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Ground-state ordering of the J1- J2 model on the simple cubic and body-centered cubic lattices
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The J1-J2 Heisenberg model is a “canonical” model in the field of quantum magnetism in order to study the
interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration.
Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic
nearest-neighbor bonds J1 > 0 and next-nearest-neighbor bonds J2 > 0 for the simple cubic (sc) and body-
centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as
a function of the frustration parameter p = z2J2/z1J1, where z1 (z2) is the number of nearest (next-nearest)
neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the
nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation
functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We
find a direct first-order phase transition at a value of p = 0.528 from a state of nearest-neighbor Néel order to
next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results
for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there
is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more
likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like
quantum phase around p = 0.55. Thus the strong frustration present in the J1-J2 Heisenberg model on the sc
lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.
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I. INTRODUCTION

Frustrated quantum magnetism continues to attract enor-
mous attention both in theory and experiment [1–3]. A
canonical model to study the interplay of frustration and
quantum fluctuations is the spin-half J1-J2 Heisenberg model.
On the square lattice this model has been extensively utilized
to study frustration-driven quantum phase transitions between
semiclassical ground-state phases with magnetic long-range
order and magnetically disordered quantum phases, see, e.g.,
Refs. [4–30]. Despite the numerous investigations of the
two-dimensional (2D) model, the nature of the nonmagnetic
quantum phase around J2/J1 = 0.5 is still under debate.
Interest in the spin-half J1-J2 model on square lattice is
motivated also by its relation to experimental studies of various
magnetic materials, such as VOMoO4 [31], Li2VOSiO4, and
Li2VOGeO4 [32] or Sr2CuTeO6 [33].

The dimension of the underlying lattice is crucial to the
existence of magnetic long-range order in quantum magnetic
systems. Naturally there is a stronger tendency to order in
three-dimensional (3D) systems. Thus, already a quite small
coupling between the J1-J2 square-lattice layers leads to a
disappearance of the magnetically disordered phase [34–37].
However, a magnetically disordered quantum phase is not
per se excluded in frustrated 3D systems, as it has been
demonstrated for the spin-half Heisenberg antiferromagnet
(HAFM) on the pyrochlore lattice [38].

The natural 3D counterpart of the square-lattice J1-J2

model is the J1-J2 model on the body-centered cubic (bcc)
lattice. The limiting case of J1 = 0 and J2 > 0 belongs to
the case of two interpenetrating unfrustrated, i.e., bipartite,
antiferromagnets for both models. The few investigations

of the 3D bcc spin-half J1-J2 model include exact diag-
onalization (ED) [39], series expansions around the Ising
limit [40], spin-wave theory [39,41], and the random phase
approximation [42]. Thus, all methods (except ED) start
from the symmetry-broken classical antiferromagnetic states
and then quantum corrections are subsequently taken into
account. Consistently, all of these methods indicate that a
single phase transition occurs in this system. In contrast to
the 2D model, a magnetically disordered quantum phase is not
observed. However, the frustration has a strong influence on
the thermodynamics, in particular the critical temperature is
substantially suppressed by frustration [40,43–45].

Less clear is the situation for the spin-half J1-J2 model on
the simple cubic (sc) lattice [43,46–52]. In this case different
approaches, such as, spin-wave theories [46–48,51], varia-
tional cluster approach [52], differential operator technique
[50], or a spherically symmetric Green function method [49],
come to different conclusions with respect to the existence of
a disordered ground-state phase. The underlying semiclassical
physics of these approaches is different. Spin-wave theories
[46–48,51], differential operator technique [50], and the
variational cluster approach [52] include explicit symmetry
breaking. Spin-wave theory uses the z-axis aligned classical
states as a starting point for the calculation, whereas differ-
ential operator technique and the variational cluster approach
use Weiss fields to test the presence of the antiferromagnetic
order. By contrast, the Green function method [49] preserves
full spin rotational invariance. A direct first-order transition
between two antiferromagnetically long-range ordered phases
was obtained in Refs. [46,48,50,51], whereas within Green
function technique [49] and linear spin-wave theory [51]
a magnetically disordered quantum phase was found that
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separates the two antiferromagnetic phases. Very recently
the role of a third-neighbor coupling J3 was studied by
Laubach et al. [52]. Although these authors did not discuss
a disordered quantum phase for J3 = 0, their results indicate
that a very small additional frustrating J3 > 0 leads to such
a spin-liquid-like quantum phase. It is in order to emphasize
the basic difference between the bcc and sc J1-J2 models, that
becomes evident in the limit of large J2 (or J1 → 0). Contrary
to the bcc model, the J1-J2 HAFM on the sc model is still
strongly frustrated, because the antiferromagnetic J2 bonds
connect sites of two interpenetrating face-centered cubic (fcc)
lattices.

In the present paper we use the coupled cluster method
(CCM) to perform a comparative study of the spin-half J1-J2

HAFM on the bcc and sc lattices. We mention here that the
CCM previously has been applied to the 2D square-lattice
J1-J2 HAFM [10,16,17,26,34,53] and the method provides
accurate results for the ground-state energy, the magnetic order
parameter, as well as for the critical points, where the quantum
phase transitions take place.

The relevant Hamiltonian of the J1-J2 model is given by

H = J1

∑

〈i,j〉
si · sj + J2

∑

〈〈i,j〉〉
si · sj . (1)

The symbol 〈i,j 〉 indicates those bonds that connect nearest-
neighbor sites (counting each bond once only) and the
symbol 〈〈i,j 〉〉 indicates those bonds that connect next-nearest-
neighbor sites (again counting each bond once only). Here
we consider the sc and bcc lattices in the regime J1 � 0
and J2 � 0, and these lattices (and CCM “model states,” see
Sec. II) are shown in Fig. 1. We note that these systems are
frustrated by positive values of J2. The competition between
the bonds J1 and J2 and therefore the phase transition points
in these systems depend on coordination numbers z1 (i.e.,
the number of nearest neighbors) and z2 (i.e., the number of
next-nearest neighbors). In order to enable our calculations
to be consistent with each other, we introduce the following
quantity:

p = J2z2

J1z1
. (2)

The (underlying) bcc and sc lattices are both bipartite, and so
the nearest-neighbor Néel state forms the classical ground state
for both of these systems for smaller values of p < pcl, i.e., up
to the phase transition point at p = pcl, where pcl = 1

2 for the
sc as well as for the bcc lattice. These states are shown in Fig. 1
for both the sc and bcc lattices. They are denoted by sc-AF1 and
bcc-AF1, respectively. The situation is more complicated in
the large p limit. The bcc lattice decouples into two sc lattices
when nearest-neighbor bonds are set to J1 = 0 and J2 remains
nonzero. Thus, collinear striped order (the corresponding state
is denoted by bcc-AF2) occurs for p > pcl for the bcc lattice,
also shown in Fig. 1 for the bcc lattice. We shall use this state
as another model state for the bcc lattice. By contrast, the sc
lattice decouples into two fcc lattices when nearest-neighbor
bonds are set to J1 = 0 and J2 remains nonzero. This system
(with only next-nearest-neighbor antiferromagnetic bonds) is
therefore frustrated and there is a highly degenerate classical
ground-state manifold including noncollinear ground states.
However, according to the order by disorder mechanism

FIG. 1. CCM model states: (a) Néel model state for the simple
cubic lattice (denoted by sc-AF1); (b) striped model state for the
simple cubic lattice (denoted by sc-AF2); (c) nearest-neighbor Néel
model state for the body-centered cubic lattice (denoted by bcc-AF1);
and (d) next-nearest-neighbor Néel striped model state for the body-
centered cubic lattice (denoted by bcc-AF2).

[54,55] collinear striped ordering is favored by quantum
fluctuations [46–52] also for p > pcl. The “striped” model
state for the sc lattice (denoted by sc-AF2) used here is also
shown in Fig. 1.

Here we wish to investigate the ground-state properties of
the spin-half J1-J2 model on the sc and bcc lattices by using
the CCM. We wish to determine the positions of the phase
transitions using the CCM and we aim to discuss the nature
of the phase transitions. As there is arguably less evidence
available in the literature for the sc lattice rather than the
bcc lattice, this investigation should be most useful for the sc
lattice. However, we shall see that insight into both systems
can be obtained by comparing and contrasting the results for
each system.

In what follows, the formalism of the CCM is presented
briefly, and then the results for the bcc lattice and the sc lattice
are given. We present our conclusions in the final section of
this paper.

II. METHOD

For general information relating to the methodology of
the CCM, see, e.g., Refs. [56–60]. The CCM has recently
been applied computationally at high orders of approximation
to quantum magnetic systems with much success, see, e.g.,
Refs. [61–72]. In the field of quantum magnetism, advantages
of this approach are that it can be applied to strongly frustrated
quantum spin systems in any dimension and with arbitrary spin
quantum numbers. The exact ket and bra ground-state energy
eigenvectors |�〉 and 〈�̃| of a many-body system described
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by a Hamiltonian H ,

H |�〉 = Eg|�〉; 〈�̃|H = Eg〈�̃|, (3)

are parametrized within the CCM as follows:

|�〉 = eS |�〉; S =
∑

I �=0

SIC
+
I ,

(4)
〈�̃| = 〈�|S̃e−S ; S̃ = 1 +

∑

I �=0

S̃IC
−
I .

Again, we remark that the model or reference states |�〉 for
the sc and bcc lattices are shown in Fig. 1. The ground-state
energy is now given by

Eg = Eg({SI }) = 〈�|e−SHeS |�〉. (5)

The ket-state and bra-state correlation coefficients are obtained
by solving the CCM ket- and bra-state equations given by

〈�|C−
I e−SHeS |�〉 = 0, ∀I �= 0, (6)

〈�|S̃e−S[H,C+
I ]eS |�〉 = 0, ∀I �= 0. (7)

Each ket- or bra-state equation belongs to a certain creation
operator C+

I = s+
i , s+

i s+
j , s+

i s+
j s+

k , . . . , i.e., it corresponds to
a certain set (configuration or cluster) of lattice sites i,j,k, . . . .
The ket- and bra-state correlation coefficients SI and S̃I ,
respectively, relate to the “fundamental” cluster with index
I (of Nf such fundamental clusters in total) and so also to the
appropriate ground-state equation above.

The manner in which is the CCM equations are determined
and solved is discussed elsewhere (again, see, e.g., Refs. [61–
72] for more details). However, it is important to note here
that the CCM formalism is only ever exact in the limit of
inclusion of all possible multispin cluster correlations within
S and S̃, although in any real application this is usually
impossible to achieve. It is therefore necessary to utilize
various approximation schemes within S and S̃. The most
commonly employed scheme has been the localized LSUBm

scheme, in which all multispin correlations over distinct
locales on the lattice defined by m or fewer contiguous sites
are retained. We will use this scheme in this article.

Note that we also make the specific and explicit restriction
that the creation operators {C+

I } in S preserve the relationship
that, in the original (unrotated) spin coordinates, sz

T = ∑
i s

z
i =

0 in order to keep the approximate CCM ground-state wave
function in the correct (sz

T = 0) subspace. Note that each
fundamental cluster is independent of all others clusters with
respect to the symmetries of the lattice (and Hamiltonian).

The order parameter (sublattice magnetization) M for the
systems considered here is defined as

M = − 1

N

N∑

i

〈�̃|ŝz
i |�〉, (8)

where we note that ŝz
i is with respect to the local spin axes at

site i after rotation of the local spin axes with respect to the
model state so that (notationally only) the spins appear to align
in the negative z direction. This ensures that the mathematics
of treating these problems is slightly simpler [60,61]. Hence,
the order parameters are taken with respect to the model states
shown in Fig. 1.

As mentioned above, the LSUBm approximation becomes
exact only in the limit m → ∞, and so it is useful to
extrapolate the LSUBm results in this limit. A well-established
extrapolation scheme [60–72] for the ground-state energy
Eg/N is given by

eg(m) = Eg(m)/N = eg(m = ∞) + a1m
−2 + a2m

−4. (9)

For the magnetic order parameter M we use the scheme

M(m) = M(m = ∞) + b1/m1/2 + b2/m3/2. (10)

This extrapolation ansatz is most suitable to detect ground-
state order-disorder transitions [16,17,26,64–67]. We were
able to carry out CCM calculations to the LSUB8 level of
approximation for the bcc lattice and to LSUB10 for the sc
lattice. The maximum number of fundamental configurations
entering the CCM calculations at the LSUB10 level of
approximation is 1 728 469.

We know from Refs. [16,17,26,64–67] that the lowest
level of approximation, LSUB2, conforms poorly to the
extrapolation schemes, especially as the parameter p increases.
Hence, as in previous calculations, we exclude LSUB2 data
from the extrapolations.

Specifically for the sc lattice we will also calculate the spin
stiffness ρ up to the LSUB8 level of approximation. More
explanation is needed relating to how to define the stiffness
and how to perform the necessary CCM calculations, and so
we transfer this discussion to the Appendix.

III. RESULTS

A. Body-centered cubic lattice

The bcc lattice is considered first. We were able to carry
out CCM calculations to the LSUB8 level of approximation for
this system. Results for the ground-state energy are shown in
Fig. 2. LSUBm results converge very rapidly with increasing
level of approximation m, and differences in energies between
LSUB6 and LSUB8 levels of approximation are broadly of
order 10−4 for the bcc-AF1 model state and of order 10−3

for the bcc-AF2 model state and for all values of p. LSUB4,
LSUB6, and LSUB8 results for the unfrustrated case where
p = 0 (setting also J1 = 1) are given by eg = −1.14950,
−1.15072, and −1.15101, respectively. The extrapolation to
m = ∞ yields eg = −1.1513, which compares well to results
of series expansions of eg = −1.1510 [73] and of third-order
spin-wave theory of eg = −1.1512 [73]. Good correspondence
with ED results of Ref. [39] are also seen by visual inspection
of Fig. 2. We observe that CCM and ED results follow a
very similar pattern as we increase p, although ED results
are clearly much lower in energy than those of the CCM.
The difference between ED and CCM results is due to the
finite size of the lattice (N = 36) in the ED calculations.
The overall behavior of the ground-state energy provides clear
evidence for a first-order transition. The intersection point at
p = pc = 0.528 of the ground-state energies of the bcc-AF1
and bcc-AF2 energies determines the transition point. The
corresponding kink in the eg(p) curve for N = 36 (ED) is at
p ≈ 0.525.
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FIG. 2. CCM results for the ground-state energy of the spin-
half J1-J2 model on the bcc lattice are compared to results of
exact diagonalizations (ED) with N = 36. Note that the curves for
the LSUBm data coincide almost completely. Extrapolated results
(labeled “extra 4–8”) are obtained by using the extrapolation scheme
of Eq. (9) using data from the LSUB4, LSUB6, and LSUB8
approximations. The ground-state energies of the two model states
are found to intersect at pc = 0.528.

Results for the order parameter are shown in Fig. 3. We
see again that CCM results are converging with increasing
level of LSUBm approximation level, albeit more slowly than
for the ground-state energy. LSUB4, LSUB6, and LSUB8
results for the unfrustrated HAFM (i.e., when p = 0) are
given by M = 0.44899, 0.44515, and 0.44350, respectively,
and the extrapolated value is M = 0.4398. Again, this result
compares quite well to those predictions of series expansions
of M = 0.442 [73] and of third-order spin-wave theory of
M = 0.4412 [73]. The data shown in Fig. 3 clearly support
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FIG. 3. CCM results for the order parameter (sublattice mag-
netization) M of the spin-half J1-J2 model on the bcc lattice.
Extrapolated results (labeled “extra 4–8”) are obtained by using the
extrapolation scheme of Eq. (10) using data from the LSUB4, LSUB6,
and LSUB8 approximations. The vertical (dotted) line indicates the
intersection point of the ground-state energies for the two model states
at pc = 0.528.
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FIG. 4. Spin-spin correlation 〈S0SR〉 functions for nearest neigh-
bors (red), next-nearest neighbors (blue), and for third-nearest
neighbors (black) for the spin-half J1-J2 model on the bcc lattice
in dependence of the frustration parameter p = 3J2/4J1 (solid lines:
CCM-LSUB8 results, symbols: ED results for N = 36, cf. Ref. [39]).
All results are averaged data over all neighbors with the same
separation |R|.

that there is a direct first-order transition between the phases
with semiclassical magnetic long-range orders of type AF1
and AF2 (see Fig. 1). The values of the extrapolated order
parameter at the transition point pc = 0.528 are M = 0.3585
(AF1) and M = 0.4104 (AF2).

The results for the spin-spin correlation functions at the
LSUB8 level of approximation shown in Fig. 4 agree well
with the ED data for N = 36. The change in the spin-spin
correlation functions is very abrupt and the large magnitude
of correlation functions at p = pc is further evidence of a
first-order phase transition at this point. The small magnitude
of the nearest-neighbor spin-spin correlation function at
p > pc signals the splitting of the system in two weakly
coupled interpenetrating antiferromagnets with leading
coupling J2.

We may compare the transition point pc = 0.528 obtained
by the CCM with previous results, namely pc = 0.525 (ED
[39]), pc ≈ 0.53 (series expansions [40] and nonlinear spin-
wave theory [41]), and pc ≈ 0.54 (random phase approxima-
tion [42]). Note that the critical point for the quantum model
is slightly above the classical value pcl = 0.5.

Finally, we emphasize the basic difference to the 2D square-
lattice model (see also the discussion in the next section).
Although both models are of similar character concerning
the competition between the J1 and J2 bonds, the increase in
dimension leads to a significant stabilization of semiclassical
magnetic long-range order and to the disappearance of the
intermediate quantum phase that is present in the 2D model.
Thus, the amount of frustration must be larger in 3D for
such a magnetically disordered quantum phase to exist at
all. The J1-J2 model on the sc lattice discussed in the next
section might have a sufficient degree of frustration because
the next-nearest-neighbor bonds J2 in this model compete not
only with the nearest-neighbor bonds J2 but also with each
other.
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FIG. 5. CCM results for the ground-state energy Eg/N for the
spin-half J1-J2 model on the sc lattice are compared to results
of exact diagonalizations (ED) with N = 32. Note that the curves
for the LSUBm data obtained for the Néel model state coincide
almost completely. Extrapolated results (labeled “extra 4–10”) are
obtained by using the extrapolation scheme of Eq. (9) using data
from the LSUB4, LSUB6, LSUB8, and LSUB10 approximations.
The vertical (dotted) line indicates the value in the middle of the two
points, pAF1

c = 0.549 and pAF2
c = 0.557, where the extrapolated order

parameters of the sc-AF1 and sc-AF2 phases vanish. (Inset: CCM
results for the spin-half square-lattice J1-J2 model corresponding to
Ref. [17].)

B. Simple cubic lattice

Next we consider the sc lattice. We were able to carry
out CCM calculations to the LSUB10 level of approximation
for this system. Results for the ground-state energy on the
sc lattice are shown in Fig. 5. LSUBm results are essentially
converged at the LSUB10 level of approximation for the Néel
model state sc-AF1 (differences in energy between the LSUB8
and LSUB10 levels of approximation are generally much less
than 10−3 for all values of p). Results for the striped model
state sc-AF2 (only) do not demonstrate quite the same level of
convergence as those results for the sc-AF1 Néel model state,
although they are still close to each other. For the unfrustrated
sc HAFM (i.e., when p = 0 and setting also J1 = 1) LSUB4,
LSUB6, LSUB8, and LSUB10 results are eg = −0.90043,
−0.90180, −0.90214, and −0.90225, respectively. We find an
extrapolated CCM result of eg = −0.9024 which compares
well to results of series expansions of eg = −0.9021 [73]
and of third-order spin-wave theory of eg = −0.9025 [73].
Good correspondence with ED results is again seen by visual
inspection of Fig. 5, although the difference between ED
and CCM results is again due to the finite size of the lattice
(N = 32) in the ED calculations.

The curvature of the eg(p) curve around p = 0.55 is
noticeably different to the results for the ground-state energy
for the bcc lattice near to its transition point. Moreover, we
find that the solution to the LSUB10 equations on the sc lattice
terminates at p ∼ 0.58 for the sc-AF1 model state tracing and
at p ∼ 0.52 for the sc-AF2 model state (i.e., we cannot trace
the CCM solution beyond these termination points). One may
expect that any intersection should occur within the region
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FIG. 6. CCM results for the order parameter (sublattice magneti-
zation) M of the spin-half J1-J2 model on the sc lattice. Extrapolated
results are obtained by using the scheme of Eq. (10). To get an
impression of the accuracy of the extrapolated order parameter we
take into account (i) data from the LSUB4, LSUB6, LSUB8, and
LSUB10 approximations (thick solid red line, labeled “extra 4–10”)
and (ii) data from the LSUB4, LSUB6, and LSUB8 approximations
(thin dotted red line, labeled “extra 4–8”). Obviously, both red lines
are very close to each other. The vertical (dotted) line indicates the
value in the middle of the two phase transition points pAF1

c = 0.549
and pAF2

c = 0.557. (Inset: CCM results for the spin-half square-lattice
J1-J2 model corresponding to Ref. [17].)

0.52 � p � 0.58, see Fig. 5. However, a (tentative) extension
of the ground-state energy for sc-AF1 model state beyond
p ∼ 0.58 with respect to p until it crosses those results for
the sc-AF2 model state leads to a speculative crossing point
at p ≈ 0.65, which is therefore clearly too large. We mention
again that the energies for the Néel and striped model states
demonstrate a very clearly defined intersection at pc for the
bcc case, see Fig. 2. On the other hand, the behavior of
the ground-state energy of the spin-half square-lattice J1-J2

model, as is shown by the inset to Fig. 5, is quite similar to
that of the sc lattice.

Results for the order parameter M are shown in Fig. 6. We
see again that CCM results converge with increasing level of
LSUBm approximation level. In order to provide an idea of the
precision of the extrapolation of the order parameter according
to Eq. (10) two extrapolation schemes are presented in Fig. 6:
(i) data from the LSUB4, LSUB6, LSUB8, and LSUB10
approximations are used for the extrapolation and (ii) only
data from the LSUB4, LSUB6, and LSUB8 approximations are
used. The results obtained by scheme (i) should be regarded as
more accurate than scheme (ii) because it contains more data to
extrapolate with and higher orders of approximation. However,
the differences in extrapolated results between both schemes
remain small in the entire parameter region. LSUB4, LSUB6,
LSUB8, and LSUB10 results for the unfrustrated HAFM
(i.e., when p = 0) are M = 0.43392, 0.42860, 0.42626, and
0.42504, respectively. We find an extrapolated CCM result
of M = 0.4210 (M = 0.4203) for scheme (i) [scheme (ii)],
and this result compares reasonably well to results of series

235123-5
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expansions of M = 0.424 [73] and of third-order spin-wave
theory of M = 0.4227 [73].

A striking difference to the bcc case is shown by the
critical points that are estimated by finding the values at
which the extrapolated order parameter becomes zero. We find
pAF1

c = 0.549 and pAF2
c = 0.557 for scheme (i), whereas we

have pAF1
c = 0.551 and pAF2

c = 0.548 for scheme (ii). Again,
results of scheme (i) ought to be more accurate than those of
scheme (ii), although the agreement between both schemes is
a good check of the consistency of our results. We conclude
that the spin-half J1-J2 HAFM on the sc lattice possesses
an intermediate quantum phase between two semiclassical
magnetic phases with continuous transitions between the
phases. Again, this behavior is highly reminiscent of the
behavior for the order parameter of the spin-half square-lattice
J1-J2 model, as is shown by the inset to Fig. 6. However, the
intermediate quantum paramagnetic regime is much clearer for
this 2D model. Thus, our data obtained by a high-order CCM
approximation provide serious indications, but not definite
evidence, for the presence of the intermediate quantum phase
for the sc lattice.

Results for the spin-spin correlation functions are shown
in Fig. 7, where CCM results are again in good agreement
with results of ED (N = 32). The overall shape of the
correlation functions around p = 0.55 is in a accordance
with a continuous transition. Their behavior is quite different
to the results for the bcc model. For example, results for
the nearest-neighbor and next-nearest-neighbor correlation
functions demonstrate a large discontinuity in values in the
region of transition (centered on pc ≈ 0.53) for the bcc lattice,
as shown in Fig. 4. By contrast, the changes in the spin-spin
correlation functions for the SC lattice near the phase transition
points are clearly of smaller magnitude and are much smoother
than for the bcc lattice, as shown in Fig. 7 for both the ED and
CCM results.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

<S
0S

R>

p

FIG. 7. Spin-spin correlation 〈S0SR〉 functions for nearest neigh-
bors (red), next-nearest neighbors (blue) and for third-nearest
neighbors (black) for the spin-half J1-J2 model on the sc lattice
in dependence of the frustration parameter p = 3J2/4J1 (solid lines:
CCM-LSUB8 results, symbols: ED results for N = 32). All results
are averaged data over all neighbors with the same separation |R|.
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FIG. 8. CCM results for the spin stiffness for the spin-half J1-J2

model on the sc lattice. Extrapolated results (labeled “extra 4–8”)
are obtained by using the extrapolation scheme of Eq. (A2) using
data from the LSUB4, LSUB6, and LSUB8 approximations. For the
classical model we have ρAF1

s,cl = s2(J1 − 4J2) and ρAF2
s,cl = s2J1.

In addition to the sublattice magnetization M we can
also use the spin stiffness ρs (see the Appendix) to get
an independent analysis of order-disorder quantum phase
transitions. A positive value of ρs means that there is magnetic
long-range order in the system, whereas a value of zero reveals
that there is no magnetic long-range order. Results for ρs

of the spin-half J1-J2 model on the sc lattice are given in
Fig. 8. For the unfrustrated SC Heisenberg antiferromagnet,
i.e., at the point p = 0, we found ρAF1

s = 0.24158, 0.23803,
and 0.23654 at the LSUB4, LSUB6, and LSUB8 levels
of approximation. (Note that the LSUB4 and LSUB6 data
coincide with those of Ref. [74], whereas the LSUB8 result is
new.) The extrapolated result is ρAF1

s (p = 0) = 0.2332, that is
close to the result of Ref. [74] obtained without LSUB8. We
also mention that the CCM value ρAF1

s (p = 0) = 0.2332 is in
very good agreement with ρAF1

s (p = 0) = 0.2343 obtained by
second-order spin-wave theory [75].

At small values of p the stiffness ρAF1
s decreases linearly

with increasing p. That is similar to the classical result
ρAF1

s,cl (p) = ρAF1
s,cl (p = 0) − bp, however with a reduced slope

of b = 0.43 instead of b = 0.5. Approaching the transition
point pc we find a slight upturn in ρAF1

s , and, as a result, we
cannot determine a transition point by ρAF1

s . We argue that
likely higher orders of LSUBm approximations are required
to overcome this problem. However, we may speculate
that the linear relation ρAF1

s (p) (valid at small p) remains
approximately valid until pc. A corresponding extrapolation
(see the dashed magenta line in Fig. 8) crosses the x axis at
p = 0.540, i.e., close the the pc value found from the order
parameter M , see Fig. 6.

In the AF2 phase at larger values of the frustration
parameter p the stiffness ρAF2

s (p) behaves quite differently.
Asymptotically it saturates as p → ∞ [note that ρAF2

s,cl (p) =
const.]. As approaching pc from the right, ρAF2

s (p) drops down
and the stiffness extrapolated according to Eq. (A2) vanishes
at p = 0.540, i.e., at that value, where the linear fit of ρAF1

s (p)
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becomes zero. We remark that ρAF2
s and the linear fit of ρAF1

s (p)
both tend to zero at a value of p that is consistent with results
for the vanishing points of the order parameter M using model
states AF1 and AF2. All of these results demonstrate that the
transition is different to that for the bcc lattice. Furthermore, the
behavior of the ground-state energy, the order parameter, and
the stiffness are quite similar to that found for the square-lattice
J1-J2 HAFM [17], albeit with an intermediate quantum phase
that is much smaller for the 3D sc lattice.

IV. CONCLUSIONS

The ground-state phases of the spin-half J1-J2 HAFM on
the bcc and sc lattices were investigated by using the CCM
in this article. Two antiferromagnetic regimes of collinear
order were observed for the bcc lattice, namely, of nearest-
neighbor Néel and next-nearest-neighbor Néel striped long-
range order. An intersection point between the ground-state
energies for these two model states was observed at p = 0.528
[where p = (z2J2)/(z1J1)], and no intermediate magnetically
disordered phase was detected. The gradient of the ground-
state energy with respect to p (and also for the spin-spin
correlation functions using ED) behaved discontinuously at
the intersection point. The values for the corresponding order
parameters at this point are M ∼ 0.36–0.41. These results are
all clear indications of a single first-order phase transition
occurring at p ∼ 0.53, which is in agreement with results
of all other approximate methods [39–42] applied to this
model.

The spin-half J1-J2 HAFM on the sc lattice is more strongly
frustrated due to the self-frustrating character of the J2 bonds.
Although the data for the sc lattice were harder to resolve,
our results demonstrate that the ground-state phase diagram
is very different to that of the bcc lattice. In particular, the
investigation of the magnetic order parameter indicates that
there is an intermediate quantum phase in between the two
semiclassical magnetic phases. Thus, the phase diagram of
the spin-half J1-J2 HAFM on the sc lattice resembles that
of the corresponding 2D model. Trivially, any investigation
of a highly nontrivial quantum many-body system relies
on approximations. Bearing in mind that we find a very
small parameter region where this quantum phase may exist,
we cannot exclude that the actual phase diagram does not
exhibit such a quantum phase. However, our data provide
evidence that the quantum J1-J2 model on the sc lattice is
a candidate for a 3D spin system, where strong frustration
may lead to a nonmagnetic quantum ground state. Moreover,
any additional competing term in the Hamiltonian would
further open the window for an unconventional quantum
phase.

Evidence in the literature relating to the existence of the
intermediate quantum phase for the sc lattice is mixed, and
certainly there is no consensus as to its nature, if indeed
it does exist. However, there are some similarities between
the behavior of the J1-J2 model on the sc lattice and that
of the square-lattice J1-J2 model. It is worth noting that
calculations for the square-lattice model using density matrix
renormalization group with explicit implementation of SU(2)
spin rotation symmetry in Ref. [24] have found a gapless
spin liquid for 0.44 < J2/J1 < 0.5 and a gapped plaquette

valence-bond phase for 0.5 < J2/J1 < 0.61. However, any
inference relating to the ground-state ordering of the sc-lattice
model in the intermediate regime based on the behavior
of the square-lattice model would be highly speculative.
Bearing in mind that the region of a possible intermediate
phase is very small, it seems that the emergence of a
sizable gap in this phase is unlikely, i.e., we may expect
that the intermediate phase is either a gapless spin liquid
or a phase with a very small gap, cf. also the discussion in
Ref. [52].

APPENDIX: THE SPIN STIFFNESS OF THE SC J1- J2

ANTIFERROMAGNET

The spin stiffness ρs measures the increase in the amount
of energy as we twist the magnetic order parameter of a mag-
netically long-range ordered system along a given direction
by a small angle θ per unit length, see, e.g., Refs. [72,76–79].
We use here the notations given in Ref. [78] and define the
stiffness tensor as

ραβ = ∂2eg(Q)

∂θα∂θβ

∣∣∣∣
Q=0

, (A1)

where eg = Eg/N is the ground-state energy per spin, θα =
Q · eα (α = 1,2,3) are the twist angles along the basis vectors
eα , and Q is the magnetic wave vector of the magnetically
long-range ordered phase.

For the sc lattice we have trivially eα = ex,y,z. The
corresponding magnetic wave vectors are Q = (π,π,π ) for
the AF1 (Néel) state [see Fig. 1(a)] and Q = (π,0,π ) for
the AF2 (striped) state [see Fig. 1(b)]. For the classical
model in the AF1 phase we easily obtain ρ

αβ

cl = ρAF1
s,cl δαβ

with ρAF1
s,cl = s2(J1 − 4J2), i.e., the stiffness tensor is di-

agonal and naturally the x, y, and z components are
identical.

For the magnetic wave vector Q = (π,0,π ) (AF2 state)
we have to consider the twists θα = Q · eα , i.e., θx = θ1,
θy = 0, θz = θ2, and we obtain for the classical model again a
diagonal tensor ρ

αβ

cl = ρAF2
s,cl δαβ with ρAF2

s,cl = s2J1. The CCM
calculation for the quantum s = 1/2 model is straightforward,
see Refs. [17,72,74,79]. We introduce the twist as described
above and use the twisted state as the model state for the CCM
calculation. As a result we obtain the quantum ground-state
energy as a function of the imposed twist angle that can be
used to find ρAF1

s and ρAF2
s according to Eq. (A1). However,

note that the solution of the corresponding CCM-LSUBm

equations is more challenging because fewer point-group
symmetries can be used for the noncollinear twisted state and
so we have more fundamental clusters at equivalent level of
LSUBm approximation. Therefore we can only calculate the
stiffness only up to LSUB8. We follow Refs. [17,72,74,79] and
extrapolate the stiffness CCM-LSUBm data to m → ∞ using
LSUB4, LSUB6, and LSUB8 data by using the extrapolation
scheme given by

ρs(m) = ρs(m = ∞) + c1m
−1 + c2m

−2. (A2)
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[15] M. Mambrini, A. Läuchli, D. Poilblanc, and F. Mila, Phys. Rev.
B 74, 144422 (2006).

[16] R. F. Bishop, P. H. Y. Li, R. Darradi, J. Schulenburg, and J.
Richter, Phys. Rev. B 78, 054412 (2008).

[17] R. Darradi, O. Derzhko, R. Zinke, J. Schulenburg, S. E. Krüger,
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