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We investigate the role of short-ranged electron-electron interactions in a paradigmatic model of three-
dimensional topological insulators, using dynamical mean-field theory and focusing on nonmagnetically ordered
solutions. The noninteracting band structure is controlled by a mass term M , whose value discriminates between
three different insulating phases, a trivial band insulator and two distinct topologically nontrivial phases. We
characterize the evolution of the transitions between the different phases as a function of the local Coulomb
repulsion U and find a remarkable dependence of the U -M phase diagram on the value of the local Hund’s
exchange coupling J . However, regardless of the value of J , following the evolution of the topological transition
line between a trivial band insulator and a topological insulator, we find a critical value of U separating
a continuous transition from a first-order one. When the Hund’s coupling is significant, a Mott insulator is
stabilized at large U . In proximity of the Mott transition we observe the emergence of an anomalous “Mott-like”
strong topological insulator state.
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I. INTRODUCTION

Recently, the conventional Landau classification of matter
has been complemented by the concept of topological phases.
Rather than being distinguished by the value of local or-
der parameters reflecting spontaneously broken symmetries,
topological phases of matter are characterized by global
invariants describing topological properties of the many-body
wave function. In the context of band structure physics,
the systematic search for topological phases resulted in the
discovery of a periodic table [1,2] that builds upon the
Altland-Zirnbauer symmetry classification [3].

In two spatial dimensions (2D), the seminal theoretical
[4–6] and experimental [7] discovery of time reversal symme-
try (TRS) protected topological insulators (TIs) has inspired
the theoretical community to analyze the influence of Coulomb
repulsion on such systems. Evidently, the interplay between
significant Coulomb interactions and topological aspects of
matter holds the promise of nontrivial and intriguing effects
emerging from the competition between the localization
tendency induced by strong correlations and the peculiar
band structure of TIs. Regarding the influence of electron-
electron interactions on 2D TIs, a wealth of results has been
accumulated focusing on several model Hamiltonians with
different techniques (for a recent review see, e.g., Ref. [8]).
Among others, the effect of strong correlations on quantum
spin Hall insulators and the related topological transitions
have been addressed using quantum Monte-Carlo calculations
[9–11], various cluster based approaches [12–16], as well as
dynamical mean field theory (DMFT) and extensions [17–25].
Interestingly, the possibility of inducing the formation of a
topological phase by means of electronic repulsion has also
been proposed [26,27].

In three spatial dimensions (3D), symmetry-protected TIs
have been suggested theoretically [28–31] only about two
years later than their counterparts in 2D. Remarkably, 3D

TIs that preserve TRS exhibit nondegenerate Dirac fermion
surface states. This feature makes them particularly appeal-
ing for fundamental science questions related to relativistic
quantum mechanics. Soon after their theoretical prediction,
these topological phases of matter have been experimentally
detected in three-dimensional calchogenides [32–36].

The interplay of strong electronic correlations with the
various topological phases, realizable in 3D [28], pledges to
unlock access to a large variety of possible anomalous states.
For instance, some iridate compounds, with a pronounced
three-dimensional character and the concomitant presence
of strong spin-orbit coupling and sizeable electron-electron
interaction, have been proposed either as correlated 3D TIs
[37] or to host even more exotic, fractionalized topological
states [38,39]. The role of interactions in enhancing the effect
of spin-orbit coupling has been proposed as key to understand
the onset of a topological Kondo insulating state in both
SmB6 and PuB6 [40–44]. Additionally, an interaction driven
3D topological Mott insulating state has been discussed in
Refs. [45,46], while the existence of a U(1) spin liquid with
nontrivial spinon gap has been proposed in Ref. [37] for a
class of pyrochlore iridates. More recently a platinum oxide,
Ca2PtO4, has also been suggested to become a d-electron weak
TI if doped with holes [47]. Moreover, the realization of 3D
TIs in oxides [48], which have typically sizable values of the
interaction parameters, gives a further motivation to study the
interplay of topology and electronic interactions. However,
the more complicated topological structure of the 3D TIs with
respect the their 2D counterparts has not yet allowed for a
systematic study of correlated effects in 3D.

In this paper, we present a thorough study of the effects of a
local electronic interaction on the properties of a paradigmatic
model of a 3D TI. Using DMFT, we solve nonperturbatively
a two-band Hubbard model in the presence of a multiorbital
density-density interaction, featuring a Hund’s coupling term.
We characterize the evolution of the nontrivial topological
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states of the system as a function of the interaction strength. We
obtain the phase diagrams of the model in the two-dimensional
space spanned by the Hubbard repulsion and the crystal-field
splitting and determine the transition lines between insulating
phases with different topological properties. One of the most
prominent features of the model is that the transition line
between the trivial band insulator and the strong topological
insulator is divided in two parts by a critical point.

For weak interactions the phase transition is adiabatically
connected with the noninteracting transition, and it is continu-
ous. On the contrary, in the large interaction regime beyond the
critical point, the topological quantum phase transition (TQPT)
becomes of first order. Unlike the conventional scenario,
the TQPT takes place without continuous closing of the
spectral gap, which abruptly “inverts” across the transition.
Interestingly, this result extends to the 3D case a recent finding
of ours for quantum spin Hall insulators in 2D [25]. Reducing
the crystal-field splitting, the strong topological insulator,
in the present case, turns into a weak topological insulator
through a transition which remains continuous, irrespective of
the strength of the interaction. This effect has no analog in the
previously studied 2D model.

This sequence of transitions occurs for every value of
the Hund’s exchange coupling J , even if the shape of the
phase diagram in the U -M plane is strongly influenced by
the presence of the exchange coupling. A qualitative effect of
J is that it allows for a topologically trivial Mott insulating
state for large values of the interaction strength. This leads
to one further TQPT which separates the weak 3D TI from
the trivial Mott insulator (MI). We finally point out that, in
a tiny slice bordering the transition line between the 3D TI
and MI, we observe the appearance of an anomalous strong
“Mott-like topological insulator.” Such anomalous strong TI is
continuously connected to the MI but separated by a first-order
discontinuity from the weak 3D TI state.

The paper is organized as follows. In Sec. II, we introduce
the noninteracting model for the 3D TI and discuss its solution
within the framework of DMFT. We also briefly describe
the calculation of the Z2 topological invariant with and
without interactions. The multiple phases of the noninteracting
model are reviewed in Sec. III. The effects of the electronic
correlations on the model solution are discussed in Sec. IV,
where we also present the phase diagrams of the full model. In
Sec. V, we illustrate the ways the different topological phase
transitions occur. Finally, the transition to the Mott insulator
is described in Sec. VI which precedes the conclusions of the
paper.

II. MODEL

We consider a two-orbital Fermi-Hubbard model defined
on a three-dimensional cubic lattice. The model Hamiltonian
reads:

H =
∑

k

�
†
kĤ(k)�k + Hint, (1)

where the spinor �k = (c1k↑c2k↑c1k↓c2k↓) collects all the
operators cklσ (c†klσ ), which annihilate (create) an electron at
the orbital l=1,2 with momentum k and spin σ . In order
to write the explicit expression for Ĥ(k) let us introduce the

4 × 4 � matrices, defined as follows:

�0 = 1 ⊗ 1 =
[
1 0
0 1

]
�1 = σz ⊗ τx =

[
τx 0
0 −τx

]

�2 = −1 ⊗ τy =
[−τy 0

0 −τy

]
�3 = σx ⊗ τx =

[
0 τx

τx 0

]

�4 = σy ⊗ τx =
[

0 −iτx

iτx 0

]
�5 = 1 ⊗ τz =

[
τz 0
0 τz

]

(2)

where τx,y,z and σx,y,z are the Pauli matrices, respectively, in
orbital and in spin space and 1 is the unit matrix. In terms of
these �i matrices we have:

Ĥ(k) = M(k)�5 + λ sin(kx)�1 + λ sin(ky)�2 + λ sin(kz)�3

(3)

with M(k)=M−ε[cos(kx)+cos(ky)+cos(kz)]. This term of
the model Hamiltonian would describe a system of two
bands of width W =6ε, hybridizing with an amplitude λ and
separated by a crystal-field splitting 2M . In the following we
shall set ε as our energy unit. In addition we fix λ=0.3 for
definiteness having checked that qualitatively similar results
can be obtained for different values of λ. Throughout this paper
we consider a total density of two electrons per site, which
corresponds to a global half filling of our band-structure and
leads to a particle-hole symmetry.

The second term of the model Hamiltonian (1) describes the
screened Coulomb repulsion. We assume a local interaction
with a full orbital structure, namely inter- and intra-orbital
repulsion and the Hund’s coupling J . This describes the
exchange effect favoring high-spin configurations, which
correspond to the two electrons occupying different orbitals.
More explicitly the interaction is:

Hint = U
∑

i l

nil↑nil↓ + (U − 2J )
∑
i l �=l′

nil↑nil′↓

+ (U − 3J )
∑
i l �=l′

(nil↑nil′↑ + nil↓nil′↓), (4)

where U is the strength of the electron-electron interaction
and nilσ = c

†
ilσ cilσ is the local density for the orbital l and

spin σ and cilσ = 2π/V
∑

k e−ik·icklσ . We notice that this
Hamiltonian only contains the “density-density” part of the
Hund’s exchange and neglects the so-called pair-hopping and
spin-flip terms [49].

DMFT solution. We investigate the solution of the model
(1) using dynamical mean field theory (DMFT). Within DMFT
the quantum many-body lattice Hamiltonian (1) is mapped
onto an effective quantum impurity problem. The impurity
site features all the local interactions of the original problem.
In our case, it corresponds to a two-orbital impurity with
interactions of the same form of Eq. (4) coupled to an effective
bath. The bath is a frequency dependent quantity whose
functional form is obtained self-consistently by imposing that
the impurity problem reproduces the local physics of the lattice
problem. The DMFT mapping therefore approximates the self-
energy of the lattice problem with a momentum-independent
one obtained from the solution of the effective quantum
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impurity problem. In terms of this function the self-consistency
condition reads

Ĝ−1
0 (z) =

∑
k

[(z + μ)1̂ − Ĥ(k) − 	̂(z)]−1 + 	̂(z)

= Ĝ−1
loc(z) + 	̂(z) (5)

for z ∈ C. Equation (5) relates the Weiss Field Ĝ−1
0 (z),

describing the properties of the effective bath, to the local
physics of the lattice problem expressed by the local Green’s
function Ĝloc(z). All the effects of the interactions are included
in the self-energy 	̂(z) which is a 4 × 4 matrix. Owing
to the symmetries of our model, including the particle-hole
symmetry at half filling, the self-energy becomes diagonal in
the spin-orbital basis, and it turns out to acquire the following
structure in terms of the � matrices:

	̂(z) =
∑
k>0

gkz
2k�5 +

∑
k�0

ukz
2k+1�0 (6)

with gk,uk ∈ R. In particular, the real- and imaginary-part of
the Matsubara self-energy 	̂(iωn) satisfies the relation:

	̂(iωn) = Re	(iωn)�5 + iIm	(iωn)�0, (7)

which means that the full self-energy is parametrized by a
single scalar complex function 	(iωn). Equation (7) implies
that the imaginary part of the self-energy is the same for all
the spin and orbital components, while the real part is the
same for the two spin components, and it has the opposite
sign for the two orbitals. As a matter of fact the real part of
the scalar self-energy is simply added to the bare splitting M .
Therefore we can define an effective mass term in terms of the
low-frequency limit of the self-energy [23,50,51]

Meff = M + Re	(ω = 0). (8)

In the following we will show that this quantity controls the
location of the topological phase transitions in the presence of
interactions.

We solve the effective problem by using an exact diagonal-
ization impurity solver [52–54]. In this scheme the effective
bath is discretized to a finite number Nb of levels coupled
to the No = 2 impurity orbitals. The resulting Hamiltonian is
solved by means of the Lanczos technique which allows us
to determine the lowest part of the spectrum as well as the
dynamical correlation functions at zero and low temperatures.
In this work we performed calculations for Nb =8 and checked
the convergence as a function of Nb by comparing with Nb =10
for selected values of the model parameters.

Topological invariants. Three dimensional topological
insulators preserving TRS with T 2 = −1, are classified
by four Z2 topological invariants [28], here denoted by
�ν = (ν0; ν1 ν2 ν3). The latter three numbers νi,i = 1 · · · 3
are so called weak topological invariants that describe
stacks of 2D topological insulators in the same symmetry
class. Such weak topological insulators are only defined
in lattice systems. By contrast, the strong topological in-
variant ν0 also exists in continuum systems and exhibits
a much stronger robustness against disorder. In the pres-
ence of interactions, all these invariants can be general-
ized to topological properties of the single particle Green’s
function [55–61].

As it has been shown in Ref. [62], the practical computation
of such interacting invariants formally reduces to that of a non-
interacting problem, where the role of the Bloch Hamiltonian
is played by the so-called topological Hamiltonian which reads
as

Ĥt(k) = −Ĝ−1(k,ω=0) = Ĥ(k) + 	̂(ω=0). (9)

For the insulating phases considered in this work, the imag-
inary part of the self-energy is linearly vanishing in ω=0.
The only finite contribution thus comes from the real-part
Re	̂(ω → 0).

If inversion symmetry is not broken, as for our model (1),
the definition of the topological invariants is drastically simpli-
fied [63,64]. Following Ref. [64], we obtain the eigenstates of
Ĥt at the eight time reversal invariant momenta (TRIM) Ki=1...8

and for the occupied bands α. These states can be chosen as
eigenstates of the parity operator P with eigenvalue piα = ±1.
The different Z2 invariants νc=0,...,3 are then calculated using
the relation:

(−1)νc =
∏

i∈Ac, α

√
piα. (10)

Here the phase convention
√−1 = +i is used, c = 0, . . . ,3

labels the components of the global invariant vector �ν, and Ac

indicates the set of TRIM points as follows (see Fig. 1 for the
labels of the TRIM):

A0 = [�,X′,M,X,A,Z,A′,R] A1 = [X′,M,R,A′]

A2 = [X,A,R,M] A3 = [Z,A′,R,A], (11)

where the location in momentum space of the TRIM points
is depicted in Fig. 1. Quite intuitively, the sets Ac,c = 0 · · · 3
entering the weak topological invariants are confined to 2D
planes with three orthogonal orientations in the 3D Brillouin
zone while the strong topological invariant involves all eight
TRIM.

kx
ky

kz

FIG. 1. Unit cell of the cubic reciprocal lattice. The arrows
indicate the three-dimensional path in the reciprocal space used to
depict the bands in the next Fig. 2.
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III. TOPOLOGICAL TRANSITIONS IN THE
NONINTERACTING LIMIT

We begin our analysis from the noninteracting model
U =J =0. The Hamiltonian (3) describes a three-dimensional
system undergoing a series of topological quantum phase
transitions as a function of the crystal-field splitting term
M . The band structure along the path in the reciprocal space
depicted in Fig. 1 for the various phases is reported in Fig. 2.
For |M| < 1 the model describes a weak topological insulator
(WTI) with a global invariant �ν = (0; 111).

The smallest direct gap is placed near the point Z (A) for
M > 0 (M < 0) in correspondence to a slight inversion of
the band character. A more robust band inversion takes place
close to the � point. A Dirac-like gap closure takes place at
the points Z (A) for M = 1 (M = −1).

For values of M in the range 1< |M|<3 there is a transition
to a strong topological insulating (STI) state. In the M >0
region such state is characterized by a global invariant �ν =
(1; 000), while for M <0 the STI has �ν = (1; 111) [65]. The
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FIG. 2. Evolution of the noninteracting band structure (left) as
a function of M and consequent “phase diagram” (right) of the
model (3). The coloured intervals on the right indicates the different
topological phases of the system. The colors of the band structures
correspond to the orbital character. The plot also illustrates the
difference between the strong topological insulator realized at M > 0,
i.e., STI� , and the one realized at M < 0, i.e., STIR .

values of the topological invariants reflect differences in the
band structures: For M >3 the smallest direct gap and band
inversion takes place around the � point, while for M <−3
these are located in proximity of the R point.

For |M|=3 the system undergoes a TQPT from the STI
to the trivial band insulator (BI) at |M|>3, see Fig. 2. At the
transition the topological invariant undergoes a sudden change
to the trivial value �ν = (0; 000). The TQPT is continuous with
the formation of a Dirac-like gap closure at the point � (M =3)
or R (M =−3). For this reason we will indicate with ST I� and
ST IR , respectively, the strong topological phases for M >0
and M <0.

IV. INTERACTING PHASE DIAGRAMS

We now turn our attention to the effects of the interaction on
the properties of the TQPT in the model (1). For definiteness
we restrict our analysis to the positive values of the splitting
M . Analogous results can be obtained for the M < 0 case.

Our results are summarized in the phase diagrams in the
U -M plane reported in Fig. 3. The figure compares the phase
diagram in the U -M plane for zero Hund’s coupling J = 0
(left panel) to that for J = U/4 (right panel). In both diagrams
one clearly sees that the two transitions of the noninteracting
system occurring from M = 3 (between BI and STI) and
M = 1 (between STI and WTI) are continued into boundary
lines that extend in the diagram as U is increased. The phase
boundaries have been drawn according to explicit evaluation
of the topological invariants from the single-particle Green’s
function [55–59].

However, at least two macroscopic differences appear
immediately: (i) a Mott insulating phase is obtained only for
finite J and (ii) the phase boundaries separating, respectively,
BI from STI and STI from WTI have a completely different
behavior as a function of U , where the critical M decreases as
a function of U in the absence of J , and it has the opposite
behavior for finite J . We notice that for a wide range of J the
phase diagram is similar to that of J = U/4, with the only
exception of very small values of J/U , where the boundary
lines first decrease (as for J = 0) and then increase (as for
J = U/4) as a function of U [66].

We can understand these differences analyzing the real-part
of the self-energy Re	̂, which renormalizes the bare splitting
between the orbitals. In Fig. 4 we report the evolution of Re	̂
as U is increased for J = 0 (left panel) and J > 0 (right panel).

The difference is apparent: for J = 0 the self-energy is
positive and increases with U , while for J > 0 it is a negative
quantity whose absolute values grows with U . This implies
that in the absence of J the interaction effectively enhances
the crystal-field splitting, while an opposite effect takes place
for finite J . This is easily understood since the Hund’s coupling
favours configurations in which the electrons populate the
different orbitals to maximize the spin (One can visualize this
very simply in the atomic limit where all the kinetic terms are
neglected), while in the absence of J intra- and inter-orbital
repulsion are identical and the electrons can freely populate
the orbitals.

As a result, for J = 0 the interactions lead to a very large
effective splitting, which favors a BI configuration in which
only one orbital is populated. For this reason the boundary
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FIG. 3. Interacting phase diagram of the three-dimensional model (1) as a function of M and U , with J = 0 (left panel) or J = U/4 > 0
(right panel). Data are for λ = 0.3. The solid (red) line ends in the critical point and is continued beyond this value by the dashed (orange) line.
The union of these two lines indicates the boundary between the trivial insulator and the strong topological insulator (1,000). The dotted (blue)
line indicates the transition from the STI to the weak topological insulator (0,111). In the right panel the solid (yellow) line is the boundary of
the Mott insulating region. The filled (gray) area near the Mott phase shows the re-entrant anomalous STI (1,111) phase, precursor of the Mott
transition. The dotted area in the right panel indicates the AFM phase region. The solid (black) line corresponds to the boundary of the AFM
phase, which is separated from the nontrivial region by a first-order transition.

lines decrease as a function of U . On the contrary, for finite
J and large interaction a weak effective splitting leads to a
Mott insulator with one electron per orbital and increases the
threshold to reach the topological transitions.

The presence of large local moments in the high-spin Mott
insulating region favours the onset of magnetic ordering. We
verified that, as expected, our model solution is unstable
towards the formation of a topologically trivial G-type an-
tiferromagnetic (AFM) state for large U . We computed the
boundary of the resulting AFM region in the phase diagram
(see Fig. 3) when allowing for a broken symmetry solution. In
addition we found that the formation of the AFM state takes
place through a first-order transition, with the discontinuous
formation of a finite order parameter. Interestingly the AFM
region does not hide the TQPT between BI and STI� .

In addition to the J -dependence, the evolution of the
self-energy of Fig. 4 reveals another important feature. In both
cases for small values of U the real part of the self-energy is

0 2 4 6 8
0

1

2

3

U=6.50
U=6.45
U=6.0
U=4.0
U=2.0

-3

-2

0 2 4 6 8

-1

0

U=5.00
U=9.00
U=10.85
U=11.00
U=11.60

FIG. 4. Real part of the scalar Matsubara self-energy Re	(iωn)
for an increasing interaction strength U . Data are shown for M = 0.3
with J = 0 (left panel), or M = 4.5 with J = U/4 (right panel). The
figure illustrates the opposite algebraic sign of the self-energy in the
two investigated cases. It also points out the pronounced frequency
dependence at low-energy.

essentially constant as a function of the imaginary frequency.
This is consistent with a Hartree-Fock solution (or static
mean-field) which can indeed obtained at lowest order in
a diagrammatic expansion. As U increases Re	̂ acquires a
more and more pronounced frequency dependence. Roughly
speaking the dynamical nature of the interaction effects is
measured by the difference between the low-frequency limit,
in which the dynamical correlation effects are dominant and
the large-frequency limit, that we label as a static mean-field
value 	̂MF =Re	̂(iωn → ∞). In Fig. 5 we show the behavior
of the correlation strength 
, which we define as:


 = Tr [�5Re	̂(0) − �5	̂MF]

Tr [�5	̂MF]
, (12)

3.5 4.0 4.5 5.0 5.5
M

0.01

0.1

1
U=12.00
U=11.00
U=9.00
U=8.00
U=7.00
U=6.00
U=5.00
U=4.00

FIG. 5. Evolution of the correlation strength measured by 
 as
a function of M and for increasing values of U . All data are for
J = U/4. The dotted line indicate the transition points.
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as a function of M and for different values of U and J = U/4.
For a fixed value of the interaction U the system is driven

through a TQPT by decreasing M below a given critical value.
In the weakly interacting regime the degree of correlation

 remains small and smooth across the TQPT (for smaller
values of U than those considered in the figure, 
 is even
more structureless at the topological transition). This behavior
changes dramatically in the strongly interacting regime: The
curves of 
 at constant U become divided into to distinct
parts: the large-M piece resembles the weak dependence of the
small-U region. For M below the TQPT (marked in the figure
by a dotted line) 
 gets instead very rapidly large indicating
a strong degree of many-body character of the solutions. This
characteristic behavior of 
 reflects a simple physical effect:
The fully polarized BI with two electrons in the lowest orbital
bands is essentially unaffected by the strength of the interac-
tion. On the other hand the topological STI� and WTI region
do not have a full orbital polarization (hence a higher degree of
hybridization). As such they react more vigorously to the pres-
ence of interaction, evolving from a weakly perturbed regime
to a strongly correlated topological state, as evidenced by 
.

V. TOPOLOGICAL QUANTUM PHASE-TRANSITIONS

We now study in detail the effect of correlations on the
two transitions connecting respectively the BI from the STI�
and the latter from the WTI. As we mentioned in Sec. II,
the transition lines can be traced according to the evolution
of the effective mass term Meff , which is the only way in
which the interactions influence the value of the topological
invariants.

The TQPT from the trivial BI to STI� is defined by the
condition Meff =3 which generalizes the condition M =3 valid
for the noninteracting case, and naturally reduces to it for
U = 0 when the self-energy vanishes. The whole Meff =3 line
is characterized by a change of the bulk topological invariant
�ν from (0,000) in the trivial BI phase to (1,000) in the STI� .
However the nature of such transition changes dramatically
from the weak to the strong interaction regime, as evidenced
by the behavior of Meff reported in Fig. 6 for J = 0 and J > 0.
In both cases, for low values of the interaction U the transition
remains continuous, similarly to the noninteracting regime
discussed in Sec. III. This reflects the fact that, if the correlation
strength is small, the TQPT can be very well described within
a Hartree-Fock picture, as already indicated by the behavior of

. In this effective single-particle picture a change in the mass
term M perfectly compensates the effects of the interaction U ,
ultimately leading to a continuous, noninteracting like, TQPT.
This behavior is illustrated in Fig. 6 for the smallest values of
U for which the crossing of the Meff = 3 line is continuous.

By increasing the interaction strength U above the critical
value U > Uc, the degree of correlation of the STI� is
no longer negligible. Consequently, a renormalized single-
particle description of the TQPT breaks down. In particular, the
strong dynamical dependence of the self-energy in this regime
does not allow to compensate the effects of the interactions by
means of a static change of M . The transition is still positioned
at Meff = 3 but the ground states in the trivial BI and in the
more correlated STI� can indeed no longer be continuously
connected across the TQPT. As a consequence, a first-order
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FIG. 6. Evolution of the effective Mass term Meff as a function of
the bare mass M . Panel (a)-(b) illustrates the transition from Trivial
Band Insulator to Strong Topological Insulator for J = 0 (a) and
J > 0) (b). Inset: Hysteresis loop of Meff for U = 9 and J = U/4.

jump is required to move from one phase to the other. The
existence of such a first-order TQPT is demonstrated in Fig. 6,
where we show the evolution of Meff for values of U above the
critical point. As the figure shows, in such regime the effective
mass term displays a discontinuity at Meff = 3, irrespective of
the value of the Hund’s coupling J . As a further hallmark of
the first-order character of the correlated TQPT, we show the
hysteretic cycle across the transition in the inset to Fig. 6.

This finding shows that electron-electron correlations pro-
foundly change the nature of the topological phase transitions,
similarly to what we already found in two dimensions [25] for
quantum spin Hall insulators. In the three-dimensional system,
the transition from the BI to the STI� is therefore continuous
for small values of U but it becomes of first-order upon
crossing the critical point, at which the orbital fluctuations
become critical [25]. The breakdown of the continuous
character of the TQPT in Hamiltonian models similar to our
has been recently investigated by means of a renormalization
group analysis in Ref. [67].

Our findings resembles the marginal quantum criticality
scenario proposed in Refs. [68–70], where a critical point
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FIG. 7. Absence of bulk gap closing: Evolution of the Green’s functions poles, i.e. the band dispersions. We find a continuous transition at
weak interaction (U = 2), contrasted by the absence of bulk gap closure at strong interaction (U = 11).

separates a first-order line from a second-order one. However,
a thorough analysis of the scaling properties near the critical
point are required to establish a more detailed connection,
which is however beyond the scope of this work.

Interestingly, while the increased level of correlation
strength dramatically affects the TQPT, it has a very weak
impact on the other topological transition, the one from
STI� to the WTI. Here the change of the bulk invariant
from �ν = (1,000) to �ν = (0,111) is always accompanied by a
continuous evolution at Meff = 1. To the best of our accuracy
we did not find any evidence of discontinuity, even at the
largest investigated value of the interaction strength U . This
behavior can be understood noting that, although topologically
distinct, the two nontrivial states react in a very similar way
to the large interaction having a comparable degree of orbital
hybridization. Thus, unlike the BI to STI� TQPT, in this case it
is always possible to continuously transform the STI� ground
state into that of the WTI.

A. Absence of gap closing transition

As we discussed in the initial Secs. II and III, in the
noninteracting limit the TQPT are always continuous. This
ultimately depends on the fact that the band structure of the
system evolves smoothly with respect to changes in the model
parameters, e.g. M , as long as the energy gap is preserved.
In the presence of large interaction however this scenario is
challenged and a different behavior can be envisaged. We shall
now show how the change in the TQPT character across the
phase diagram affects the spectral properties of the transitions.

Our results about the absence of a gap closing TQPT
are summarized in Fig. 7. Each plot reports the behav-
ior of the poles P (k) of the Green’s function Ĝ(k,ω)=
[(ω+iη+μ)1̂−Ĥ(k)−	̂(ω)]

−1
, determined by the condition

det [Ĝ(k,ω)]=0, near the point �= (0,0,0) and along the path
[−R,�,R]. The curve P (k) sets the position of the electronic
excitations, it determines the spectrum of the system and helps
determining the properties of the bulk spectral gap. From left to
right, the figure shows the evolution of the poles as a function
of M across the BI-STI� transition for three values of the
interaction strength U : below, at, and above the critical point.

For small values of U the transition occurs through the
formation of a Dirac cone at the � point, as expected by
the continuity of the TQPT with respect to the noninteracting

case. On the contrary, for U > Uc the topological transition
takes place without a closure of the spectrum, as we show
in the panels (b) and (c). Thus, at the strongly correlated
transition point the gap jumps discontinuously from the trivial
to the topological value, although in proximity of the critical
point it becomes very small. The absence of any gapless state
separating the two phases across the TQPT is a remarkable
effect induced by the strong electronic correlation.

VI. MOTT TRANSITION

One of the qualitative changes brought in by a finite value of
the Hund’s coupling is the onset of a Mott insulating region for
large U , as we reported in Fig. 3 (right panel). Indeed, in this
case the system favors the formation of an orbital unpolarized
state, ultimately leading to an instability towards the high-spin
Mott phase as soon as the equal occupation of each orbital
is reached [25,66]. Such a high-spin Mott insulator cannot
be realized in the J = 0 case, where the strong interaction
favours the formation of an orbitally polarized configuration,
i.e., a trivial band insulator (see Fig. 3).

In Fig. 8(a) we demonstrate the existence of a Mott
transition for large values of U . The formation of a Mott
insulating state is signaled by the divergence of the imaginary
part of the self-energy at the chemical potential. Thus we
can identify the onset of the Mott phase by means of the
reduction to zero of the renormalization constant Z, defined
as Z = [1 − ∂	(ω)/∂ω|ω→μ]−1. The different phases of the
system have an insulating character, thus we can not interpret
Z in terms of a quasiparticle weight. As our results show,
for a fixed value of the interaction U , we can drive the
Z towards zero by decreasing the mass term M , entering
this way the high-spin Mott phase (see Fig. 3). The Mott
transition has a characteristic first-order behavior, with all the
observables showing a discontinuity at the transition point and
a small hysteretic behavior (not shown). The presence of such a
discontinuity is evident in the behavior of Z for a small enough
value of U , but it becomes smaller approaching the large U

regime. The Mott transition line ends in a triple point, beyond
which any correlated topological state disappears, opening the
way to a direct transition from the polarized trivial BI to the
high-spin Mott state [25,66].
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FIG. 8. (a) Renormalization constant Z as a function of M . Data
are for increasing values of U and for J = U/4. Formation of the
Mott insulating state is signaled by the vanishing of Z. The transition
is generically of the first order. The discontinuity reduces approaching
the triple point. (b) Orbital occupation across the WTI-Mott Insulator
transition through the STIR . First-order jump takes place at WTI-STIR
transition. (c) Real part of the scalar Matsubara self-energy Re	(iωn)
for increasing values of M . Data are for U = 6 and J = U/4. The
plot illustrates how large self-energy lead to the formation of the
anomalous STIR phase.

A. Small region of anomalous STIR phase

In correspondence to the divergence of the imaginary
part of the self-energy at the Mott point, the real part
Re	̂(iωn) becomes large and strongly frequency dependent
[see Fig. 8(c)]. This behavior is necessary for the opening and
the stabilization of the Mott gap. The progressive localization
of the electrons obliterates the topological properties of the
system, which are related to the low-energy band structure. In
other words the large negative (for J > 0) values of Re	̂(0)
dominate the spectrum of the topological Hamiltonian Eq. (9),
giving rise to a trivial topological invariant �ν = (0; 000) for
the Mott phase.

Interestingly, we find that for intermediate values of both the
interaction U and mass M the system admits an anomalous
topological phase in proximity of the Mott transition point.
In particular, our results show that the formation of the
Mott insulator can be preceded by a TQPT to a STI state
with �ν = (1,111), i.e., STIR , which coating the boundary
line separates the WTI from the Mott insulating region.
The existence of such a tiny region near the Mott phase is
reported in the phase diagram in Fig. 3 (right panel). The
origin of such an anomalous STIR state in the M > 0 can be
understood from the behavior of the self-energy in proximity
of the Mott point. Near the Mott region Re	̂(iωn) can attain
values which are large enough to compensate the initial M ,
but such that the effective mass is pushed into the range
Meff ∈ [−1,−3]. For any such value of Meff the spectrum
of the topological Hamiltonian would correspond to a global
topological invariant of �ν = (1; 111), i.e., give rise to a STIR
phase.

Unexpectedly, the anomalous STIR phase is separated
from the WTI by a first-order-like transition, while it is
continuously connected with the Mott insulating region. This
behavior is well visible in Fig. 8(b), where we report the
orbital occupations as a function of M in the region near
the anomalous STIR phase. As the plot shows, for small M the
occupations are both equal and identical to one, as expected
in the Mott phase. By increasing M above the Mott transition
value M > MMT the occupations continuously deviates from
one, signaling the onset of the anomalous STIR phase. This
behavior is suddenly arrested by increasing M above a second
critical value M > MR, at which a first-order discontinuity in
the occupations denotes the TQPT to the WTI phase.

VII. CONCLUSIONS

We studied the effects of strong electronic correlation on
the properties of a paradigmatic model for three-dimensional
topological insulators. In particular, we considered a local
density-density multiorbital electronic repulsion, in presence
of a Hund’s coupling J taking into account the tendency
of electrons to maximize the total spin orientation while
minimizing the orbital polarization. We solved the interacting
problem in a nonperturbative way using dynamical mean-field
theory. We determined the zero temperature phase diagrams of
the model as a function of the interaction strength U and the
crystal-field or mass term M , both for zero and finite values
of the local Hund’s’ coupling J . We explained the specific
form of the diagrams in both cases in terms of the different
behaviours of the self-energy functions, accounting for the
interaction effects at the single-particle level. The existence of
a topologically trivial Mott insulating state for J > 0 and large
U is shown.

We point out that, notably, the phase diagrams feature the
presence of a critical point on the topological quantum phase-
transition line separating the trivial band insulators from the
strong topological phase. In addition we unveiled the evolution
of the topological transition crossing such critical point. Our
findings demonstrate that in the weak-interaction regime the
transition remains continuous while in the strong-coupling
regime, i.e. beyond the critical point, the transition becomes
discontinuous, i.e., a first-order transition.

The main consequence of the first-order character appearing
beyond a critical point in the orbital sector is the absence of gap
closing. This means that the inversion in the orbital character
responsible for the change in the topological invariants is not
accompanied by a continuous evolution of the spectral gap, if
many-body processes dominate. This is a novel observation
that clearly characterizes the transition from the trivial band-
insulator to the strong-TI phase. The successive strong-to-
weak topological transition is instead always of second-order
character, as in the noninteracting band-structure. These results
generalize and extend to the three-dimensional case our
findings for the topological transition to the quantum spin
Hall state in two dimensions [25].

In addition, we find the existence of a (1; 111) phase, i.e.,
a strong TI phase which appears before the eventual transition
from the weak- to the trivial Mott insulator. An analysis of the
orbital occupations in this narrow region of the phase diagram
reveals that this phase is separated from the WTI (0; 111) by
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a first-order transition and from the Mott insulating state by a
continuous one. Although this phase has the same topological
indices (1; 111) as the single-particle STIR phase at U = 0
(i.e., M ∈ [−1,−3]), the two cannot be directly connected in
our phase diagram without crossing a topological transition
line. Indeed, the re-entrant (1; 111) phase emerges here as
the result of the strong many-body correlation encoded in the
dynamical self-energies.
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