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Quasiparticle interactions in frustrated Heisenberg chains
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Interactions between elementary excitations in quasi-one-dimensional antiferromagnets are of experimental
relevance and their quantitative theoretical treatment has been a theoretical challenge for many years. Using
matrix product states, one can explicitly determine the wave functions of the one- and two-particle excitations,
and, consequently, the contributions to dynamical correlations. We apply this framework to the (nonintegrable)
frustrated dimerized spin-1/2 chain, a model for generic spin-Peierls systems, where low-energy quasiparticle
excitations are bound states of topological solitons. The spin structure factor involving two quasiparticle scattering
states is obtained in the thermodynamic limit with full momentum and frequency resolution. This allows very
subtle features in the two-particle spectral function to be revealed which, we argue, could be seen, e.g., in inelastic
neutron scattering of spin-Peierls compounds under a change of the external pressure.
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I. INTRODUCTION

The physics of one-dimensional quantum magnets has been
the subject of extensive experimental and theoretical study. Be-
cause of the reduced dimensionality, the quantum fluctuations
in these spin chains are especially strong, with a rich variety of
quantum phases as a result. The quasiparticles in these systems
are collective excitations [1], in no way connected to some free
particle limit, and exhibit exotic physical properties such as
fractional quantum numbers, nontrivial scattering properties,
soliton confinement, bound-state formation, etc.

In recent years, the interactions between these quasiparti-
cles have come within the scope of experiments. Most impor-
tantly, the spectral functions as measured in inelastic neutron
scattering (INS) experiments have important contributions
from many-particle states [2–5]. Also, the thermal broadening
of one-particle signals can only be accounted for by many-
particle processes [6,7]. Thirdly, the critical properties of a
magnetized spin chain or ladder is understood by identifying
it as a condensed gas of interacting magnons on a strongly
correlated background state [8–11]. Lastly, the properties of
quasiparticles can be probed in cold-atom experiments [12–14]
and their interactions are important [15,16].

These experimental advances have spurred the development
of a number of theoretical tools for simulating the low-
energy dynamics of one-dimensional spin systems. Exact
diagonalization is the most straightforward and unbiased
approach [17–21], but, due to its exponential scaling, is
limited to small system sizes. When frustration is present in
the system, quantum Monte Carlo methods are plagued by
the sign problem. In recent years, the scope of the density-
matrix renormalization group (DMRG) [22] has been extended
to study time evolution and, through a Fourier transform,
spectral functions [23]. This method has the advantage of
being completely generic and has an efficient scaling in
system size, but is limited in its resolution; it is the growth
in entanglement during real-time evolution that limits the
resolution of the spectral functions. Other DMRG approaches,
based on Lanczos methods [24] or Chebyshev expansions [25],
have similar defects. Yet, if one is only interested in low-energy

dynamics, this entanglement growth seems counterintuitive, as
all states in this low-energy sector are characterized by a small
entanglement entropy [26–28].

A different strategy consists in targeting the low-lying
particle excitations explicitly. For integrable systems, all
excited states can be constructed exactly and it has been
shown how to compute their spectral weights in an efficient
way [29–31]. Alternatively, if the system can be connected
perturbatively to a trivial noninteracting limit, perturbative
continuous unitary transformations provide access to the
nontrivial properties of low-lying excitation spectra [32–35].
Both approaches have the advantage that they have a built-in
particle picture, but for these particles to be well defined,
they need an extensive number of conserved quantities or a
well-defined noninteracting limit to perturb from.

It can be shown in full generality, however, that a particle
picture should hold for any gapped quantum lattice system
[36]. It is by exploiting the formalism of matrix product
states (MPS) [37,38] that an accurate variational ansatz for
particlelike excitations in one-dimensional spin systems was
first constructed [39,40]. Within this approach, excitations are
seen as momentum superpositions of local perturbations on
an MPS ground state—it can be seen as an extension of the
single-mode approximation [41–44]—and can be naturally
interpreted as effective particles living on a strongly correlated
vacuum state. Subsequently, it has been shown how to
model the interactions between these particles and how to
compute the two-particle S matrix [45,46]. This information
on the two-particle interactions allowed for an effective many-
particle description of, e.g., magnon condensation under strong
magnetic fields.

With this approach, one can explicitly determine the
wave functions of the one- and two-particle excitations, and,
consequently, the contributions to dynamical correlations [46].
In this way, it allows for an efficient evaluation of spectral
functions by combining the advantages of the aforementioned
methods. Indeed, because it targets the exact particle excita-
tions in the thermodynamic limit, this framework has access to
the low-lying part of the spectral function with full resolution
in momentum and frequency. Moreover, as it is based on matrix
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FIG. 1. The spectral function Sxx(q,ω) of the XXZ chain with
Jz = 4; momentum cuts at q = π/8 (blue), q = 2π/8 (red), and
q = 3π/8 (orange). The orange curve shows a divergence at the
band’s edge. Note that the plotting range cuts off the orange curve;
because our method works directly in the thermodynamic limit, we
can reproduce this divergence to arbitrary precision. A comparison
with Fig. 5 in Ref. [47] shows a very strong similarity.

product states, it is applicable to generic quantum spin chains
with relatively low numerical resources.

In Ref. [46] a detailed account of this method has been
presented. In the present contribution, we show its versatility
by applying the method to the frustrated spin-1/2 Heisenberg
chain. We track the effect of the quasiparticle interactions on
the spectral function in the two-particle band. Before that,
we give some nontrivial benchmark results on the spectral
function of the gapped XXZ antiferromagnet, which can be
directly compared with Bethe ansatz results.

II. BENCHMARK: THE X X Z CHAIN

The XXZ spin-1/2 Heisenberg chain is defined by the
Hamiltonian

H =
∑

n

(
Sx

nSx
n+1 + Sy

nS
y

n+1 + JzS
z
nS

z
n+1

)

and is gapped for Jz > 1. The model is integrable [48] and
the spectrum can be computed exactly with the Bethe ansatz.
In this regime there is a twofold-degenerate ground state with
a finite Néel order parameter, and the elementary excitations
are spinons carrying a fractional spin of 1/2 [49]. The first
contributions to the spectral function

Sxx(q,ω) = dt
∑

n

eiωteiqn〈Sx
n (t)Sx

0 (0)〉

come from two-spinon states, which can be computed exactly
[47,50] using Bethe ansatz techniques.

In Ref. [39] the dispersion relation of the individual spinon
excitations were computed to very high precision. With our
method, two-spinon scattering states can be determined and
their contributions to the spectral function evaluated. In Fig. 1
we have plotted three momentum cuts of Sxx(q,ω) for Jz =
4 which can be compared to the Bethe ansatz results from
Ref. [47]. The correspondence is very good, which confirms
the accuracy of our method.

FIG. 2. The frustrated and dimerized chain.

III. THE FRUSTRATED HEISENBERG CHAIN

An excellent model to study the signature of quasiparticle
interactions in the spectral function is the frustrated and dimer-
ized spin-1/2 Heisenberg chain, given by the Hamiltonian (see
Fig. 2)

H = J1

∑
n

[1 + δ(−1)n]�Sn · �Sn+1 + J2

∑
n

�Sn · �Sn+2.

It has been shown [51] that spin-Peierls compounds such as
CuGe2 and NaV2O5 can be described with this model, where
the dimerization term arises from a three-dimensional coupling
of the spin chains. The physics of spinon confinement due to
this three-dimensional coupling has recently attracted a lot of
experimental and theoretical attention [52–54].

Without explicit dimerization (δ = 0) it is known [55,56]
that a gap opens at J2/J1 ≈ 0.241 [57], accompanied by a
spontaneous lattice dimerization and a twofold-degenerate
ground state. At J2/J1 = 1/2 the Majumdar-Ghosh model
[58] is retrieved, for which the ground state is an exact
product state of dimers. Throughout the dimerized phase, the
elementary excitations can be pictured as dressed defects in the
dimerization pattern [59,60] and behave as topological solitons
s and antisolitons s̄ interpolating between the two ground
states. The solitons have spin 1/2. No bound states occur
[61], so the physical spectrum starts with a soliton/antisoliton
scattering continuum at 2�s (with �s the soliton gap).

The dimerization δ favors one of the two ground states and
confines the solitons into bound states with a linear potential
between a ss̄ pair [61–63]. This implies that the ss̄ continuum
is split up into a stack of discrete triplet and singlet bound states
(see Fig. 3). If � is the energy of the lowest-lying triplet, a
two-triplet continuum will start at 2�, such that ss̄ bound states
with an energy above this threshold will not be stable. This is
the effect of string breaking: if the energy cost of having the
wrong ground state between the ss̄ is too high, the bound state
will decay to a ss̄-ss̄ pair. Not too far up in the continuum,
however, we expect that unstable, yet long-lived bound states
will leave their signature on the spectral function.

We will study this ss̄-ss̄ continuum through a computation
of the spectral function for small dimerization δ such that
the underlying soliton physics can be observed. We will look
at the momentum-frequency-resolved spin-spin dynamical
correlation function as observed in INS, defined as

S(q,ω) =
∫

dt eiωt
∑

n

eiqn〈S−
n (t)S+

0 (0)〉,

where S
+/−
n (t) are the ladder operators at site n in the

Heisenberg picture and the expectation value 〈. . . 〉 is with
respect to the ground state. All results were obtained by
applying the MPS framework as developed in Ref. [46].
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FIG. 3. A sketch of the bound-state spectrum; different excita-
tions can be seen as bound-state solutions of a linear potential. The
strength of the potential (∝ δ) can be tuned more or less independently
from the mass �s of the confined solitons. A number of triplet (blue)
and singlet (red) ss̄ bound states appear above the two-soliton energy
2�s ; these appear at energies 2�s + Eb,i , with Eb,i the (positive)
binding energy of the ith solution of the linear confining ss̄ potential.
Above the edge of the ss̄-ss̄ continuum (green), these solutions are
no longer stable against decay into scattering states of two ss̄ states.
Note that the stability of a bound state depends on its momentum (see
Fig. 4).

In Fig. 4 the elementary excitation spectrum is plotted for
J2 = 1/2 and different values of the dimerization. Whereas
two-triplet and singlet ss̄ bound states are stable over the full

Brillouin zone for all values of δ, a third triplet excitation is
stable only for small values of δ and closes the dispersion’s
minimum; it merges into the continuum and loses stability for
larger momenta. At the zone center, a triplet emerges again
from the two-particle continuum. This bound state was also
observed in systems with larger dimerization [35] with the use
of perturbative continuous unitary transformations, starting
from the isolated dimer limit (δ → ∞). Therefore, it seems
plausible that the physical origin of this bound state is not
connected to the underlying soliton physics (which is only
valid for small δ).

Let us first focus on the stability of the third triplet bound
state at the minimum of the dispersion as a function of δ. In
Fig. 5 we have plotted momentum slices of S(q,ω) at q = π

inside the two-particle continuum. For δ = 0.09 most of the
spectral weight is in the δ peak of the bound state. As δ is
increased, the bound state comes closer to the continuum at
ωedge = 2�(δ), and the two-particle continuum gains spectral
weight and becomes sharply peaked. Just as the bound state
enters the continuum, the spectral function diverges; by
plotting the maximum of the spectral function as a function
of δ [inset of Fig. 5], the exact value for δ can be pinpointed
for which the third triplet ss̄ becomes unstable. For larger

(a) δ = 0.05 (b) δ = 0.08

(c) δ = 0.11 (d) δ = 0.13

FIG. 4. The elementary excitation spectrum for J1 = 1, J2 = 1/2, and four different values of δ. Because the ground state has a two-site
unit cell, the Brillouin zone is confined to momenta q ∈ [0,π ) (in units of inverse lattice spacing a−1). For all values of δ one can observe
two stable triplet (blue) and singlet (red) ss̄ bound states over the full momentum range. For small values of δ, a third triplet is stable at the
minimum. At the center of the Brillouin zone a third triplet state is stable for all values of δ.
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FIG. 5. The spectral function S(q,ω) at momentum q = π just
above the first triplet-triplet threshold for J1 = 1, J2 = 1/2, and
different values of the dimerization: δ = 0.09 (red), δ = 0.104 (blue),
δ = 0.12 (green), and δ = 0.17 (magenta); the energies ω have been
shifted by twice the triplet gap 2�(δ). For δ = 0.09 the third triplet
bound state (at the minimum of the dispersion relation) falls below
the continuum, but, as the gap becomes smaller, the peak above the
threshold becomes larger. As the bound state enters the continuum,
the spectral function diverges. For larger δ the bound state decays into
two ss̄ states and becomes a resonance in the spectral function. This
resonance travels to higher energies as δ is further increased. Inset:
The maximum of the spectral function (above ωedge) as a function of
δ showing a divergence at δ ≈ 0.11 exactly where the third bound
state becomes unstable. The blue line is a guide to the eye; the largest
data points fall outside the plotting region.

δ, the maximum of the spectral function travels through the
continuum as a signature of an unstable yet long-lived ss̄

state.
Figure 4 illustrates that the bound state loses stability for

larger momenta. In Fig. 6 the two-particle spectral function is
plotted in the second half of the Brillouin zone (which carries
most of its weight) for J2/J1 = 1/2 and δ = 0.1, for which the
third bound state is stable at the minimum of the two-particle
continuum. We now observe that as the momentum moves
away from the minimum, the bound state enters the continuum
as a sharp resonance and survives throughout a large portion
of the Brillouin zone.

Further up in frequency, the two-particle spectral func-
tion shows a nontrivial structure because of the different
overlapping two-particle continua. In the absence of special
symmetries, there are nonzero scattering amplitudes linking
the different two-particle sectors. As a result, the eigenstates
will mix up these sectors and the spectral function obtains its
characteristic banded structure.

Another strong resonance appears when the bound state
around the zone center enters the continuum. Surprisingly, the
bound state does not connect immediately to the resonance at
the minimum of the dispersion relation, as another resonance
seems to run away with all the spectral weight. This other
resonance can be explained as a combined effect from (i) the
attractive interaction between the triplet bound states, and (ii)
a divergence of the density of states within the continuum.
The latter is a consequence of the folding inside the two-triplet
continuum: there are regions inside the scattering continuum
for which there are two different combinations of one-triplet
states that give rise to the same total momentum and energy.
The boundary lines of this folding region exhibit, just like the

FIG. 6. The logarithm of the two-particle spectral function log10 S(q,ω) in the second half of the Brillouin zone for J1 = 1, J2 = 1/2, and
δ = 0.1. Only the two-particle contributions are plotted; the sharp δ functions of the one-particle states are not shown. A small imaginary
frequency ε = 0.01 is added for aesthetic reasons (note that we have full resolution in q and ω as our methods work in the thermodynamic
limit, see the other plots) and to mimic experimental resolution. We have also plotted the edges of the different two-particle continua in red.
The lower edge of the first band consists of states with momenta κ1 = π/2 + q/2 and κ2 = −π/2 + q/2. The blue line indicates the states
with equal individual momenta κ1,2 = q/2, leading to a diverging density of states on that line. Between the blue line and the upper edge of
the continuum is the folding region, where different combinations of one-particle states can give rise to the same total momentum and energy.
The green line follows the dispersion of the third ss̄ bound state where it is stable. We can see that the dispersion of the higher two-particle
continua gives a banded structure to the spectral function.
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FIG. 7. The spectral function S(q,ω) (blue) and the scattering
phase in the S = 1 sector φ1(q,ω) (red) as a function of the rescaled
energy ω − ωedge and for fixed momentum q = 0.56π , where ωedge

is the lower edge of the two-particle continuum. We can observe that
the scattering phase rotates rapidly at the point where the resonance
is located, signaling a strong interaction between the particles at
this point. Off the resonance, the dispersion of the scattering phase
behaves smoothly. At ω − ωedge ≈ 0.123 one enters the folding region
(with a diverging density of states); beyond that point the S matrix is
a 18 × 18 matrix, which can no longer be written in terms of three
phases.

edges of the two-particle continuum, a square-root divergence
in the density of states. Figure 6 shows, however, that the
resonance does not coincide with this line. The reason is that
the particles have an attractive interaction and, consequently,
a negative binding energy which brings the resonance down
in energy. This binding energy goes to zero as the resonance
travels towards the upper edge of the continuum.

In order to corroborate this picture, the particle interactions
can be further characterized by studying the two-triplet S

matrix. In the case of triplet-triplet scattering, this S matrix is a

9 × 9 unitary matrix, which can be diagonalized by going to the
total-spin basis. Moreover, because of SU(2) invariance, the S

matrix will be constant within every subspace of total spin, so
that the information in the S matrix reduces to three scattering
phases for every value of the total spin. As only the eigenstates
with total spin S = 1 contribute to the spectral function, the
scattering phase in this sector is plotted in Fig. 7, showing
a drastic rotation of the scattering phase right at the point
where the spectral function has its resonance. This confirms
that the resonance is indeed a consequence of a strong attractive
triplet-triplet interaction.

For completeness’ sake, in Fig. 8 we have plotted the
full spectral function for J1 = 1, J2 = 1/2, and δ = 0.13,
including the one-particle contributions. For these parameters
only two ss̄ bound states are stable around the minimum of the
two-particle band. Around the maximum there is still a bound
state [see Fig. 4(d)].

IV. CONCLUSIONS

In conclusion, we have illustrated the power of a method
for computing spectral functions for generic one-dimensional
quantum spin systems with unprecedented resolution in
momentum and frequency. More specifically, our method is
especially suited for studying quasiparticle interactions which
lead to sharp resonances in the two-particle spectral function
and/or the formation of bound states. The two-particle S

matrix, unavailable to other methods, provides an additional
tool to characterize the interactions.

Showing its versatility, we have applied our method to
study the effects of soliton confinement on the low-lying
spectral function. It was shown that the confining potential
induces, in addition to the characteristic stack of stable bound
states, a very specific fine structure of the spectral function
in the two-particle continuum. The method allowed us, e.g.,
to reveal a transfer of spectral weight into the two-particle

FIG. 8. The logarithm of the spectral function log10 S(q,ω) in the full Brillouin zone for J1 = 1, J2 = 1/2, and δ = 0.13. A small imaginary
frequency ε = 0.01 is added, such that the one-particle δ peaks can be plotted as Lorentzians. We have also plotted the edges of the different
two-particle continua in red.
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continuum before a bound state reaches its lower edge. We
suggest that such subtle effects could be observed, e.g., in INS
of spin-Peierls systems by, e.g., varying the external pressure
in order to monitor the effective coupling δ via a change of
the interchain couplings. We also believe that similar subtle
features should be seen in double-magnon Raman scattering
[64], a (K = 0 singlet) four-particle response function, but this
is left for future studies.
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