cv6ucu - EuCuEvCU)USp

n

= (nyny + 3 )@ = 30).
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Based on Eq. (35b) and (35a), the ratio of the bare interac-
tion in the charge and spin channels may be parametrized by
a number «. In the Heisenberg decoupling,

U" = Ba — HU, (36a)
U® = (a —2/3)U. (36b)
In the Ising decoupling,
U™ = aU, (37a)
U® = (o — 1)U. (37b)

In the following, we adopt a more compact and general
notation for Eqgs. (34a) and (34b), namely we write the
interacting part of the action as

Sine = $Uapnang (38)
with
Ny = CiMipaCo- (39)

We remind that u = (R,7,0) and @ = (R, 7,I). The parameter
I may take the values I = 0,x,y,z (Heisenberg decoupling)
or a subset thereof (e.g., I = 0,z for the Ising decoupling).

In the Hubbard model [Eq. (32)],

Auve = O—o{“o'ySR,‘_RUSRU_RH6'[,4_1’,;81"_7_1“ (40)
and
Uap = U"81,1,0R,~R,07,—1, - (41)

In the paramagnetic phase, one can define U° = UM and U~ =
U> = U* = U*P, which gives back Eqgs. (34a) and (34b).

We now decouple the interaction (38) with a real' bosonic
Hubbard-Stratonovich field ¢,:

o~ 3 Vap CahinaC)(@ahixpx)
1 - Ao
— /D[¢]e—§¢a[—U ]]uﬂ%:l:/\amd)acucv_ (42)

We have thus cast the electron-electron interaction problem
in the form of Eq. (1), namely, an electron-boson coupling
problem. We can therefore apply the formalism developed
in the previous section to the Hubbard model and similar
electronic problems. The only caveat resides with the freedom
in choosing the electron-boson problem for a given electronic
problem: we discuss this at greater length in Sec. [1C4.

For later purposes, let us now specify the equations
presented in the previous section for the Hubbard model in
the normal, paramagnetic case.

'In principle, the interaction kernel [—W()’l]oqS = [—U*I]aﬁ should
be positive definite for this integral to be convergent. Should it be
negative definite, positive definiteness can be restored by redefining
¢ — i¢p and A — iA, which leaves the final equations unchanged.
After this transformation, the electron-electron action (33) becomes
Eq. (1), where we have chosen the minus sign for the Yukawa coupling
in Eq. (42).
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In the absence of symmetry breaking,

Guu = Gi“ivao“aus (43)

Wap = W81,1,., (44)

with i, = (Ry,7), 7(0) = ch, and n(x) = n(y) = n(z) = sp.
In particular, W0 = W and W*¥ = WY = W? = W*. The
vertex can be parametrized as

Agva = Al 0 45)

iulyle 040y "

Aghy and A%, can thus be computed, e.g., from

(46a)
(46b)

ASy = Aig,jt ko,
sp _
Ajje = Dirjt ke

Hence, in the Heisenberg decoupling, Eqgs. (19a) and (19b)
simplify to (as shown in Appendix E 1):

T = —GaWi A — 3Gy Wiy Al + @iy, (47a)

Ljn Ljn
P! =2GuGjnA! (47b)

mn ljn*

We recall that the latin indices i, j, ... stand for space-time
indices: i = (R, 7). The factor of 3 in the self-energy comes
from the rotation invariance, while the factor of 2 in the
polarization comes from the spin degree of freedom. Note
that ¢, can be related to (n) via [see Appendix B, Eq. (Bla)]:

@en = UM (n). (48)

This is the Hartree term. In the following, we shall omit this
term in the expressions for X as it can be absorbed in the
chemical potential term.

C. A local approximation to /C

In this section, we introduce an approximation to K for the
specific case discussed in the previous subsection (Sec. II B).

1. The TRILEX approximation

The functional derivation discussed in Sec. Il A suggests
a natural extension of the local approximations on the 2PI
functionals ® (DMFT) or ¥ (EDMFT) to the 3PI functional .
Such an approximation reads, in the case when /C is considered
as a functional of x5, (instead of Ajye):

KTRILEX[G W, x] ~ Z KIGrr. WrR. XRRR]- (49)
R

The TRILEX functional thus contains only local di-
agrams. This approximation is exact in two limits:
(1) in the atomic limit, all correlators become lo-
cal and thus K[Grr'; Wrr', XRR'R"] = K[GRR, WRR; XRRR] =
KTRILEXTG W, x] and (2) in the weak-interaction limit, W
becomes small and thus /C ~ 0, corresponding to the absence
of vertex corrections and thus to the spin-fluctuation approxi-
mation.

The local approximation of the 3PI functional leads to a
local approximation of the 3PI analog of the self-energy, K
[defined in Eq. (17)]. Indeed, noticing that

K

Kiva = — ,
e 8Xu12a
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Eq. (49) leads to

KKk,q,iw,iQ) ~ K({iw,iQ). 50)

As in DMFT, we will use an effective impurity model as an
auxiliary problem to sum these local diagrams. Its fermionic
Green’s function, bosonic Green’s function and three-point
function are denoted as Gimp(iw), Wimp(i€2) and imp(iw,i$2),
respectively. The action of the auxiliary problem is chosen
such that lCimP[Gimp, Wimp, Ximp] is equal (up to a factor equal
to the number of sites) to JCTRILEX evaluated for

Xrrr((©,iR) = X, (0,iQ), (51a)
Grr(iow) = Gippiw), (51b)
Wrg(iQ) = Wi (i€). (51c)

This prescription, by imposing that the diagrams of the
impurity model have the same topology as the diagrams
corresponding to the lattice action, sets the form of impurity
action as follows:

Simp = /:/ ZEUI[_Q_I(I - T/)]car’

1
+§/ /¢Ir[_[u1]71(r - t/)]¢lr’

[ At

The three self-consistency equations (51a)—(51c) completely
determine the dynamical mean fields G(t), U(tr), and
Aimp(7,7"). Note that the bare vertex Ajmp(7,7") of the impurity
problem is a priori different from A, the lattice’s bare vertex,
and is a priori time-dependent. Indeed, in addition to the two
baths G and U present in (extended) DMFT, one needs a third
adjustable quantity (akin to a Lagrange multiplier [90]) in
the impurity model to enforce the third constraint, Eq. (51a).
This third Weiss field is a time-dependent electron-boson
interaction. As for DMFT, the existence of Weiss fields
fulfilling (51a)—(51c) is not obvious from a mathematical point
of view. In practice, we will try to construct such a model by
solving iteratively the TRILEX equations.

A direct consequence of Eqgs. (50) and (51a)—(51c) is the
locality of the lattice vertex:

T/sT/ - T//)EGICUT’¢II”- (52)

A'K,q,iw,i2) = A7+ Kl"mp(la) iQ), (53)
where the three-particle irreducible vertex Klmp(lw,i Q) is
related to Af’mp(lw i2) through [see Eq. (18)],

Al (iw,iR) =\ (iw,iQ)+ K" (iw,iQ). 54)

imp imp imp

2. Equation for the impurity bare vertex

In TRILEX, the impurity’s bare vertex Almp(t, t')is a priori
different from A7, the bare vertex of the lattice problem.
Like G(iw) and U(2) in EDMFT, it must be determined
self-consistently. This can be contrasted with DI"A where the
bare vertex of the impurity is not renormalized and kept equal
to the lattice’s bare vertex, U.
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Let us now determine the equation for Ajp,. Using

Egs. (51a) and (15), Ajnp is given by

Y kg X"k QLI )
imp(iw + IQ)Glmp(u‘))erI’np([ Q) ’

(iw,iQ) =

1mp

x"(k,q,iw,i2) is given as function of Klmp(lw,iQ) [after
using Egs. (18) and (50)], by
Xl?,q,ia),iQ = Gk+q,iw+iQGk.in(¥,iQ()\n + K:an(la) IQ))

where we recall that A is the bare vertex on the lattice. Thus
Aimp(i,i2) is found to be given, as a function of Kipp, as

(0,iQ) = A"+ "o, i\ + K] (i0,iQ)} (55)

1mp 1mp
with
G iw+i G inﬂi
Plioicy = e TirioniaOhicWoin o)
Gimp(i® + i Q) Gimp (i @) Wimp(i €2)
where for any X,
XKk,iv) = X(K,iv) — X (io). (57)

Hence, in general, A;n,, is different from A: one has to adjust the
interaction of the impurity model to satisfy Egs. (51a)—-(51c).

3. A further simplification: reduction to density-density
and spin-spin terms

The form (55) of the bare impurity vertex suggests a further
approximation as a preliminary step before the full-fledged
interaction term is taken into account, namely, we take

(iw, i) ~ A", (58)

1mp

This approximation is justified when ¢{"7(iw,i<2), defined in
Eq. (56), is small. Let us already notice that {” vanishes in
the atomic limit (when r — 0, G = W = 0) and in the weak-
coupling limit (then W" — U" so that W" — 0). A corollary
of this simplification is that [using (53)]

A"(K,q,iw,iQ) = Al _(iw,iQ). 59)

imp

We will check in Sec. IV A that this approximation is
in practice very accurate for the Hubbard model for the
parameters we have considered.

With (58), integrating the bosonic modes leads to a
fermionic impurity model with retarded density-density and
spin-spin interactions:

Simp =// DG @l-

+ % // XI:nI(r)I/{’(r — ().

The sum ), runs on / =0,z in the Ising decoupling, and
on I = 0,x,y,z in the Heisenberg-decoupling. We recall that
Ny = Sy, Ny =5y, and n; = s, have spin commutation rules,
that is, in the Heisenberg decoupling, the spin part of the
interactions explicitly reads

Simt = // UP(t — )5(7) - 5(T).

The TRILEX method is therefore solvable with the same tools
as extended DMFT. The solution of the impurity action is

= le, (7)) (60)
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elaborated on in Sec. III. We will also explain how to compute
Ajmp from this purely fermionic action.

4. Choice of the decoupling channels

Due to the freedom in rewriting the interaction term, as
discussed in Sec. II B, there are several possible Hubbard-
Stratonovich decoupling fields. While an exact treatment of
the mixed fermion-boson action (1) would lead to exact results,
any approximation to the electron-boson action will lead to a
priori different results depending on the choice of the decou-
pling. This ambiguity—called the Fierz ambiguity—has been
thoroughly investigated in the literature in the past [91-99]
and in more recent years [ 100—104] in the context of functional
renormalization group (fRG) methods.

There is no a priori heuristics to find an optimal decoupling
without previous knowledge of the physically relevant insta-
bilities of the system, except when it comes to symmetries.
Optimally, the decoupling should fulfill the symmetry of the
original Hamiltonian, for instance spin-rotational symmetry.
Apart from pure symmetry reasons, in most cases of physical
interest, where several degrees of freedom—charge, spin,
superconducting fluctuations, etc.—are competing with one
another, many decoupling channels must be taken into account.
This ambiguity can only be dispelled by an a posteriori control
of the error with respect to the exact solution.

Yet, the TRILEX method can actually take advantage of this
freedom to find the physically most relevant decoupling. It can
be extended to cluster impurity problems in the spirit of cluster
DMFT methods. By going to larger and larger cluster sizes
and finding the coupling that minimizes cluster corrections,
one can identify the dominant physical fluctuations. In this
perspective, the single-site TRILEX method presented here
should be seen only as a starting point of a systematic cluster
extension.

D. The TRILEX loop

In this section, we summarize the TRILEX set of equations,
show how to solve it self-consistently, and finally touch on
some technical details of the computation.

1. Summary of the equations
We recall the Dyson equations
1
iw+pn—ek) —2k,io)

n / v
W = TPy

Gk iw) = (61a)

(61b)

They are merely are Fourier transforms of Eqs. (9a)
and (9b). The relation between the bare interaction value U”
and the Hubbard U depends on the choice of decoupling. It
has been discussed in Sec. II B.

The Weiss fields are given by

G(iw) = [Giplio) + Tinelio)]
uiQ) = [[Wha] ™ + PLa)] .

loc

(62a)
(62b)

The “loc” suffix denotes summation over the Brillouin zone.
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FIG. 7. The TRILEX self-consistency loop.

The momentum-dependent lattice self-energies are given
by [see Egs. (47a) and (47b)]

Ykiw = — E My GxiqivrieW'q iAo, (63a)
7,q,i 2
P'yia =2 E Gitq,iot+io Ok io Appio,ie- (63b)
K,iw

Aimp is given by the solution of the impurity model, Eq. (60).
The factor m, depends on the decoupling. In the case of the
Heisenberg decoupling, mg, = 3 and mc, = 1, while in the
Ising decoupling, ms, = mq, = 1 (see Sec. I1 B).

2. Summary of the self-consistent loop

The equations above can be solved self-consistently. The
self-consistent TRILEX loop consists in the following steps
(as illustrated in Fig. 7).

(1) Initialization. The initialization consists in finding
initial guesses for the self-energy and polarization. Usually,
converged EDMFT self-energies provide suitable starting
points for X(k,iw) and P"(q,i<2).

(2) Dyson equations. Compute lattice observables through
Dyson equations Egs. (61a) and (61b).

(3) Weiss fields.Update the Weiss fields using Eqgs. (62a)
and (62b).

(4) Impurity model. Solve the impurity action (60) for
Aimp(i,iQ), Zimp(iw), and Py (i ).

(5) Self-energies. Construct momentum-dependent lattice
self-energies using (63a—63b).

(6) Go back to step 2 until convergence.

3. Bubble with local vertices

The calculation of the self-energies (63a) and (63b) has to be
carried out carefully for reasons of accuracy and speed. In order
to avoid the infinite summation of slowly decaying summands,

we decompose (see Appendix E2) this computation in the
following way:

S(K,iw) = (ki) + Zimp(io),
P(q,iQ) = P"""(q,iQ) + P

imp

(64a)
(iS2) (64b)
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with
nonloc __ A T
Yiw =~ Z My GiigiorioW'qiolmpioie, (652)
7,q,iQ2
nonloc __ ~ ~
P =2§ GitqiotieOkioNiypio,i0- (65b)
K,iw

We also perform a further decomposition at the level of the
vertex:
Al (iw,iQ) =

imp

AT (w,iQ) +17(iQ), (66)

imp

U n [ "~ . .
where ["(i2) = LZUSZ—M’ and U" is computed with
ihp

U" given by Egs. (37a) and (37b) with « = 1/2. This
choice corresponds to a subtraction from )Z{an(i w,i) of its
asymptotic behavior.

The final expressions are

Skio)=—{ > mG wiq LWilG]
m.4,i82 iotiQ ¢
- Z my G k+q [A?mr;g]za) + Zimp(iw)v
7,q.iQ iw+iQ iQ

(67)

P(q,iQ) = 2{26 kiq G }zﬁg

Kiow [0+iQ iow

+2) Guiq G Aymr;g] +P1;7np(zsz) (68)

K,io iw+iQ iw

The first term of each expression (in curly braces) is computed
as a simple product in time and space instead of a convolution
in frequency and momentum. The second term, which contains
factors decaying fast in frequencies (G, W, Aimp), is computed
as a product in space and convolution in frequencies. The
spatial Fourier transforms are performed using fast Fourier
transforms (FFT), so that the computational expense of such
calculations scales as N ij In Ny, where N, is the number of
Matsubara frequencies and N, the number of discrete points
in the Brillouin zone.

The formulas (64a) and (64b) are reminiscent of the form
of ¥ and P in the GW+EDMFT approximation (see, e.g.,
Ref. [53]). The main difference is that in G W+EDMFT, (a)
there is no local vertex correction in (65a) and (65b), and (b) so
far GW+4EDMEFT has been formulated for the charge channel
only.

4. Self-consistencies and alternative schemes

At this point, it should be pointed out that this choice of self-
consistency conditions is not unique. In particular, inspired
by the sum rules imposed in the two-particle self-consistent
approximation (TPSC [11]) or by the “Moriya corrections” of
the ladder version of DI"A [61], one may replace Eq. (51c) by

X () = X, (), (69)

where x" (with one frequency, not to be confused with the
three-point function) denotes the (connected) susceptibility in
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channel 5:

xij = (0] = (n)) (2 = (n3))- (70)
This relation enforces sum rules on the double occupancy
(among others) and has been shown to yield good results in
the TPSC and ladder-DI"A context, namely good agreement
with exact Monte Carlo results as well as the fulfillment
of the Mermin-Wagner theorem [7,10,62]. Even when using
Eq. (51c), however, we have shown that the sum rules are

not violated for parameters where stable solutions can be
obtained [72].

III. SOLUTION OF THE IMPURITY MODEL

The impurity model (60) with dynamical interactions in
the charge and vector spin channel can be solved exactly
with a continuous-time quantum Monte Carlo (CTQMC)
algorithm [57] either in the hybridization expansion or in the
interaction expansion.

In this paper, we use the hybridization expansion algo-
rithm [105,106]. Retarded vector spin-spin interactions are
implemented as described in Ref. [107]. Our implementation
is based on the TRIQS toolbox [108].

In this section, we give an alternative derivation of the
algorithm presented in Ref. [107]. It uses a path integral
approach, thereby allowing for a more concise presentation.

A. Overview of the CTQMC algorithm

Equation (60) can be decomposed as Simp = Sioc + Shyp +
S, with

B
Suw = [ dr 30 e (00: — ea(r)
0 o

B
+ % ff dtdt’ an(r)uwr(r — gy (t'), (71a)

0 oo’

B B
/ dr/ dT' Y " o (1) Ag(T — T)eo (1),
0 0 .

B
1// dtdt’ T (t — sy (t)s_(t),
2JJo

(71b)

Shyb

S1

(71¢)

where A is related to G through g;l(ia)) =iw+u— As(iw),
Uyo (T) = UP(T) + (=) UP(T), s: = (n* +in”)/2, and
J1(t) = 4U(7). Note that S is absent in the z-decoupling
case.

We expand the partition function Z = [ D[cc]e Siee ™S =52
in powers of Spyp and S, which yields

Zimp = ZZ/dt /dt"’/dt/dt

ks =0 m=0

«[Jaan, Zl_[{ —ulln = ”}

pe6,, i=1

ks
— S 4 1
xTrqTe “ang(q c(r
o i=l

Hs+<t, )s—(t)

j=I
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where k, (respectively, m) denotes the expansion order in pow-
ers of Spyp, (respectively S ), f _ denotes integration over times
sorted in decreasing order, 77 = (77 ... r,fn ), t=(t1...t,).
Using permutations of the ¢ and ¢! operators in the time-
ordered product, we have grouped the hybridization terms into
a determinant (A, is the matrix (Ay )y = Ay (77 — r,,")). The
term )" oo [Tim) =31 (tpa) — 1)} (Where &, is the group
of permutations of order m) is the permanent of the matrix
[ji]ij = —%jl (t — tj/.), but since there is no efficient way of
computing the permanent [109] (contrary to the determinant),
we will sample it. Finally, for any X, we define Tr[X] =
Zy (y1X|y), where p is an eigenstate of the local action.

We express this multidimensional sum as a sum over
configurations, namely,

Zimp = ) _ W (72)
€

with
¢ ={7,77,y.tt,p}. (73)

This sum is computed using Monte Carlo sampling in the space
of configurations. The weight w¢ used to compute the accep-
tance probabilities of each Monte Carlo update is given by

w%” = wA(TJaT,G)wJ_(tvt/5p)wlOC(rg 7‘[,0 ,}’,t,t/) (74’)

with
wa(z?,7%) = l—[det A, (75a)
s = Tn =)
wm,t,p):i]}!f . (75b)

ko
wloc(TU»Tm»J’,t»t/) = (V|‘3_S1°° l_[ HCU (‘[;U)EO. (Tio)

o i=1

[ [s-as-@ly).

j=1

(75¢)

Since the local action Sj, commutes with n,, the config-
uration can be represented as a collection of time-ordered
“segments” [105], as illustrated in Fig. 8. In this segment
picture, the local weight wy,. can be simplified to

wloc(rU »Tm,%t,t/)

— ¢~ 2o<o Voo On/a()’)Jrﬁolo()’)wdyn(TG T, t,t)

T=0
T/
71T T2 )Z'\ 7—2T |
" o 4 o |
c | ! cf
|

Sﬂ 1S

O 0/
! ta 1 |

FIG. 8. Pictorial representation of a Monte Carlo configuration
% . Full (empty) circles stand for creation (annihilation) operators.
The occupied portions of the imaginary time axis are represented
by bold segments. The red lines represent 7, lines. The blue region
represent an overlap between two segments.
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with

Uyor =Uyer — zarKUJ’(O+)v
[L(, = U + atKUU(O+)‘

The dynamical kernel K (7) is defined as BTZKU(,/(I) =U,,(T)
and K,o/(07) = Ky;0/(B7) = 0. Ogo(y) denotes the total
overlap between lines o and o’ (blue region in Fig. 8),
and /,(y) the added length of the segments of line o. Both
depend on y if there are lines devoid of operators (if we note
Yy = |ny,ny) in the number representation, with n, =0 or
1, whenever a “line” o has at least one operator, only one
n, yields a nonzero contribution, which sets its value: n,
must be specified only for lines with no operators). Finally,
the contribution to the weight stemming from dynamical
interactions is given by [106]

In wdyn(TUavat,t,) = Z é‘aé‘me(a)az(b)(fa — 1),

ops
a<b

where ¢, is positive (respectively, negative) if a corresponds
to a creation (respectively, annihilation) operator, and ¥ stands
for 7 (') for a creation (annihilation) operator. ) | ,,; denotes

a<b
summation over all operator pairs in a configuration (there are
>4 2ks + 4m such operators in a configuration).

The Monte Carlo updates required for ergodicity in the
regimes of parameters studied in this paper are (a) the insertion
and removal of segments {c,c'}, (b) the insertion and removal
of “spin” segments {s.,s_}, and (c) the permutation of the end
points J, lines (p — p’). They are described in more detail
in Ref. [107]. In the insulating phase at low temperatures,
an additional update consisting in moving a segment from
one line to another prevents spurious spin polarizations from
appearing.

In the absence of vector spin-spin interactions, the sign of a
configuration is positive, i.e the sign of wyo. W is positive in the
absence of s operators. The introduction of the latter does not
change this statement for wjo.wa . The sign of we thus reduces
to that of w, : from Eq. (75b), one sees that we is positive if
and only if 7, () < 0. In practice, 7, (7) is always negative in
the self-consistency introduced in Sec. II D 2. By contrast, it is
usually positive for the alternative self-consistency introduced
in Sec. II D 4, leading to a severe Monte Carlo sign problem.

B. Computation of the vertex

The vertex is defined in Eq. (15) as the amputated,
connected electron-boson correlation function x (iw,i<2) [it-
self defined in Eq. (13)]. Yet, since the impurity action is
written in terms of fermionic variables only, Ajyp(iw,iS2) is
computed from the fermionic three-point correlation function
Kimp through the relation [see Eqs. (B1b)—(B1d) of Appendix B
for a general derivation]

Al (i0,iS)

B Finpli@,i)
" Gimpli®)Gimpli + iQ)(1 = Ui Q) xihpi Q)
(76)
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where
T (@,iQ) = 75 (i0,iQ) + BGimp(i@)nip)8ia,  (77)
where
T ((0,1Q) = X" 0.iQ) + 1" (.i),
T “(i0,1Q) = TG (10,iQ) = 7" (0,i9).

zo0’

Ximp " (i®,i€2) is the Fourier transform of
x50 (2,1) = (Teo (T)ck (0ng (1) (78)

[see Eq. (Ala) for a definition of the Fourier transform].
The measurements of )N(i‘l’n‘;'nc(i ,i82), Gimp(iw), and Xi?np(i Q)
[defined in Eq. (70)] are carried out as described in Ref. [110].

C. Computation of the self-energies

Although only the three-leg vertex Ajpnp(iw,if2) is in
principle required to compute the momentum-dependent self-
energies through (63a) and (63b), the impurity self-energy and
polarization may be needed for numerical stability reasons, as
explained in Sec. II D 3. Zjyp(iw) is computed using improved
estimators (see Ref. [110]), namely, Zinp(iw) is not computed
from Dyson’s equation [local version of Eq. (9a)] but using
equations of motion [see Eq. (D6a)]. Combined with (B1d)
and specialized for local quantities in the paramagnetic phase,
the latter equation becomes

B
Foimp(D) =~y 0/, fo AU (z — T) (o (1), (O (7)),
1,0’

where Fy imp(t) = [ dTZ4imp(t — T)Goimp(T). In the Ising
decoupling case (I = 0,z), this reduces to

B
Frimp(@ = — f ey (T — T){cy (1)2 (O (7)),
— Jo

(79)
while in the Heisenberg decoupling case (I = 0,x,y,z), one
gets

B
Framy() = — / dEUN (T — D). T)
0

B
—3/ dTUP(t — T) 5% (1, 7). (80)
0

Ggimp(7) and Fy jnp(7) are measured in the impurity solver,
and the self-energy is finally computed as

Fa,imp(ia))

Ga,imp(iw) ' (8])

Ea,imp(i w) =

The polarization Pi%p(iQ) is computed from the correlation
function Xﬂnp(iQ) by combining Eq. (B1b) and the local
version of (9b), i.e.,

- — (i)
L= UTGQ) (i (Q)

imp

(82)
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IV. APPLICATION TO THE SINGLE-BAND
HUBBARD MODEL

In this section, we elaborate on the results presented in
a prior publication (Ref. [72]), where we have applied the
TRILEX method in its single-site version to the single-band
Hubbard model on a two-dimensional square lattice.

The main conclusions of Ref. [72] were the following.
(1) The TRILEX method interpolates between the spin-
fluctuation regime and the Mott regime. In the intermediate
regime, both the polarization and self-energy have a substantial
momentum dependence. (2) Upon doping, one finds an impor-
tant variation of the spectral weight on the Fermi surface, rem-
iniscent of the Fermi arcs observed in angle-resolved photoe-
mission experiments. (3) The choice of the ratio of the charge
to the spin channel does not significantly impact the fulfillment
of sum rules on the charge and the spin susceptibility, and leads
to variations only in the intermediate regime of correlations.

In the following section, we focus on four additional
aspects of the method: (i) we show that the simplification
of the impurity action introduced in Sec. IIC3 is justified
a posteriori; (i1)) we show that TRILEX has, like DMFT, a
first-order Mott transition, (iii) we investigate the effect of
frustration on antiferromagnetic fluctuations in the method,
and (iv) we give further details on the influence of the
decoupling choice.

A. Check of the validity of A, ~ A

The impurity action obtained after making a local ex-
pansion of the 3PI functional K [Eq. (49)] contains a bare
electron-boson vertex Aimp(iw,i$2) which is a priori different
from A, the bare electron-boson vertex of the lattice action.
For simplicity’s sake, we have introduced in Sec. IIC3
an additional approximation where these two vertices are
regarded as equal: the general case with a frequency-dependent
Aimp(iw,i§2) would require an impurity solver capable of
handling retarded interaction terms depending on three times
(like the weak-coupling expansion solver).

The deviation between both vertices is parametrized by the
function ¢"(iw,iS2), defined in Eq. (56). For all the converged
points shown in the various phase diagrams, we have checked
that ¢"(iw,i2) remains very small, giving an a posteriori
justification of our choice. This is illustrated by Figs. 9 and 10.

‘We have also implemented an approximation where instead
of neglecting the correction to A altogether, we replace
it with Af’mp(iwo,i 20) (and hence the interactions become
()\i"mp(i wo,iQO))ZU”(z’Q), which one can still handle with the
impurity solver presented above). This, however, did not lead
to any visible modification of the converged solution with re-
spect to the simplified scheme presented throughout this paper.

B. A first-order Mott transition

In Ref. [72], several points in the phase diagram have been
studied. Due to very small denominators in W*P(q,i2 = 0), no
stable solution could be obtained at low enough temperatures
to go below the temperature of the critical end point of the Mott
transition line (Tyvon/ D =~ 0.045 on the Bethe lattice, see, e.g.,
Ref [111]). In this section, we turn to the triangular lattice in
two dimensions and at half-filling to characterize the nature
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FIG. 9. Evolution of {"(iw,,i2y) on the square lattice at half-
filling. Left column: charge channel. Right column: spin channel.
From top to bottom: U = 0.5, U = 2.0, U = 4.0.

of the Mott transition. On this lattice, geometrical frustration
mitigates the low-temperature instabilities, allowing to reach
lower temperatures.

In Fig. 11, the evolution of —B/7m Gimp(r = B/2) is
monitored for two temperatures as a function of U/D. At
low enough temperatures, — 8/ Gimp(t = B/2)is an accurate
estimate of Ajpny(w = 0), and can thus be used to observe
the transition between a Fermi liquid [Ajyp(w = 0) > 0] and
a Mott insulator [Ajpp(w = 0) ~ 0]. At low temperatures
(BD = 64), both DMFT and TRILEX display a hysteretic
behavior, namely there is a coexistence region between a
metallic and insulating solution. At a higher temperature
(BD = 32), the hysteretic region has shrunk. With these two
estimates for U,, one can draw a rough sketch of the (T,U)
phase diagram in the triangular lattice (see the inset).
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FIG. 10. Dependence of ¢"(iw,,i€2) on temperature (square
lattice, half-filling). (Top) Charge channel. (Bottom) Spin channel.

From this study of TRILEX on the triangular lattice, two
conclusions can be drawn: (i) TRILEX, like DMFT, features a
first-order Mott transition; and (ii) in TRILEX, the critical
interaction strength for the Mott transition, U, is slightly
enhanced with respect to the single-site DMFT value. The
latter observation is consistent with the difference that has
been observed between the local component of the TRILEX
self-energy and the single-site DMFT self-energy [72].

This observation contrasts with cluster methods [112—-114]
and diagrammatic extensions of DMFT like the DI'A
method [62] or the dual fermion method [115,116]. In all these
methods, U, is strongly reduced with respect to single-site
DMFT. This discrepancy possibly points to the partial neglect
of short-range physics in single-site TRILEX, contrary to
diagrammatic and cluster extensions of DMFT. In the former

235124-13



THOMAS AYRAL AND OLIVIER PARCOLLET

_ﬁ/ﬂ: “Gimn(ﬁ‘/2)

N === TRILEX
06| — DMFT
0.4 | ]

0.04
0.2 003 1
_Q
= 0.02
0.01
0.00

20 25 3.0 35

0.0 ‘ ‘

1.8 20 22 24 26
U/D

FIG. 11. Evolutionof —B/7 Gimp(t = B/2) asafunctionof U/D
on the triangular lattice (half-filling). Solid lines: DMFT. Dashed
lines: TRILEX. Red: 8D = 32. Blue: 8D = 64. (Inset) Sketch of
the coexistence regions in DMFT (grey) and TRILEX (green) in the
(U,T) plane.

class of methods, the resummation of ladder diagrams might
explain why they seem to better capture short-range pro-
cesses. In the latter class of methods, short-range fluctuations
are treated explicitly and nonperturbatively in the extended
impurity model. This motivates the need for exploring cluster
extensions of TRILEX and comparing TRILEX with DI'A
results in more detail.

C. Antiferromagnetic fluctuations: influence of frustration

In this section, we investigate the effect of frustration,
parametrized by a next-nearest-neighbor hopping term ¢,
on antiferromagnetic fluctuations and on the convergence
properties of the method.

The results are gathered in Fig. 12. As shown in the
lower panels, as the temperature is decreased, the strength
of the antiferromagnetic fluctuations, parametrized by the
static inverse antiferromagnetic susceptibility x*P(Q,iQ2 =
0)~!, grows, namely, the product U P*P(q,iS2) approaches
the “Stoner” criterion UP P*P(q,i2) = 1. In the frustrated
case (lower-right panel), however, the AF spin susceptibility
is strongly reduced with respect to the unfrustrated case at
weak values of the local interaction U. It is unchanged for
larger interaction values. Consequently, the zone of unstable
solutions (gray area in the upper panel) shrinks in the weak-
interaction regime and remains unchanged in the Mott regime.

The question of the exact nature of this low-temperature
phase is still open. To decide whether at low temperatures, the
inverse AF susceptibility indeed intercepts the x axis at a finite
Tneel, as the high-temperature behavior seems to indicate, or
if it displays a bending (as observed in the correlation length
in experiments—see, e.g., Ref. [46] or in theory see, e.g.,
Ref. [62])—requires a more refined study which is beyond
the scope of this paper. The issue could, e.g., be settled by
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allowing for a symmetry breaking with two sublattices. This
idea is straightforward to implement, but requires another
impurity solver, since in the AF phase the longitudinal (z) and
perpendicular (x,y) spin components are no longer equivalent.
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In this phase, one has to measure the perpendicular components

AL of the vertex instead of Af,,p only.

D. Ising versus Heisenberg decoupling

In this section, we discuss the practical implications of the
way the Hubbard interaction term is decoupled in terms of
Hubbard-Stratonovich terms. Already at the single-site level,
we have investigated the influence of the ratio of charge to spin
channel and shown that it does not impact the fulfillment of
sum rules [72].

Here, we focus on the difference between the “Ising” and
“Heisenberg” decouplings introduced in Sec. I B. We show,
in Fig. 13 (upper panel), the phase diagram for both choices of
decoupling. As before, the boundary of the region of unstable
solutions, shown in gray, has been obtained by following the
evolution of the inverse static AF susceptibility as a function of
temperature for both decouplings. The extrapolated T strongly
depends on the decoupling: it is much larger for the Ising
decoupling than for the Heisenberg decoupling.

This can be understood in the following intuitive way; in
the Ising decoupling, the spin has fewer degrees of freedom to
fluctuate than in the Heisenberg decoupling. Thus, correlation
lengths are much larger in the Ising decoupling than in the
Heisenberg decoupling. In either case, T is lower than the
Néel temperature computed in single-site DMFT (except for
a few points in the Ising decoupling at weak coupling, but
the difference is within error bars): TRILEX contains spatial
fluctuations beyond (dynamical) mean-field theory.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented the TRILEX formalism,
which consists in making a local expansion of the 3PI
functional K. This approximation entails the locality of
the three-leg vertex which is self-consistently computed by
solving an impurity model with dynamical charge and spin
interactions.

By construction, this method interpolates between two ma-
jor approaches to high-temperature superconductors, namely,
fluctuation-exchange approximations such as spin fluctuation
theory, and dynamical mean-field theory and its cluster exten-
sions. The central quantity of TRILEX, the impurity three-leg
vertex Aimp(iw,i€2), encodes the passage from both limits. It
can be used to construct momentum-dependent self-energies
and polarizations at a reduced cost compared to cluster DMFT
and diagrammatic extensions of DMFT. More specifically, it
requires the solution of a single-site local impurity model with
dynamical interactions.

Contrary to spin fluctuation theory, the method explicitly
captures Mott physics via the frequency-dependent vertex.
Contrary to recent diagrammatic extensions of DMFT attempt-
ing to incorporate long-range physics such as DI'A [60,61]
and the dual fermion method [65], it deals with functions of
two (instead of three) frequencies, which makes it more easily
extendable to a cluster and/or multiorbital implementation.
Indeed, four-leg vertices are a major computational burden in
those methods, owing to their sheer size in memory and also
to the appearance of divergencies in some of these vertices
already for moderate interaction values [118], as well as
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FIG. 13. (Top) Phase diagram in the (7,U) plane at half-filling
(square lattice, ¢ = 0). The dashed red line is the Néel temperature
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divergencies when inverting the Bethe-Salpether equations in
a given channel [118,119].

Here, the TRILEX method in its single-site version has
been applied to the single-band Hubbard model, on the
square and on the triangular lattice. As expected from the
construction of the method, TRILEX interpolates between
(a) the fluctuation-exchange limit, where the self-energy is
given by the one-loop diagram computed with the propagator
associated to long-range fluctuations in channel n, W"(q,i<2),
and (b) the dynamical mean-field limit, which approximates
the self-energy by a local, but frequency-dependent impurity
self-energy which reduces, in the strong-coupling regime, to
the atomic limit self-energy. At intermediate coupling, upon
doping, strong AF fluctuations cause a sizable momentum dif-
ferentiation of the Fermi surface, as observed in photoemission
in cuprate materials.

There are many open issues. (1) Low-temperature phase.
The issue of the instabilities in the low-temperature regime,
which is related to the fulfillment or not of the Mermin-
Wagner theorem and the associated Fierz ambiguity, deserve
further studies. This is all the more interesting as related
methods such as TPSC and ladder-DI"A with the additional
Moriya correction fulfill the Mermin-Wagner theorem; a better
understanding of the minimal ingredients to enforce this
property is needed.

(2) Extension to cluster schemes. The accuracy of the
TRILEX method can be assessed quantitatively by extending
it to clusters. Due to the inclusion of long-range fluctuations,
one may anticipate that cluster TRILEX will converge faster
than cluster DMFT with respect to the cluster size N, in the
physically relevant channel. Moreover, when convergence with
respect to N, is reached, the results will be totally independent
of the choice of channels. As a result, the channel dependence
for a given cluster (e.g., a given size) is an indication of the
degree of its convergence, which does not necessitate the
computation of larger clusters. This property has no analog
in cluster DMFT methods.

(2) Extension to multiorbital systems. Thanks to the
simplicity of solving the single-site impurity model, single-site
TRILEX can be applied to multiorbital systems to study
momentum-dependent self-energy effects. Such an endeavor
is currently out of the reach of cluster DMFT due to the sheer
size of the corresponding Hilbert space (three bands times
a 2 x 2 cluster is effectively a 12-site calculation, already a
large numerical effort). Yet, this extension may be crucial
for multiorbital systems where long-range spin physics as
well as correlations are thought to play an important role.
For instance, the pnictide superconductors, where bosonic
spin-density-wave fluctuations are sizable but correlations
effects are not so strong, may prove an ideal playing ground
for TRILEX.

(3) Extension to “anomalous” phases. TRILEX can be
straightforwardly extended to study charge-ordered phases
(as shown by its relation to G W+EDMFT). Moreover, its
application to superconducting phases is also possible: in
this context, it interpolates between generalized Migdal-
Eliashberg theory (or spin-fermion superconductivity) and the
superconducting version of DMFT. As such, it can capture
d-wave superconductivity at the cost of solving a single-site
impurity problem (which is not possible in single-site DMFT).
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(4) Nonlocal extensions.One natural route beyond the local
approximation of the vertex is to construct the lattice vertex as
the sum of the impurity vertex with a nonlocal diagrammatic
correction, in the same way as the GW-+EDMFT method
extends EDMFT by adding nonlocal diagrams to the impurity
self-energies.

(5) Extension to the three-boson vertex. In the functional
construction presented in this paper, we have only considered
a three-point source term with one bosonic field and two
fermionic fields. In principle, for the sake of 3PI-completeness,
one could also introduce an additional three-point source
term coupling three bosonic fields. We have not explored this
path here since it requires an impurity solver handling both
fermionic and bosonic fields.
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APPENDIX A: SYMMETRY PROPERTIES OF
THE VERTEX AND FOURIER CONVENTIONS

1. Fourier conventions

We follow the following Fourier conventions, depending
on whether we want to work with a fermionic and a bosonic
Matsubara frequency, or two fermionic frequencies:

B . : ’
AR Ry, ((0,i Q) = / / dtdt' e T AR pr,(7,0,7),
0

(Ala)

B
A . . _ ! ioTHw T ’
AR R.R;((01,iwp) = // dtdt'e'™ 2" AR RR,(T,T7,0)
0

(Alb)

for any three-point function A(R;,7;Rz,7;R3,13), e.g
AR R, (T1,72,3) = (Tcr, (T1)ch, (T2)$R, (73)). Both functions
are related:

AR RR (10,i Q) = AR r,Rr,(i0, —iw — iR). (A2)

In the main text, we only use the first form Ag,g,r,(iw,i<2).

2. Lehmann representation of the three-leg vertex
Using  the identity [/ [FdndnTfin)f(n) =

fo'S o' dndn 2 pee, O (D) [pit) fro(t), we can  write,
using the definition of ¥ [Eq. (B2)] and of its Fourier
transform] Eq. (A1b)]

X123(iwy,iwo)

B T ) ) ,
= Zf dr/ dt'a(p)(0,1(1)0 (T n3(0))e T elr®
0 0

PG,
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1
=2 2. 2 olOpl )10 plk) (kinsli)

ijk pe&,
X fij(@p1,@p2) (A3)
with O; = cI and O, = ¢;, and

Sijk(wr,02)

B T
— . J L—€ . e o —
—e /36/ d'[et(lw]+€l e_,)/ dt'e’ (iwr+ej—ex)
0 0

B ) eTlmtej—ea) _
— efﬁe,-/ drer(za)ﬂre,»fej) :
0 lwy + € — €
e B B o .
= - / dr(er(zwlﬂwzwteifek) _ el’(lét)]‘i’é,'féj))
lwy +€j —€x Jo

e*ﬂei eﬂ(ileriweréi*Gk) —1
= - - - (1 —3ix)
lwy +€; — € \lw) +iwr + € — €
ePliorte—e) _ e Pei 85 5
- ; iy +iwy Oik
iw) + € — € i +€;—¢€ rortie2t
1 e*ﬂfk _ e*ﬂﬂ'
= - . . (1 — i)
lwy +€; — € \lw) +1iwr + € — €
e Pei 4 o P e Pei 85 5
; ; iy +iwy Oik-
i)+ € —€; i +€; —¢€ fortien

We have used the fact that both iw; and iw, are fermionic
Matsubara frequencies (e#“1 = —1).

3. Symmetries of the three-point vertex

In this section, we derive the main symmetries of the three-
point vertex in a simple limit. We consider the most simple
fermionic model, namely a single fermionic level, O = cf,

4o

N
\ A
.
* A(iw, i)
T e b L ]
* g 2 A ) 1
A* (—iw — i, 189) o ;
b I
‘ 5
s |!
. !
30 o W
~ g
L
Y
I .
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g .
‘ Y
A* (—iw, —iQ) kS

FIG. 14. Vertex symmetries.
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0, =c. 0,T = 0, (in the notations of Appendix A 2). The
Hilbert space consists of two states: |0) and |1) with respective
energies 0 and €. Starting from (A3), we have

e LN o O
flioio) = — 3 (11011) 71021k klnli) f (@r.02)

ijk
+ D ({1021} (7101 1K) (ki) f (2,01)
ijk
=0
Lot
= EUIC 10)(Olc|1)(1]|n|1) f (w1, w2)
L fror (@)
== w1,
- J101(@1,0
11 1 +ePe +1 e Pe 5
T Ziwy—e\iw +e€ Ziw, —e T
Hence
(0.0 1 1 " 1 5
1w,i82) X i
X Cio—iQ—ciote  —im—e @
1 1 1
X - - - - diq.
iw+iQ+ecivot+e iw+e
One can notice that
S Q.i9) 1 1 n 1 s
lw —1aa,l X 7 ] ] ; ; i
X io+eiw—iQL+e iw—iQL+e€ ¢
= x(iw, —if2)

and

FHiw, —iQ) « <

1 1 1 *
+ 5
io—iQ+teiote  iote Q)

1 1 1
= — . - . dio
—iw+€i—iw+e —iw+e
= {(—iw,iQ).
Thus we obtain the following symmetry relations:
o —iR,iQ) = fliw, —i), (Ada)
Flw, —iQ) = §(—iw,iQ). (A4b)

One can check that these symmetry relations hold in the
general case and carry over to the vertex A(iw,i<2). A pictorial
representation of these symmetries is given in Fig. 14.

APPENDIX B: LINK BETWEEN BOSONIC CORRELATION
FUNCTIONS AND FERMIONIC CORRELATION
FUNCTIONS

In this appendix, we prove the following relations between
observables of the mixed fermion-boson action (1) and
observables of the fermionic action:

ol = Ujslnf), (Bla)
Wai = Uss — Ugy Xy5 Usp, (B1b)
Way = Usly — U2 x,5Ush, (Blc)
Xusa = Uqp K- (B1d)
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W;]ﬂ, X;]m and x.. have been defined in Eqgs. (3b), (70),
and (13), respectively, and

S nc

Xuva = {cuCong). (B2)

Let us recall the definition of the partition function in the
presence of sources

Z[h,F,B] = /D[E’c’¢]e_seb+ha¢u_FﬂtrEH(‘v_%¢7aBo(ﬁ¢ﬂ' (B3)

Integrating out the bosonic fields yields
Z[h,F,B] =Det[U'17"/*

X /D[E C]efﬂ_‘u{*c&,lf,erFm;}vaL%Uaﬁ(ha*fﬁ)tm;acu)z
=e%Trln[l_/]
X /D[E C]e_gﬁ{_G(;ll;v"!‘Fﬁu}cv"’%Uaﬁ(hu_aﬁ)wivucv)z
(B4)
o -1
with Uys = [(=U~" + B) " ],4. Hence

1
Q= ETrln[—U_l + B]

—1In / DIE,c][e ! -Gom+ Tl

% e% 7uﬁ(ha_612)‘4ﬁvacu)(hﬁ_Eﬁ)“ﬁvﬁcv)]'
Relation (B1a) follows from computing ¢, by successively
using (B3) and (B4):
1 0Z

= E% = Uy {CiravpCu)-

Pa

Similarly, one has

wie — 2 9% _ 5 1(—U )
T 9B, L2

—2|:—1 <8U—y5)(hy — Cahavy Cu)(hs — Eﬁ)\ﬁvécv)]
2\ 9B,
= Unp — Uas((CudivsCo)(Cativy €o))Uyp
= Uyp — Uas(nsny, )U,p,
which proves (B1b) and (Blc) and

o 1 9z
Xua = 7 o o,
19
7 0Fs,
= Uaﬂ(cuéﬁnﬁ)v

which proves (B1d).

h=0

fD[a,c](Uaﬁ(nﬂ — hg)e™S

APPENDIX C: NONINTERACTING FREE ENERGY

The noninteracting free energy in the presence of sources
reads

Q[h,B,F, = 0]

— _ln/D[E’C’¢]e*5cb*5aanCv+ha¢a*%%Baﬂtﬁﬂ
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= —In {Det(~Gy" + F)Det(—W; ' + B) '}

1 _ ~1
=ha[=Wo' + Bl s

=-Trin(Gy' — F) + %Trln (Wy' = B)

-1

sl

1
+§ha[W(jl - B]

Hence applying Egs. (32)—(3b) in the case A = 0 leads to

Qo = —hg[Wy ' — B]_l

Bo’
Wi = (W' = B), —ha[ Wy = B], [Wy ' — B, .
Gur = (Gy' = F),..
yielding the following inversion relations:
ho = _ﬁoﬂ(W(;l - B)ﬂot’
Fu =Gyt — Grl,
Bup = Woas — Way .
and the final expression
Q[h,B,F, >, =0] = —TrIn[G ']
+3Tein[W '+ Je W gs.  (CD)

APPENDIX D: ALTERNATIVE DERIVATION USING
THE EQUATIONS OF MOTIONS

In this section, we derive Eqgs. (19a) and (19b) using
equations of motions.

1. Prerequisite: Schwinger-Dyson equations
a. Fermionic fields

For any conjugate Grassmann fields ¢; and ¢;, matrix [Gol;;
and function f, we can define

A= f DiecletGi'lae 2161
Ja¢;

Then, integrating by parts, we get
0 g
A=-— / D[Ec]gec"m“l]“c’ flec]
=—W?h/9mwfm“Wﬂ&L

For f[cc] = hlecle™",

A= /D[Ec]e‘_f[G&l]uC’ (@ + av)e—v

aC; 8_5;
=-[G,']; / Dléec]ce % e plecle"
i.e., for any functions 4 and V,

dh[ecc] _ v _ )
R e G

D1
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b. Bosonic fields

Similarly to the previous section, for any bosonic field ¢,,
matrix Uyg, and function f, let us define

1 [U-] f o]
- L [U b
A_/D[¢]e i 96, .

By integration by parts, we have

8 1 —1
_ L8 [U s,
A= /D[qﬁ]a(pye 17 flo]

=—[U ", / Dl¢plpge?lV et f[g],

and taking f[¢]
A= f D[¢][e%¢nw“laﬂ¢ﬂ

{ oh[¢]
A,

- 3 B — s PsCaCy
=-[U l]yﬂfD[qs](pﬂez%lU s y [ e P PaCace

= h[¢Je %% one has

_ )»ﬁvyc_’ﬁcvh[(ﬁ] }ekauadﬁsfacu}

i.e., for any function 4,

<3h[¢]
ap,

- kauyﬁucvh[¢]> = —[U"],p(¢phlg]).  (D2)

2. Equations of motion for G and W
a. Fermionic propagator G

Specializing Eq. (D1) for hl[écl=c¢; and V =

NeUagnpg = %Uaﬁéﬁkﬁvacvég,kmlﬁC';, and noting that
v 1 _ 1 _
e = EUa,B)‘fvachu’J)\u’Jl,BCl + EUaﬁCa)»uuan)»z“lﬂcl

= aﬁ)\';ua)"ﬂ)lﬂcvéuﬁcl
(we have used U,g = Ug,), one has
—[Gg ' (ies) = 8ip + Uaprivaraip (E5colac),

i.e., multiplying by [Gy],,; and using definitions (3¢c) and (B2):

Gmﬁ = [GO]mﬁ - [GO]mtTUotﬁ)‘t_'vaXvﬁﬁ- (D3)
Using (B1d), we can rewrite this as
Gmp' = [GO]mﬁ - [GO]mtT)\l_'vaXvﬁa- (D4)

b. Bosonic propagator W
Specializing Eq. (D2) for h[¢] = ¢,

<5ya - )‘ﬁuyEﬁcv((pa = Qo))
= _[Uil]yﬂ((q&ﬁ - (pﬁ)(¢a - %)),

— @q, We find

when
—((¢s — ¢5) (@0 — @a)) = Usa —
i.e., using definitions (3b)—(13),
Wsa = Usa + Usy Aizvy Xvia- (D5)

Uéy)\ﬁvy (Caco(Pa — Pa)),

PHYSICAL REVIEW B 93, 235124 (2016)

c. General formulas for the self-energy and polarization

Identifying ¥ and P from the Dyson equations (9a), (9b)
and (D4), (D5) yields

Elfj Gjﬁ = _)“fuaxvﬁa7 (D6a)
PygWea = Aavy Xvias (D6b)
when
Efk = —)\mavaa[G ]pks (D7a)
P}’S = )"ﬁquvﬁa[W 1]0{6- (D7b)

Using the definition of the three-leg vertex, Eq. (15), we
find
Y = Ak GuiWep Aljg + AfjaPas
Pup = %51 G jiGriAfjps
which are the formulas (19a) and (19b) we have derived using
functionals in Sec. IT A.

APPENDIX E: DETAILS OF SOME CALCULATIONS
1. Simplification of X and P in the homogeneous phase
In the normal, paramagnetic phase, Eqs. (19a) and (19b)
can be simplified, namely,
Iy) I
Eﬁv = ( zr (O 81 la8l,,lw)(Gi iKS(rw(r))Wn(l ) 1) O—(rf{m

lolg l)‘l lﬂ
n(1y)
L(Slulozalulu)@lu

+(o5
= _(Jéuaa1‘ O—O[':To'l)Giuzix Wln(l;H)Aln(lel)ﬂ + 0'“0'1 g0117(1 )Slu‘v
=—(s
(2

1) A n(lp)
0.0 Uu(xv)G W"( ) Is

iyiy (7 lll],lﬂ

I
_ 50"%5%%)(;1 . Wi o n(lg)

Soum&ruow iqig z ivig

I, )
+ 001401 (plu 8

= Yi,i, 80,0,
which yields Eq. (47a). Similarly,

Ig n(1g)
Gi,i,00,0,Gi,i,80,0,00, oLAi civig

iyly

Pozﬁ =O’1

lulm luloz

= t[(0 )]Gy, G, A} 81,1,

n(la)
iviyig Pl 8 Iolgs
which yields Eq. (47b).

2. Decomposition of ¥ and P
Starting from (63a), one can rewrite
Skio)=—Y my Y (Gk+qio+iQ)+ Gclio)
n q,iQ
x (W(q,iQ) + W (i) AL (iw,iS)

imp

= Zmn Z G+ q,io—+iQW(q,iQ)

n q,iQ

Alp(@,iQ) =Y "my Y Groelio +iQ)
n iQ

X lec (iw,iQ)

==Y my Y GEk+qio+iQW(q.iQ)
n q.iQ2
Ay ((@,i82) + Zimp(iw).

(iQ)AT

imp

This yields (64a). An analogous calculation yields (64b).
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APPENDIX F: ATOMIC LIMIT

In this section, we derive the expression for the three-leg vertex in the atomic limit. We proceed in two steps. First, we use
the Lehmann representation of the three-point correlation function in the case of a single atomic site to compute the expression
for the three-point correlation function in the atomic limit. We then amputate the legs to find the expression of the vertex
function.

1. Three-point correlation function in the atomic limit
a. Full correlator x

We use Lehmann’s representation [Eq. (A3)] to compute the exact three-point correlation function f(;‘]cgm
atomic limit, i.e., when the eigenvectors and corresponding eigenenergies are (at half-filling)

1) = & =-U/2
) = e =-U/2, 1)) > €, =0.

If ns is a “particle-hole” term (i.e., of the form cj,c(,), then the matrix element (k|ns|i) selects states with the same occupation
and same spin, so that

(iwy,iwy) in the

10) — € =0,

obosinion) = — 3 0% o ()10, 1) 10pou i) i1 1) fiji(pr.0p2)

ij p

1
= 2 D ileo N1k, 1) (o, li) fritn02) = 3 G Il i lea, 1) (1o, i) fsiCen,on).
ij

i

Furthermore,
1 e Pei 4 g Pei e P
Sijilwa,w1) = - - + B- Biwi i
la)1+6j—€ila)2+€[—€j l(,()]-f-éj—éi
1 e P 4 e P e hei
fiij(w1,w2) = - ; - Sion+iw
SR i +€ —€jiv +€; —¢ —iw+€—€;
when
e Pei + e Pei
fijilwa,01) = fjij(w1,w2) + B+ Biwi+ims-

lw) +€; — €

Using this identity and swapping the dummy indices in the second term, one gets

£nc

ij

—B Y Glel lidilea 1) (lna )~

ij

1
XKoo (@1 i02) = — D ileo, 1) lel, [V lnoy i) = (lroy| )} fiji(er,02)

e Pei 4 o Be;
T . Yiotim-
lw) + € —€; e

Obviously, o7 = 02, and i = |1]) and j = |0) do not contribute, i.e., after defining Xoo' = Xooo and fij = fiji = fi’j‘.eg +

B e P S .
iwm+ej—¢; o +iwy -

Anc g . 21 . . ) . .
Xoo/ (i01,i2) = Y50 (i@1,i2) + X (i1 i)

with
1

Toolionio) = — 3~ >

i=10).11).14) j=11).14). 11

Toorliwnion) = =B— 3 Iile | ) (ilnol)
ij

lw) + € —€;

lileo | )P i e li) = (jlngr| 1)} fij(@1,@2),

e Pei + e Pei

i +iwy -

One also sees that x¢ = )?i“% and f(ﬁ = ij Out of the nine remaining terms, we can see that only the terms where i and j are

states with a difference of occupation of one electron are nonzero:

Zia o iwrian) = [{0lc, 1) *{{01ny10) — (Mne|1)} for (@1,@2)
+ 1{0les 1) 1*{(01n4:10) — (4 Inor 1)} fou (@1,@2)

235124-20



MOTT PHYSICS AND SPIN FLUCTUATIONS: A ... PHYSICAL REVIEW B 93, 235124 (2016)

+ [(Mea PP 6 11) = (P dIne 1140} fray (@1,02)
+ 1{ea 1P D P 14) = (Mo |1 DY 1y (@1,02)

and
O ) 1+ e*ﬁe 1 +epe
ZXsoiwr,im) = —B{0lce I (Mne | P) —— P Si+ian — BI(Olca 1) (ilna/li) s Siw+im
14 e P 1+ e Fe
— Bl(Meo |1 4)1P (NI%/IN) e Sintivn — Bl(Llca P DI (1 Ing: IN) o e dlortion
Thus, on the one hand,
Zx{ (iwy,ian) =0, (F1)
252 o i — I
Xj Gorio) = =B + e ")siw,tin, P (F2)
i.e., switching back from ¥™(iw;,iw;) to 3™ (iw,i):
J . 1
TG00 = =B lne) ;s dia (F3)
On the other hand,
25! GGon.iwn) = — foy(@r.n) — foy @ran) = — < e R .
(iw1 + €4 — €)iwy + €9 — €4) lwy + €
e Per 4 emPen e Pe
C(iw + €ry — €+ €, —€p)) i, — e(siwm‘w2
1+ €PU/2 1+ PU2 1 e Pe
T o — U)o+ UJ2) G + U/ 2)iws — UJ2) _|:ia)2 e Vim o e}ﬂ‘s"“"“m’
=Z3)
ie.,
L(io) + U/2)iws — UJ2) + (iwy — U/2)(iws + U/2)
FiHonion = =3 ((G0n)? — U2 /&) (iwn)? — U2/4)
liwyiws + U/2MGwr —iw) — U?/4 4+ [iwriwy, + U/2(—iw, +iwy) — U?/4]
T2 (w12 — U2/8) (i) — U2/4)
iwjiwy — U?/4
T (i) — U2/4)((iwp)* — U?/4)
and
Tiplionior) = _g(ia)l i u2 Vi —1 U/2)5"Q
Thus
e iwjiwy — U? /4 B 1 1
Kol = e N Gan — U2/4) §<ia)1 NIRRT U/2>5'
+ ! |: ! + e ]/351':2
204+ e P iy +U/2  iwy —UJ2
iwiwy — U2/4 B e Pe 1
T (w)? — U2 ((i0n)? — U2J4)  2(1 + e P) [ia)l U2 e U/Z](S'Q
— —Gliw)Gliw) + — vt/ S [ e ! }a»g (F4)
()2 = U2/ (((wn)? —U*/4) 201 +eP) iy +U/2  iwy—U/2

b. Connected part x¢
The connected part is defined as

Koo (1,7) = F2(7,7') — (o (D)) (T g ) dise = £ (T,T)) — (o (D) (TN (o) = F2(T,T) + G o (T — T)(nor),
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whence
Koo ((0,iQ) = 7%, (i0,iQ) + BGo (i) (no)8i0 (F5)
This yields
Lo _ Biny) r 1 .
Tl == [ia) Y02 iw— U/Z](S’Q’ (F62)
s : , U?/4
Titlionion = =GUoNG>0) + 1o s + Alo)bia (F6b)
with
. 1 oBU/2 1
Alw) = ﬁ<n0>{GT(lwl) T 11 ePUR [ia)l +U/2 + iw — U/2]}
_ L1 L1
- ﬂ<n“>{iw1 - U/2{2 - 1+eﬂU/2} i +U/2{2 - 1+e‘3”/2H
_ B(ns) _ 1 _ Bns) s
== tanh(,BU/4)[iwl TR U/2i| == tanh(ﬁU/4)(l.wl)2 s

We can check expression (F6a) and get some physical intuition by computing the self-energy from the equation of motion for
G [i.e., Eq. (D6a) specialized for the atomic limit]. The self-energy X can be decomposed into a Hartree contribution and a

contribution beyond Hartree:

2

. U . .
Y(iw) = =5 + o = Y(iw) + Zpu(iw).

On the one hand, one can notice that

1
Y(iw)G(iw) = UE Z )Zﬁ(w,Q). F7)
On the other hand,
. , 1 1 (@,9) 25 @)
by =X —YXy=-U-— —_— = =-U— o) B3
o(io) = T(iw) — Ty 5 XQ: i) Z Gy T (noPlia
_yly { 5.2 + G(iwxna)ﬂ%} __yly @)
B < Gliw) B Gliw)
ie.,
. . 1 -
Glio) (i) = ~Ug > i (.Q). (F8)
Q
which is to be contrasted with (F7).
c. Expressions in charge and spin channels
Let us now transform from the (1, ) space to the (ch,sp) space:
U?/4
~chy,- . ~ ~ . .
. = = —G G
X, im) = Jvr + Xy (i)G(iw) + (G — U2/a)((wnf — U2/4]
LBe) LU 4y ! n ! ! 5
——tan - - i
2 ioy —U/2  iw +U/2 i+ U2 o —U2][7"
U?/4
(i wp.iwn) = Trr — 1t = —Gliw)Gi
X Plwr,iwr) = f11 — X1y (Iw1)G(iw) + (Gon? — U2/a)((waf — U2/4]
CALZN PN ! ! ! ! 8 (F9)
an — — — ;
2 ioy —U/2  iw +U/2 i+ U2 iw —U2][7"
Simplifying and transposing to iw,i 2 variables, one gets [using G*(—iw) = —G*(iw)]
U?/4 B{ns)
¥ MNiw,iQ) = Giw)G(iQ z tanh (BU /4) — 1}8iq, (F10
FM0.19) = GUOIGUR) + s o + T g (W (BU/4) = Ddia, (F10)
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U?/4

PHYSICAL REVIEW B 93, 235124 (2016)

Bns)

+ {tanh (BU/4) + 1}8;0. (F10b)

FP(,iQ) = Gio)G(iQ) + (w2 — U2/4H(iw + i2)?

U
—U?/4} 2 (iw) —U?/4

2. Vertex A

The vertex is defined as the amputated connected correlation function [see Eq. (76)]. We can easily compute the “legs” in the

atomic limit:

.. 79 1 —BU/4
Glio)Gliw+iQ)(l — U YN(iQ)) = — iwio +i€) 1= BU-—5 54),
((iw)? — U2/4)((lw+lQ)2— U2/4) 4 cosh(BU /4)
iviio+iQ) 1 ePUA
Giw)Gliw +iQ)(1 — UPyP(iQ)) = 1 50 Fl1
((0)Gliw + i) X)) = T U Ay G + 120 — U2/4)< T AU o BU e (F11)
Hence
U4 Blng)
choe Gar 0G0 T 2 Gop U2/4 {tanh (BU/4) — 1}dic 1
A (l(,(),lQ) = o) —pUsA + U o—BU/A 5
() =U% /) (((wti Q)2 —U?/4) ( - B Uj 4 cosh(BU/4) 59) — B 4 cosh(BU/4) °%
B U?/4 L Blno) { (iw) — U /4 }2 U tanh (BU /4) — 1
. . . e—BU/4 2 H . \2 2 o B iQ
iw(io+ lQ)( — BU ; igumde ) e (fw)” = U%/4 (1 - '3U4cosh(ﬂU/4))
1
BU/A
,3U4 coseh(ﬂU/4)6

Simplifying, one finds the results

U?/4 UB(ny) U? tanh (BU /4) — 1
h,. . _ i 1
A(lw,iQ) = — : g > 1-— Ty p— i (F12a)
io(iow+ lQ)( /3U4cmh(ﬁy/4)5 ) (1 — BU} cosh(ﬁU/4))
1
7 (F12b)
e—BU/4
'BU4 cosh(ﬁU/4)(S
: U?/4 UB(ngy) U? tanh (BU /4) + 1
Sp . . —_— 1
A (la),lQ) AU/ 2 1 4(1(1))2 eBU/A i (F12C)
za)(za)—i—lQ)(l +BUL b ) <1+,3U4—cosh(/3U/4))
1
(F12d)

U/

+
I+ 'BU4 cosh(ﬂU/4)8
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