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Ising tricriticality in the extended Hubbard model with bond dimerization
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We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the
one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical
line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the
tricritical Ising model with central charge c = 7/10. Above this point, the quantum phase transition becomes
first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group
method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the
entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a
field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field
theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave
correlation functions, which are found to be in excellent agreement with our numerical results.
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I. INTRODUCTION

Ising tricriticality emerges at the end point of a continuous
line of Ising quantum phase transitions, above which a first-
order transition occurs. In 1+1 dimensions, it is described
by a conformal field theory (CFT) and more precisely the
second minimal model of central charge c = 7/10 [1,2].
Interestingly, the tricritical Ising model (TIM) exhibits space-
time supersymmetry. Until recently, there were only a few
known condensed matter realizations of the TIM such as the
Blume-Capel model [3–5] or the so-called golden chain with
Fibonacci anions [6]. In the last couple of years, other realiza-
tions were found in lattice models with interacting Majorana
fermions [7,8], and in an extended Hubbard model (EHM) with
on-site (U ) and nearest-neighbor (V ) Coulomb interactions, in
a case where an (somewhat artificial) alternating ferromagnetic
spin interaction (J ) was added [9]. In this model, the U

and V terms induce respectively fluctuating spin-density-wave
(SDW) and charge-density-wave (CDW) order. The J term
promotes the formation of spin-1 moments (out of two spins on
neighboring sites) and the build-up of a symmetry-protected
topological (SPT) state [10], in close analogy to the spin-1
XXZ chain. As a result, the SDW gives way to a Haldane
insulator (HI), and a quantum phase transition takes place
between the HI and the CDW when V increases. If this
HI-CDW Ising transition line meets a first-order transition
line, a tricritical Ising point appears.

Another, perhaps more realistic, model system, attracting
a lot of attention, is the half-filled EHM with explicit bond
dimerization [11,12]. Here the formation of an SPT phase
might be triggered by the Peierls instability. Indeed, the
ground-state phase diagram, obtained within a (perturbative)
weak-coupling approach [11], contains besides the CDW a
bond-dimerized phase. In order to distinguish this phase from
the bond-order-wave (BOW) phase in the EHM [13,14], which
arises as a result of spontaneous symmetry breaking, we will
call it a Peierls insulator (PI) in the following. The quantum
phase transition line between the insulating CDW and PI
phases belongs to the universality class of the two-dimensional

Ising model [11,12], and has been argued to terminate in
a tricritical point, where the phase transition changes from
continuous to first order. The existence and universality class
of the tricritical point is an open question however. To address
this issue, not only a numerical study should be possible (e.g.,
along the lines of Ref. [9]), but also a field theoretical analysis,
based on the results of Ref. [12].

The aim of the present work is to establish the tricritical
Ising universality class at the tricritical point on the PI-CDW
transition line of the half-filled EHM with staggered bond
dimerization, using both a matrix-product-state (MPS) based
numerical density-matrix renormalization group (DMRG)
technique [15] and a bosonization approach [16,17] combined
with a field theoretical analysis.

The outline of this paper is as follows. In Sec. II,
we introduce and motivate the model Hamiltonian under
investigation. Section III presents our DMRG results, in
particular the ground-state phase diagram, the excitation gaps,
and the entanglement entropy. Section IV describes the field
theoretical approach and makes predictions for the quantum
critical line, as well as for the density-density, spin-spin, and
bond-order-wave correlations (see also Appendix), which can
be used to analyze our numerical data. We conclude in Sec. V.

II. MODEL

The Hamiltonian of the EHM is defined as

ĤEHM = −t
∑
jσ

(ĉ†jσ ĉj+1σ + H.c.)

+U
∑

j

(
n̂j↑ − 1

2

)(
n̂j↓ − 1

2

)

+V
∑

j

(n̂j − 1)(n̂j+1 − 1), (1)

where ĉ
†
jσ (ĉjσ ) creates (annihilates) an electron with spin

σ = ↑,↓ in a Wannier orbital centered around site j ,
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n̂jσ = ĉ
†
jσ ĉjσ , and n̂j = n̂j↑ + n̂j↓. For V = 0, the ground

state has fluctuating SDW order (there is no long-range
order, but the dominant correlations are of SDW type)
with gapless spin and gapped charge excitations ∀U > 0
[17]. In the regime V/U � 1/2, the ground state remains
a SDW, but acquires 2kF − CDW order when V/U � 1/2.
The SDW and CDW phases are separated by a narrow BOW
phase below the critical end point [18–22]. The BOW phase
exhibits spontaneous breaking of translational symmetry and is
characterized by a staggered modulation of the kinetic energy
density. Adding a staggered ferromagnetic spin interaction,
ĤJ = J

∑L/2
j=1 Ŝ2j−1 Ŝ2j with Ŝj = (1/2)

∑
σσ ′ ĉ

†
jσ σ σσ ′ ĉjσ ′ ,

to the 1D EHM, the alternating spin exchange tends to form
spin-1 moments with the result that the SPT HI [10] replaces
the Mott insulating and BOW states of the EHM at small V/U

[9].
In the following, we ask whether a similar scenario holds

for the half-filled EHM with staggered bond dimerization:

Ĥ = ĤEHM + Ĥδ, (2)

Ĥδ = −t
∑
jσ

δ(−1)j (ĉ†jσ ĉj+1σ + H.c.). (3)

It was previously shown that in the large-U limit the low-
lying excitations of (2) are chargeless spin triplet and spin
singlet excitations [16,23–28], whose dynamics is described
by a spin-Peierls Hamiltonian.

For finite U , the Tomonaga-Luttinger liquid parameters
have been determined at and near commensurate band fill-
ings [29], by means of DMRG calculations. In the weak
electron-electron interaction regime, perturbative [30,31] and
renormalization group [11,32,33] approaches determined that
the system realizes PI and CDW phases at half-filling.
Exploiting DMRG and field theory, it was shown that the
transition between these two phases belongs to the universality
class of the two-dimensional Ising model [11,12].

III. DMRG TREATMENT

In this section, we examine the ground-state properties of
the 1D lattice Hamiltonian (2) with a high accuracy by means
of the MPS-based infinite DMRG (iDMRG) technique [34,35].
The method works directly in the thermodynamic limit. The PI
and CDW boundaries are characterized by various excitation
gaps obtained by DMRG combined with the infinite MPS
representation on the boundaries, see previous work by some
of the authors [9]. When tracing the central charge along the
PI-CDW transition line, we use DMRG for finite systems with
periodic boundary conditions (PBC).

A. Phase diagram

According to weak-coupling renormalization-group re-
sults [11], a bond alternation δ changes the universality class
of the BOW-CDW transition in the EHM from Gaussian- to
Ising-type. The Ising criticality has been confirmed by DMRG
computations [12].

Figure 1 presents the complete ground-state phase diagram
of the EHM with bond dimerization, as obtained by the
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FIG. 1. iDMRG ground-state phase diagram of the 1D EHM with
bond dimerization (2). The red solid line gives the PI-CDW phase
boundaries for δ/t = 0.2. The quantum phase transition is continuous
(first order) below (above) the tricritical Ising point [Ut,Vt] marked by
the asterisk. For comparison results for the BOW-CDW (blue dashed
line), SDW-BOW (green dotted line), and SDW-CDW (green dashed-
dotted line) transitions of the pure EHM (δ = 0) were included [22].
(Inset) PI-CDW transition for δ/t = 0.1 and 0.2 in the weak-coupling
regime. As expected, decreasing δ/t , the transition lines come closer
to BOW-CDW transition line of the pure EHM.

iDMRG technique. The phase boundaries for the pure EHM
are also included (blue and green lines). The dimerized PI
phase replaces entirely the SDW and BOW states of the
EHM. The PI state has the lowest energy also in the weak-
coupling regime, and even at U/t = 0. This finding confirms
previous weak-coupling renormalization group results [11].
In the intermediate-to-strong coupling regime, the PI-CDW
transition line converges to those of the BOW/SDW-CDW
transition for the pure EHM. The transition is continuous
up to the tricritical Ising point [Ut,Vt](δ), which converges
naturally to the tricritical point of the EHM when δ → 0.
Above [Ut,Vt], the PI-CDW transition becomes first order. At
very large U/t , the phase boundaries of the PI/SDW-CDW
transitions are almost indistinguishable.

We now characterize the different ground states of the
model (2) in some more detail. Since the dimerized PI
state can be considered as an SPT state, the entanglement
spectrum plays an important role in our analysis. The so-
called entanglement spectrum εα can be extracted from the
singular value decomposition [9]. Dividing our system into
two subblocks, H = HL ⊗ HR, and considering the reduced
density matrix ρL = TrR[ρ], the entanglement spectra are
given by the singular values λα of ρL as εα = −2 ln λα .
Moreover, the correlation length ξχ can be determined from
the second largest eigenvalue of the transfer matrix for some
bond dimension χ used in the iDMRG simulation [34,35].
While the physical correlation length diverges at the critical
point, ξχ stays finite, as a consequence of working with a finite
bond dimension χ . Because of ξχ ’s rapid increase with χ near
the critical point, ξχ can be used nevertheless to determine the
phase transition. We performed iDMRG simulations with χ
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FIG. 2. Correlation length ξχ (top) and entanglement spectrum εα

(bottom) as a function of V/t for U/t = 4 (left) and U/t = 12 (right),
where δ/t = 0.2. Data are obtained by iDMRG. Dashed lines give
the BOW-CDW (SDW-CDW) transition for U/t = 4 (U/t = 12) in
the EHM [22].

up to 400, so that the effective correlation length at criticality
is less or at most equal 300.

Figure 2 gives ξχ and εα as functions of V/t for fixed
δ/t = 0.2, at two characteristic U/t values. In the weak-to-
intermediate coupling regime, U/t = 4, we find a distinct peak
in the correlation length at Vc/t � 2.504, which increases
rapidly as χ grows from 100 to 200, indicating the divergence
of the correlation length ξχ → ∞ as χ → ∞, i.e., a quantum
phase transition (of Ising type, as will be shown in Sec. III C).
In contrast, at strong coupling U/t = 12, the peak height
stays almost constant at Vc/t � 6.194 when χ is enhanced.
Decreasing the magnitude of δ/t , the transition points will
approach those of the pure EHM, e.g., for δ/t = 0.1 and
U/t = 4 we find Vc/t � 2.372, with a simultaneous reduction
of the ξχ ’s peak heights. Most notably, the entanglement
spectra of the dimerized SPT phase exhibits a distinguishing
double degeneracy in the lowest entanglement level [10]; for
V > Vc, in the CDW phase, this level is nondegenerate.

B. Excitation gaps

Let us now analyze the behavior of the various excitation
gaps. Following previous treatment of the SPT phase [9,36],
we define the spin-, two-particle charge-, and neutral gaps as


s = E0(N,1) − E0(N,0), (4)


c = 1
2 [E0(N + 2,0) + E0(N − 2,0) − 2E0(N,0)], (5)

and


n = E1(N,0) − E0(N,0), (6)

respectively. Here, E0(Ne,S
z
tot) denotes the ground-state en-

ergy of the finite system with L sites, given the number of
electrons Ne and the z component of total spin Sz

tot. E1(Ne,S
z
tot)

is the corresponding energy of the first excited state.
In the pure EHM (δ = 0), at small-to-intermediate U/t and

V/t , both 
c and 
n vanish at the BOW-CDW transition,
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FIG. 3. Charge (
c), spin (
s), and neutral (
n) gaps in depen-
dence on V/t for (a) U/t = 4 and (b) U/t = 12. Again, δ/t = 0.2.
The dimerized PI (CDW) phase is marked in gray (white). Note the
jump of the spin gap, δs ≡ 
s(V +

c ) − 
s(V −
c ), at Vc/t .

whereas 
s stays finite. Turning on the dimerization δ, also
the charge gap becomes finite, while the neutral gap still closes
linearly, reflecting the fact that the transition point belongs to
the Ising universality class, see Fig. 3(a) for U/t = 4, where
Vc/t � 2.503.

By contrast, in the strong-coupling regime, the neutral
gap stays finite passing the transition point, see Fig. 3(b) for
U/t = 12. Most strikingly, the spin gap exhibits a jump at the
transition point (Vc/t � 6.192), which indicates a first-order
transition.

C. Entanglement entropy

We finally determine the universality class of the PI-
CDW quantum phase transition. When the system becomes
critical, the central charge c can easily be deduced from
the entanglement entropy [36,37]. CFT tells us that the von
Neumann entropy for a system with PBC is [38]

SL(�) = c

3
ln

[
L

π
sin

(
π�

L

)]
+ s1, (7)

where s1 is a nonuniversal constant. In the face of the doubled
unit cell of the SPT phase the related formula for the central
charge should be modified as [39]

c∗(L) ≡ 3[SL(L/2 − 2) − SL(L/2)]

ln{cos[π/(L/2)]} . (8)
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FIG. 4. Central charge c∗(L) along the PI-CDW transition line
for δ/t = 0.2. DMRG data (obtained with PBC) indicate the Ising
universality class (c = 1/2) for U < Ut and, most notably, a tricritical
Ising point with c = 7/10 at Ut (red dotted line). (Inset) Jump-value
of the spin gap for U � Ut. The infinite MPS data point to a first-order
transition.

Figure 4 displays c∗(L) along the PI-CDW transition line,
varying U and V simultaneously at fixed dimerization strength
δ/t = 0.2. With increasing U , we find clear evidence for a
crossover from c∗(L) � 1/2 to c∗(L) � 7/10, which signals
Ising tricriticality.

Alternatively, the tricritical Ising point can be estimated
from the magnitude of the jump of the spin gap, δs, see inset
of Fig. 3 for U/t = 12. δs should be finite for U > Ut, and is
expected to vanish at the tricritical Ising point, where U = Ut.
This is confirmed by the inset of Fig. 4. Obviously, δs closes at
Ut/t � 10.6, in accord with the critical value estimated from
the numerically obtained central charge c∗(L) in the main
panel.

IV. FIELD THEORY ANALYSIS

The weak-coupling regime U , V � t of the model (2)
can be analyzed by field theory methods [11,12]. A standard
bosonization analysis [16,17] leads to the following form of
the low-energy Hamiltonian:

H =
∑
α=c,s

vα

16π
[(∂x�α)2 + (∂x�α)2] + Hint,

Hint = −λc cos(βc�c)

+λs

{
cos (�s) + a2

0

16
[(∂x�s)

2 − (∂x�s)
2]

}

+λδ cos

(
�s

2

)
cos

(
βc

2
�c

)

+λ′
δ cos

(
�s

2

)
cos

(
3βc

2
�c

)
+ · · · . (9)

Here, a0 is the lattice spacing, �s,c are canonical Bose fields
associated with the collective spin and charge degrees of
freedom, and �s,c the associated dual fields fulfilling

[�α(x),�α′ (x ′)] = 4πiδα,α′sgn(x − x ′). (10)

The parameters βc, λc,s, λδ , λ′
δ , vc,s can be determined at weak

coupling U,V,δ � t . Compared to Ref. [12], we have retained
one higher harmonic in the interaction potential between spin
and charge degrees of freedom. The reason for this will become
clear later on.

A. Quantum critical line

It was shown in Refs. [11] and [12] that for appropriate
choices of the parameters U , V , and δ the spin sector is gapped,
while the charge sector undergoes a quantum phase transition.
In the vicinity of this critical line, we have

cos

(
�s

2

)
= 0. (11)

Integrating out the massive spin degrees of freedom then leads
to an effective low-energy description of the charge sector by
a triple sine-Gordon model

Heff
c = v

16π
[(∂x�c)2 + (∂x�c)2] + gδ cos

(
βc

2
�c

)

+ gc cos (βc�c) + g′
δ cos

(
3βc

2
�c

)
+ · · · . (12)

If we neglect the last term, we arrive at the two-frequency sine-
Gordon model discussed in Ref. [12]. It exhibits a quantum
phase transition in the Ising universality class [40]. In the
classical limit βc → 0, this corresponds to values of gc and gδ

such that the quadratic terms in the expansion of the cosines
precisely cancel. The reason for retaining the last term in (12)
is now clear: by fine-tuning the parameters gc, gδ , g′

δ in the
classical limit, we can set the coefficient of the quartic term
in the expansion of the interaction potential to zero as well,
which corresponds to a phase transition in the tricritical Ising
universality class. This scenario is known to persist in the full
quantum theory [41].

It is important to note that while the field theories (9)
and (12) are initially derived in the limit U,V,δ � t , they have
a wider regime of applicability, provided that their parameters
are adjusted appropriately. In the following, we will assume
that the description (12) applies along the line of quantum
phase transitions even at large values of U/t and V/t . This will
allow us to make predictions for the large distance behavior
of various correlation functions, which then can be tested by
numerical computations for the lattice model.

B. Density correlations

In the field theory limit, the bosonized form of the electron
density is

nj → ρ0(x) + (−1)j ρπ (x), x = ja0, (13)

where

ρ0(x) = const − βc

2π
∂x�c + Â0∂x�c cos

(
�s

2

)
+ · · · ,

ρπ (x) = Âπ sin

(
βc

2
�c

)
cos

(
�s

2

)
+ · · · . (14)

Here we have absorbed Klein factors into the nonuniversal
amplitudes Â0,π . Importantly, at half-filling, the smooth

235118-4



ISING TRICRITICALITY IN THE EXTENDED HUBBARD . . . PHYSICAL REVIEW B 93, 235118 (2016)

component ρ0(x) does not contain a 4kF umklapp contribu-
tion [42]. As this is quite important, it is worthwhile to review
the derivation of this fact. We note that the Hamiltonian (2) is
invariant under the particle-hole transformation

Ĉĉj,σ Ĉ† = (−1)j ĉj,−σ . (15)

The electron density operator is odd under (15)

Ĉ(n̂j − 1)Ĉ† = 1 − n̂j . (16)

In the field theory, Eq. (15) is implemented as follows:

ĈϕcĈ
† = −ϕc, Ĉϕ̄cĈ

† = −ϕ̄c,

ĈϕsĈ
† = ϕs, Ĉϕ̄sĈ

† = ϕ̄s,

Ĉησ Ĉ† = η−σ , Ĉη̄σ Ĉ† = η̄−σ . (17)

Here η↑, η↓, η̄↓, and η̄↑ are Klein factors, cf. Ref. [43]. At
general band filling, the 4kF term in the charge density takes
the form

ρ4kF (x) = A4kFη↑η̄↑η↓η̄↓ cos(βc�c − 4kFx) + · · · . (18)

Equation (17) implies that at half-filling (4kFx = 0 mod 2π ),
we have

Cρ4kF (x)C† = ρ4kF (x), (19)

which can be reconciled with Eq. (16) only by taking A4kF = 0.
In the vicinity of the quantum critical line, we can again

integrate out the gapped spin degrees of freedom and arrive at

ρ0(x) = const + B0∂x�c + · · · ,

ρπ (x) = Bπ sin

(
βc

2
�c

)
+ · · · . (20)

Finally, we need to relate our charge boson to the primary fields
in the tricritical Ising model. This can be done by referring to
the Landau-Ginzburg description of the transition, see, e.g.,
Ref. [44]. Expanding our low-energy effective theory (12) for
βc � 1, we obtain the Landau-Ginzburg model

L ∼ v

16π
�c

(
∂2
x − ∂2

t

v2

)
�c − λ2�

2
c − λ4�

4
c − λ6�

6
c + · · · .

(21)

In this limit, we can then use Ref. [44] to relate local operators
in our theory to primary fields in the TIM. In particular, one
has

�c(x) ↔ σ (x),

: �2
c(x) : ↔ ε(x),

(22)
: �3

c(x) : ↔ σ ′(x),

: �4
c(x) : ↔ ε′(x),

where σ , ε, σ ′, and ε′ are respectively the magnetization field,
energy density, submagnetization, and vacancy density in the
TIM. Proceeding in the same way for the components of the
charge density (20) then suggests the following identifications:

ρπ (x) ∼ Aσ (x) + · · · ,

ρ0(x) ∼ const + Ba0∂xσ (x) + · · · . (23)
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FIG. 5. Density-density correlation functions at the tricritical
Ising point for δ/t = 0.2. Data obtained by iDMRG with χ = 1600.
The correlation functions (symbols) show a power-law decay, in
accordance with the field theory predictions, Eqs. (26) and (27).

Using the known results for correlation functions in the TIM,
we then arrive at the following prediction for the density-
density correlator at the Ising tricritical point:

〈(n̂j+� − 1)(n̂j − 1)〉 ∼ (−1)�
A2

�3/20
+ · · · , � � 1. (24)

We may isolate the subleading behavior by considering smooth
and staggered combinations of the density on the lattice:

n̂st
j = (−1)j (n̂j − n̂j+1) ∼ 2Aσ (x) + · · · ,

n̂sm
j = n̂j + n̂j+1

2
− 1 ∼ (B − (−1)jA)a0∂xσ + · · · . (25)

The TIM predictions for two point functions of these operators
are

〈
n̂st

j+�n̂
st
j

〉 ∼ 4A2�−3/20 + · · · ,〈
n̂sm

j+�n̂
sm
j

〉 ∼ Cj,��
−43/20 + · · · , (26)

Cj,� = − 69

400

{
B2 − A2/4 � odd
[B − (−1)jA/2]2 � even.

(27)

The predictions (26) and (27) can now be compared with
iDMRG simulations of the 1D lattice model (2). Figure 5
shows the iDMRG results for two point functions of the
(a) staggered and (b) smooth combinations of the particle
density at the TIM critical point of the lattice model. The
results for 〈n̂st

j+�n̂
st
j 〉 are seen to be in excellent agreement with

the leading �−3/20 dependence at long distances predicted by
Eq. (26) for both j = 1 and 2. To test the second prediction in
Eq. (27), we consider separately the cases of even and odd �

for j = 1 and j = 2, and plot the absolute value of 〈n̂sm
�+1n̂

sm
1 〉
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in Fig. 5(b). Again the numerical data are seen to be in
excellent agreement with the predicted �−43/20 dependence at
large separations. The prefactors for the power laws extracted
from our iDMRG data are in very good agreement with the
prediction of Eq. (27) as well.

C. BOW correlations

The BOW order parameter is given by m̂BOW =
(1/L)

∑
j m̂j with

m̂j = (−1)j
∑

σ

[ĉ†jσ ĉj+1σ + H.c.]. (28)

The BOW order parameter is always nonzero in the vicinity of
the transition

〈m̂BOW〉 = 0. (29)

The bosonized expression for m̂BOW is

m̂j ∼ (−1)j const + Ĉπ cos

(
βc

2
�c

)
cos

(
�s

2

)

+ (−1)j Ĉ0 cos(βc�c) + · · · . (30)

We now proceed in the same way as for the charge density.
We integrate out the gapped spin degrees of freedom, then
expand for small βc, and finally use the Landau-Ginzburg
description to identify which operators in the TIM dominate
the long-distance behavior of the BOW correlations. The
main difference compared to the charge density is that the
BOW order parameter is even under charge conjugation, and
concomitantly we find

m̂j ∼ 〈m̂BOW〉 + D0ε(x) + (−1)j [D1 + D2ε(x)] + · · · .

(31)

We again form smooth and staggered combinations,

m̂st
j = (−1)j (m̂j − m̂j+1) ∼ 2[D1 + D2ε(x)] + · · · ,

m̂sm
j = m̂j + m̂j+1

2
∼ 〈m̂BOW〉 + D0ε(x) + · · · . (32)

The TIM predictions for BOW correlations are then

〈
m̂st

j+�m̂
st
j

〉 ∼ 4
[
D2

1 + D2
2�

−2/5
] + · · · , (33)

〈
m̂sm

j+�m̂
sm
j

〉 ∼ 〈m̂BOW〉2 + D2
0�

−2/5 + · · · . (34)

These predictions can be compared to iDMRG computa-
tions in Fig. 6. In order to remove the constant terms in
Eqs. (33) and (34), we first fit the numerical results to the
functional form y = A + Bx−2/5. This allows us to extract the
constants as shown in the upper panels in Fig. 6. Subtracting
the estimated constants from original data, both staggered and
smooth correlation functions are seen to decay in a power-law
fashion compatible with the TIM prediction.

D. Spin correlations

As the spin sector is gapped, we expect an exponential
decay for the spin two-point function〈

Ŝz
j+�Ŝ

z
j

〉 ∼ E0e
−�/ξ1 + E1(−1)�e−�/ξ2 . (35)

2.65

2.7

2.75

〈m
st j+

�
m

st j
〉

0.2

0.22

0.24

〈m
sm j+

�
m

sm j
〉

100 101 102

10−2

10−1

�

〈m
st j+

�
m

st j
〉−

A

100 101 102

10−2

10−1

�

〈m
sm j+

�
m

sm j
〉−

A
′

FIG. 6. BOW correlation functions at the tricritical Ising point
for δ/t = 0.2 computed by iDMRG with χ = 1600. (Top) The
asymptotic values for the two-point functions of staggered and smooth
combinations of the BOW density are estimated by fitting to Eqs. (33)
and (34). (Bottom) log-log plots of the same correlation functions with
the asymptotic values subtracted show power-law decay compatible
with Ising tricriticality.

Here we have used that the low energy degrees of freedom
in the spin sector occur at wave numbers zero and π .
This behavior is again in good agreement with iDMRG
computations as shown in Fig. 7. The correlation lengths
extracted by fitting the iDMRG results to Eq. (35) are found to
be in reasonable agreement with the corresponding eigenvalue
of the transfer matrix ξ1 � 1.225.

To summarize this section, we have seen that field theory
predictions obtained by means of a triple sine-Gordon model
description of the tricritical Ising transition are in excellent
agreement with iDMRG computations for the lattice model.
This firmly establishes that the critical endpoint is in the
universality class of the TIM. We note that an analogous field

0 10 20 30

10−4

10−8

10−12

�

|〈S
z j+

�S
z j
〉|

y = Ae−�/B + Ce−�/D

Ut/t � 10.56, Vt/t � 5.497
(tricritical Ising)

A � 0.0137

B � 1.222

C � 0.00660

D � 1.221

FIG. 7. Spin correlation function (symbols) at the tricritical Ising
point for δ/t = 0.2 using the iDMRG with χ = 1600, showing
exponential decay. The line is a fit to Eq. (35).
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theory description applies along the entire Ising critical line.
Here, field theory predictions are again in excellent agreement
with iDMRG computations as shown in Appendix.

V. CONCLUSIONS

We have revisited ground-state properties of the one-
dimensional half-filled extended Hubbard model with stag-
gered bond dimerization. We have employed a combination of
numerical and analytical techniques to map out the ground-
state phase diagram in detail, and identify all quantum critical
regions. At fixed dimerization δ, there are two distinct phases.
A CDW phase at large V � U is separated from a PI phase
at U � V by an Ising critical line, that terminates in a critical
point which we have shown to be in the universality class of
the tricritical Ising model. Our identification was based on
a detailed analysis of both entanglement entropy scaling and
critical exponents describing the power-law decay of several
two-point correlation functions.

Correlation functions of local operators in the EHM with
bond dimerization access only the bosonic sector of the
TIM CFT. This precludes us from directly investigating the
emergence of supersymmetry at low energies/long distances.
To “see” the fermionic sector one presumably would have to
consider correlation functions of suitably constructed nonlocal
operators. It would be interesting to investigate this possibility
further. Another issue worth pursuing is to investigate the
scaling regime around the TIM critical point in the framework
of the EHM with bond dimerization. It would be interesting
to investigate whether it is possible to make contact with the
field theory predictions of Ref. [45].
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APPENDIX: CORRELATION FUNCTIONS ON THE
ISING CRITICAL LINE

The tricritical Ising model describes the end point of a
critical line of Ising transitions, cf. Fig. 1. The Ising critical line
was previously investigated by DMRG methods in Ref. [12]
and the critical exponents were extracted by considering the
scaling of the order parameter and spectral gap in the vicinity of
the transition. In this Appendix, we complement these results
by examining the power law behavior of correlations functions
at the transition, i.e., the same diagnostics we used in the main
text to identify the TIM critical point.

The identification of operators is analogous to the TIM
case. The projections of the particle density and BOW order
parameter onto local fields in the Ising CFT are again of the
form (23) and (32), but σ (x) and ε(x) are now the spin field and
energy density of the Ising CFT. This leads to the following
prediction for the large distance asymptotics of the density-
density correlator

〈(n̂j+� − 1)(n̂j − 1)〉 ∼ (−1)�Ã�−1/4 + · · · . (A1)

10−1

100

〈n
st j+

�
n

st j
〉

j = 1
j = 2

(a) U/t = 4, Vc/t � 2.503 (Ising)

y = a x−1/4

a � 1.535 (j = 1 and 2)

100 101 102

10−8

10−6

10−4

10−2

100

�
∣ ∣ ∣
〈n

sm j+
�
n

sm j
〉∣ ∣ ∣

� even (j = 1)
� odd (j = 1)
� even (j = 2)
� odd (j = 2)

(b)

y = b x−9/4

b � 0.150 (j = 1 for � even)

b � 0.0141 (j = 1 and 2 for � odd)

b � 0.00131 (j = 2 for � even)

FIG. 8. Density-density correlation functions at the Ising tran-
sition point (Vc � 2.503) for U/t = 4 and δ/t = 0.2, using the
iDMRG with χ = 1600. (a) The correlator of the staggered com-
bination is in excellent agreement with Eq. (A2) with 4Ã2 ≈ 1.535.
(b) Correlations of the smooth combination nsm

j are plotted separately
for odd and even � with j = 1 and 2. The data are in excellent
agreement with the prediction Eq. (A3).

Considering smooth and staggered combinations defined
in (25) separately, we obtain

〈
n̂st

j+�n̂
st
j

〉 ∼ 4Ã2�−1/4 + · · · ,〈
n̂sm

j+�n̂
sm
j

〉 ∼ C̃j,��
−9/4 + · · · , (A2)

C̃j,� = − 5

16

{
B̃2 − Ã2/4 � odd

[B − (−1)j Ã/2]2 � even.
(A3)

101 10210−6
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�
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FIG. 9. BOW correlations at the Ising transition point for U/t =
4 and δ/t = 0.2. The correlators exhibit a power-law decay consistent
with the field theory predictions, Eq. (A4).
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These predictions are in excellent agreement with iDMRG
computations for the lattice model on the Ising critical line as
is shown in Fig. 8.

The field theory predictions for staggered and smooth
combinations of the BOW order parameter on the Ising
transition line are

〈
m̂st

j+�m̂
st
j

〉 ∼ (−1)�
[
C̃2

4 + C̃5�
−2

] + · · · ,〈
m̂sm

j+�m̂
sm
j

〉 ∼ 〈m̂BOW〉2 + C̃6�
−2 + · · · . (A4)

We can remove the constant contributions by considering
connected correlators, which in turn exhibit power-law decay
to zero at large distances. The iDMRG results shown in Fig. 9

agree perfectly with the predicted �−2 power-law decay. As
a consistency check we have extracted the value of 〈m̂BOW〉
by fitting the long-distance behavior of two-point function
of m̂sm

j to the form (A4). We find it to be in excellent
agreement with the value obtained by computing the one-point
function.

We note that the agreement between our numerical data
and field theory predictions is much better along the Ising
transition line that at the TIM critical point. There are two
reasons for this. First, at fixed U/t , the Ising transition point
(Vc/t) can be determined more accurately than the location of
the TIM transition, where two parameters (U and V ) have to be
fine-tuned simultaneously. Second, the corrections to scaling
are different in both cases.
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