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Interband coupling and nonmagnetic interband scattering in ±s superconductors

V. G. Kogan1,* and R. Prozorov1,2,†
1Ames Laboratory, Ames, Iowa 50011, USA

2Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA
(Received 4 April 2016; revised manuscript received 22 May 2016; published 17 June 2016)

A two-band model with repulsive interband coupling and interband potential scattering is considered to
elucidate their effects on material properties. In agreement with previous work, we find that the bands’ order
parameters �1,2 differ, and the larger is at the band with a smaller normal density of states (DOS), Nn2 < Nn1.
However, the bands’ energy gaps, as determined by the energy dependence of the DOS, are equal due to scattering.
For each temperature, the gaps become zero at a certain critical interband scattering rate; i.e., for strong enough
scattering the model material becomes gapless. In the gapless state, the DOS at band 2 is close to the normal state
value, whereas at band 1 it has a V shape with nonzero minimum. When the normal bands DOS are mismatched,
Nn1 �= Nn2, the critical temperature Tc is suppressed even in the absence of interband scattering, Tc(Nn1) has a
domelike shape. With increasing interband scattering, the London penetration depth at low temperatures evolves
from being exponentially flat to a power law and even to near linear behavior in the gapless state, the latter being
easily misinterpreted as caused by order parameter nodes.
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I. INTRODUCTION

It is by now an accepted view that the interband scattering in
two-band ±s superconductors suppresses the critical tempera-
ture, i.e., has a pair-breaking effect; see, e.g., Refs. [1–7]. The
interband coupling and interband scattering are of a particular
interest because both are thought to play a special role in
the physics of two-band materials in general [2–6,8–10] and
of the extensive family of Fe-based compounds, in particular
[11–13]. A theoretical description of the multiband situation
requires a multitude of parameters to represent couplings along
with intra- and interband scatterings [14]. For this reason, we
focus here on a model with only interband coupling (repulsive,
to have ±s order parameter) and with a nonmagnetic interband
scattering. Although such a model cannot be applied to real
materials, it allows one to single out physical consequences of
the interband scattering which may help in data interpretation.

II. APPROACH

Our approach is based on the quasiclassical version of the
weak-coupling BCS theory for anisotropic Fermi surfaces and
order parameters [15]. This theory is formulated in terms of
the Eilenberger Green’s functions f , f +, and g (averaged over
the energy Gor’kov’s functions):

v · �f = 2�g − 2ωf + I, (1)

g2 = 1 − ff +. (2)

Here v is the Fermi velocity and � = ∇ + 2πiA/φ0, with
the vector potential A and the flux quantum φ0. �(k) is the
order parameter and k is the Fermi momentum. Matsubara
frequencies are ω = πT (2l + 1) with an integer l; throughout
this text ω and T are in energy units, � = kB = 1. The
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equation for f + is obtained from Eq. (1) by taking the complex
conjugate and replacing v → −v.

The scattering term I is given by the integral over the full
Fermi surface:

I (k) =
∫

d2q ρ(q) W (k,q)[g(k)f (q) − f (k)g(q)]; (3)

W (k,q) is the Born probability of scattering from q to k. The
DOS ρ(q) is normalized:

∫
d2q ρ(q) = 1.

We use approximation of the scattering time τ :∫
d2q ρ(q) W (k,q) �(q) = 〈�〉/τ ; (4)

〈· · · 〉 stands for the average over the Fermi surface. Clearly,
the approximation amounts to the scattering probability W =
1/τ being constant for any k and q. However, for two well-
separated Fermi surface sheets, the probabilities of intraband
scatterings may differ from each other and from processes
involving k and q from different bands. The effects of the
inter- and intraband scattering upon various properties of the
system are different. Hence, Eq. (4) is replaced with [16]∫

d2qν ρ(qν) W (kμ,qν) �(qν) = nν〈�〉ν/τμν. (5)

Here ν,μ = 1,2 are band indices; 〈· · · 〉ν denotes averaging
over the ν band, and nν = ∫

d2qν ρ(qν) = Nν/N (0) are
relative densities of states: n1 + n2 = 1.

In the absence of magnetic fields, all functions involved are
real, f + = f , and we have

0 = 2�g − 2ωf + I, 1 = g2 + f 2. (6)

We assume the order parameter takes constant values �1

and �2 at the two bands. Writing Eq. (6) for k in the first band,
we have

0 = 2�1g1 − 2ωf1 + n1

τ11
(g1〈f 〉1 − f1〈g〉1)

+ n2

τ12
(g1〈f 〉2 − f1〈g〉2). (7)
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For a uniform sample in zero field and with k-independent
�’s in each band, the functions f,g are k independent, i.e.,
〈f 〉ν = fν and 〈g〉ν = gν :

0 = �1g1 − ωf1 + n2(g1f2 − f1g2)/2τ12. (8)

The equation for the second band differs from this by the
replacement 1 ↔ 2. The fact that τ11 and τ22 do not enter the
system (8) is similar to the case of one-band isotropic material
for which nonmagnetic scattering has no effect upon Tc (the
Anderson theorem). It is the inter-band scattering that makes
the difference in the two-band case, a fact stressed already
in early work [3,4]. For brevity, we use the notation τ12 = τ

unless τ11,τ22 should be explicitly distinguished from τ12.
Equations (8) are complemented with normalizations,

g2
ν + f 2

ν = 1, ν = 1,2, (9)

and by the self-consistency equation for the order parameter:

�(k) = 2πT Nn

ωD∑
ω>0

〈V (k,k′ )f (k′,ω)〉k′ . (10)

Here, Nn is the total density of states at the Fermi level per spin
in the normal phase; ωD is the Debye frequency (or the energy
of whatever “glue boson”). Within the weak-coupling scheme,
the coupling potential V responsible for superconductivity is a
2 × 2 matrix of constants Vνμ. The self-consistency equation
(10) takes the form [17]

�ν = 2πT

ωD∑
μ,ω

nμλνμfμ, ν = 1,2; (11)

λνμ = NnVνμ are dimensionless coupling constants.
To separate effects of the interband coupling and scattering

from other possible multiband consequences, we set λ11 =
λ22 = 0, whereas λ12 (denoted as λ in the text below) is as-
sumed negative. This leads to the order parameters �1 and �2

having opposite signs [3,11,18], i.e., to ±s superconductivity,
which presumably exists in many Fe-based materials. Hence,
we have

�1 = 2πT λn2

ωD∑
ω

f2, �2 = 2πT λn1

ωD∑
ω

f1. (12)

Hereafter, we take �1 as being positive. Since λ < 0, these
equations imply negative �2. Accordingly, in the current-free
phase f1 > 0 and f2 < 0; in particular, this prescribes the sign
of the square root if the normalization (9) is used to express

f ’s: f1 =
√

1 − g2
1, f2 = −

√
1 − g2

2.
As in original work by Eilenberger [15], the energy

functional � can be constructed so that Eqs. (8) and (12)
follow as extremum conditions relative to variations of fν

and �ν :

�

N (0)
= 2�1�2

λ

− 2πT
∑

ω

{ ∑
ν

2nν[�νfν + ω(gν − 1)]

+ n1n2

τ
(f1f2 + g1g2 − 1)

}
. (13)

Here, gν are abbreviations for
√

1 − f 2
ν , and δgν =

−(fν/gν) δfν . If fν are solutions of Eqs. (8) and �ν satisfy
the self-consistency equations (12), � coincides with the
condensation energy FS − FN and can be used to study
thermodynamic properties of a uniform two-band system.

Equations (8), (12), and (13) form the basis of our approach.
Only in a few simple situations can the results be obtained
in a closed form. In most cases, the analytic approach, if at
all possible, is too cumbersome, and we resort to numerical
solutions which are relatively straightforward with available
tools such as MATHEMATICA or MATLAB.

III. CLEAN CASE

It is instructive to begin with the clean limit, τ → ∞,
although it has been considered in literature [19–21]. In this
case, we have from Eqs. (8) and (9)

fν = �ν/βν, gν = ω/βν, β2
ν = ω2 + �2

ν . (14)

At T = 0, the sums in Eqs. (12) are evaluated by replacing
2πT

∑
ω → ∫ ωD

0 dω, which gives

�1 = λn2�2 ln
2ωD

|�2| , �2 = λn1�1 ln
2ωD

|�1| . (15)

Expressing the logarithmic factors and subtracting the results,
one obtains for the ratio R = |�2/�1|

|λ| ln R = R

n1
− 1

n2R
. (16)

Given n1,2 and λ, this can be solved numerically for R. For
example, for λ = −0.6 and n1 = 0.6, n2 = 0.4, we obtain
R ≈ 1.27, whereas for n1 = 0.4, n2 = 0.6 we have R ≈ 0.79.
Hence, the order parameter value is larger at the band with a
smaller DOS [22].

For a given R, Eqs. (15) yield

|�1| = 2ωD exp

(
− R

n1|λ|
)

,

|�2| = 2ωD exp

(
− 1

n2|λ|R
)

.

(17)

Hence, n1|λ|/R and n2|λ|R are effective coupling constants
for the first and second bands, respectively.

To evaluate the condensation energy at T = 0, consider the
sum that enters the energy (13):

4πT

ωD∑
ω>0

n1

[
�2

1

β1
+ ω

(
ω

β1
− 1

)]
= 2n1

∫ ωD

0
(β1 − ω)dω

= n1

(
�2

1

2
+ �2

1 ln
2ωD

|�1|
)

= n1�
2
1

2
+ �1�2

λ
, (18)

where Eqs. (15) have been used. Hence, we obtain

(FS − FN )T =0 = −Nn

n1�
2
1 + n2�

2
2

2
= −Nn

〈�2〉
2

. (19)

Recall that in isotropic one-band superconductors this energy
is −Nn�

2/2.
As T → Tc0(n1) (the critical temperature of a clean material

for a given n1) fν = �ν/ω and the sums in Eqs. (12) can be
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FIG. 1. Tc(n1,ρ
∗) for TD = 500 K, λ = −0.6. The line at the

dome base gives the value of the rate ρ∗ = 1/2πTc0(0.5)τ at which
the Tc = 5 × 10−4Tc0(0.5) ≈ 0.01 K, where the superconductivity
is practically destroyed. For n1 = 0.5, ρ∗

cr = e−γ /2 = 0.28 and the
critical rate is 1/τcr = �0(0); �0(0) is the order parameter of clean
material with n1 = n2 at T = 0. It is argued in the next subsection
that in fact Tc �= 0 at the rest of the shaded picture base, but it is
extremely small there and becomes exactly zero at the base edges.

evaluated:

�1

�2
= λn2 ln

2ωDeγ

πTc0
,

�2

�1
= λn1 ln

2ωDeγ

πTc0
. (20)

Multiplying these, one extracts the logarithmic factor and the
critical temperature:

πe−γ Tc0 = 2ωD exp(−1/λ̃), λ̃ = |λ|√n1n2. (21)

Hence,

λ̃ = |λ|√n1n2 (22)

plays the role of the overall coupling constant.
It is worth noting that, for a fixed coupling λ, the critical

temperature Tc0 as a function of relative DOS n1 has a domelike
shape; see Fig. 1. Thus within the model of exclusively
interband coupling, a mismatch of bands’ DOS suppresses Tc

even in the absence of scattering. Qualitatively, this happens
because for n1 �= n2 the number of unpaired carriers is
proportional to |n1 − n2|.

Turning back to Eqs. (20) one finds the ratio [21]

R(Tc0) =
∣∣∣∣�2

�1

∣∣∣∣ =
√

n1

n2
. (23)

Compare this with Eq. (16) for T = 0 to see that in fact �2/�1

depends on T .
Next, we calculate �ν with the help of the self-consistency

system (12). Note first that near Tc0, βν ≈ ω(1 + �2
ν/2ω2) and,

therefore,

fν = �ν

ω
− �3

ν

2ω3
+ O(δt)5/2; (24)

here � ∝ (δt)1/2, δt = 1 − T/Tc0. The sums in Eq. (12) are
ωD∑
0

2πT

ω
= ln

2ωDeγ

πTc0
= 1

λ̃
+ δt,

∞∑
0

2πT

ω3
= 7ζ (3)

4π2T 2
c0

(25)

and we obtain

�1 = λn2�2

(
1

λ̃
+ δt − 7ζ (3)

8π2T 2
c0

�2
2

)
,

�2 = λn1�1

(
1

λ̃
+ δt − 7ζ (3)

8π2T 2
c0

�2
1

)
.

(26)

This system should be solved keeping terms of order not higher
than (δt)3/2. One substitutes �2 from the second equation to
the first to obtain [21]

�2
1 = 16π2T 2

c0δt

7ζ (3)
n2, �2

2 = 16π2T 2
c0δt

7ζ (3)
n1. (27)

Thus, the gaps’ ratio near Tc0 is the same as at Tc0 [23].
The energy near Tc0 should be evaluated including terms of

the order (δt)2. In particular,

gν = 1 − f 2
ν

2
− f 4

ν

8
= 1 − �2

ν

2ω2
+ 3�4

ν

8ω4
. (28)

Straightforward algebra shows that terms of the order �2 ∼ δt

cancel out and the rest give

FS − FN = −N (0)n1n2
16π2T 2

c0

7ζ (3)

(
1 − T

Tc0

)2

. (29)

Thus, the specific heat jump is [17,24]
CS − CN

CN

∣∣∣∣
Tc

= 48

7ζ (3)
n1n2. (30)

The maximum value of this ratio 12/7ζ (3) = 1.43 is achieved
if n1 = n2 = 1/2.

IV. EFFECTS OF SCATTERING

In general, in the presence of the interband scattering, the
system of Eqs. (8) and (12) can be solved only numerically.
Near Tc, however, Eqs. (8) can be linearized and fν are readily
expressed in terms of �ν :

fν = �ν

ω′ + 〈�〉
2ωω′τ

,

〈�〉 = n1�1 + n2�2, ω′ = ω + 1/2τ.

(31)

Substituting this in the self-consistency system (12), one
obtains a system of linear homogeneous equations for �1,2,
which has nontrivial solutions only if its determinant is zero.
This gives an implicit equation for Tc:

0 = 1 − 2n1n2λB − n1n2λ
2A(A + B), (32)

A = ln
ωD

2πTc

− ψ

(
ρc + 1

2

)

= 1

λ̃
+ ln

Tc0

Tc

− ψ

(
ρc + 1

2

)
+ ψ

(
1

2

)
, (33)

B = ψ

(
ρc + 1

2

)
− ψ

(
1

2

)
, ρc = 1

2πTcτ
. (34)
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If n1 = n2 = 1/2 and λ̃ = |λ|/2, Eq. (32) reduces to a
quadratic equation for ln(Tc0/Tc). This gives

ln
Tc0

Tc

= ψ

(
ρc + 1

2

)
− ψ

(
1

2

)
, (35)

which coincides with the equation for Tc suppression by
impurities for a d-wave one-band superconductor, or gener-
ally, for order parameters with zero Fermi surface averages
[5,25,26]. In particular, this means that for this case Tc

becomes zero at a critical value of interband scattering time
τ = 1/�0(0), one-half of the Abrikosov-Gor’kov’s value for
the effect of magnetic impurities upon one-band s-wave
isotropic superconductors [27,28].

A. Tc(n1,τ )

Consider now how the critical temperature changes with
changing n1 and the scattering rate 1/τ . Solving Eqs. (32)–
(34), we have to take into account that the clean case Tc0

depends on n1. To proceed with numerical calculations in this
particular problem, we normalize the temperature:

t∗ = T

Tc0(0.5)
, t∗c = Tc

Tc0(0.5)
. (36)

Here, Tc(n1,τ ) is the actual critical temperature and Tc0(0.5)
is the maximum possible critical temperature of the clean
material reached at n1 = 0.5.

Also, we introduce the scattering parameters

ρ∗ = 1

2πτTc0(0.5)
, ρc = 1

2πτTc

= ρ∗

t∗c
(37)

so that ρ∗ is independent of n1. Next, we transform the
logarithmic term in A of Eq. (33):

A = 2

|λ| − ln t∗c + ψ

(
1

2

)
− ψ

(
ρ∗/t∗c + 1

2

)
. (38)

One should also replace ρc → ρ∗/t∗c in B of Eq. (34). The
numerical solutions of Eq. (32) for the critical temperature are
given in Fig. 1.

Hence, not only is Tc suppressed by the interband scattering
for a fixed n1, but the DOS asymmetry (n1 − 0.5) also causes
Tc suppression. One thus concludes that, for negative interband
coupling λ, there are two mechanisms for the Tc suppression
(pair breaking): the interband potential scattering and the
mismatch of the densities of states of two bands. In particular,
in the presence of interband scattering, the interval of DOS
mismatch, in which the superconductivity exists, shrinks.

B. The critical scattering rate

To obtain the rate ρ∗
cr at which Tc = 0 for a fixed n1, we

turn to Eqs. (32)–(34) for Tc. As Tc → 0, ρc → ∞, and one
obtains in this limit

A = − ln
ωD

πTc0(n1)ρ∗
cr

, B = ln
2eγ ρ∗

cr

t∗c
. (39)

Substitute these in Eq. (32) for Tc and select terms with
divergent ln t∗c :

n1n2λ

(
2 + λ ln

ωD

πTc0(n1)ρ∗
cr

)
ln t∗c . (40)

The rest of the terms are not divergent. For this equation to
make sense, the coefficient in front of ln t∗c must be zero. With

the help of Eq. (21) for Tc0(n1), one obtains

ρ∗
cr = 1/2eγ = 0.2808. (41)

We note that this value does not depend on n1 so that Tc = 0
along the edge ρ∗ = 0.28 of the shaded area of the dome basis
plane of Fig. 1.

One can also ask, at what n1 does the critical temperature
become zero if the scattering rate is fixed at ρ∗ < 0.28 ?
Clearly, the same argument leads to Eq. (40) with ρ∗

cr replaced
with the rate ρ∗. Now, however, the term in parentheses in
this equation is not zero; therefore, the critical values of n1

are 1 or 0. Thus, in the whole shaded area of the dome
basis plane of Fig. 1, Tc is finite, though extremely small; see
the two representative contours of Tc = 10−2 K and 10−5 K.
The presence of long and extremely low Tc tails is a formal
consequence of interband scattering for n1 �= n2.

C. Tc(τ ) for a fixed n1

In the rest of the text, we consider system properties for a
fixed normal state DOS n1. It is more convenient to employ
reduced temperatures

t = T

Tc0(n1)
, tc = Tc

Tc0(n1)
, (42)

and the scattering parameters

ρ0 = 1

2πτTc0(n1)
, ρc = 1

2πτTc

= ρ0

tc
. (43)

Figure 2 shows the Tc(ρ0) for n1 = 0.5 and 0.7 obtained
by solving Eqs. (32)–(34). Note that, for n1 = n2, the critical
value of ρ0 is e−γ /2 ≈ 0.28. Note also that ρ0 characterizes the
scattering along with the DOS mismatch. For this reason, the
critical value ρ0,cr for n1 = 0.7 exceeds 0.28 since Tc0(0.7) <

Tc0(0.5).
If λ12 > 0, Tc is only weakly reduced by the interband

scattering. This behavior is qualitatively similar to the one-
band s-wave materials with anisotropic Fermi surfaces; see,

λ

ρ

λ

FIG. 2. tc = Tc/Tc0 vs ρ0 according to Eqs. (32)–(34). Lower
curves are for λ = −0.6; the dots are obtained by independent
calculation of the specific heat jumps. The upper curves are for
positive (attractive) interband coupling constant λ = 0.6 .
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e.g., Refs. [14,17,24]. Note that the Tc suppression is stronger
for larger differences of n1 and n2.

D. Order parameters

Except in the trivial one-band isotropic case for which
� coincides with the gap in electronic spectrum, the order
parameter per se is not a measurable quantity. Formally,
however, one needs �ν to evaluate observables such as DOS,
the specific heat, or the penetration depth.

To find �ν(T ) we have to solve the system of Eqs. (8)
and (12). Near Tc one can do this analytically and verify that
�ν ∝ √

Tc − T . We, however, resort to numerical evaluation
for arbitrary temperatures and use the analytical limits to verify
the results. We use dimensionless variables,

δν = �ν

2πTc0
, t = T

Tc0
, ρ0 = 1

2πTc0τ
. (44)

The first of Eqs. (8) for f1,f2 takes the form

δ1g1 − f1t(l + 1/2) + n2ρ0

2
(f2g1 − f1g2) = 0, (45)

where l is the Matsubara integer and gν = √
1 − f 2

ν . The
second equation is obtained by replacing 1 ↔ 2.

The first self-consistency Eq. (12) is (see Appendix A)
√

n1δ1 + √
n2δ2

λ̃
√

n2
− δ2 ln t =

∞∑
i=0

(
δ2

l + 1/2
− t f2

)
. (46)

The second is obtained by replacing 1 ↔ 2. Solving the system
of four Eqs. (45) and (46) numerically, we obtain �ν(T ).
Examples are shown in Fig. 3. We note that, as in the clean case,
the order parameter is larger at the band with smaller DOS at
all T s and for all ρ0. One sees that near Tc, �ν ∝ √

δt as it
should. This is shown analytically for n1 = n2 in Appendix B.

E. Density of states

As long as �ν(T ) are known, one can evaluate DOS Nν as
functions of energy ε at any fixed T :

Nν(T ,ε) = nνNn Re[gν(ω → iε)]. (47)

ρ
ρ

ρ

δ

− δ

δ ν

ρ

FIG. 3. |�ν |/2πTc vs t = T/Tc0 for λ = −0.6, n1 = 0.7, and a
few values of ρ0 = 1/2πTc0τ .

To this end, one can replace ω → iε already in Eqs. (8):

0 = �1g1 − i εf1 + n2(g1f2 − f1g2)/2τ,

f1 =
√

1 − g2
1, f2 = −

√
1 − g2

2 .
(48)

The dimensionless system of equations for gν becomes

0 = δ1g1 − i εf1 + n2ρ0

2
(g1f2 − g2f1), ε = ε

2πTc0
(49)

(the second equation has 1 ↔ 2). The total DOS is N (T ,ε) =
N1(T ,ε) + N2(T ,ε). Note that DOS depends on T via �ν(T ).
Figure 4 shows examples of N (T ,ε). The situation is similar to
the Abrikosov-Gor’kov pair-breaking by magnetic impurities

δ

δ

ρ

ρ

ρ

ρ

ρ

ρ δ

δ

ε

FIG. 4. (a) The clean limit DOS as a function of energy ε =
ε/2πTc0 for λ = −0.6 and n1 = 0.7 at t = 0.2. (b) The same as
(a), but for the interband scattering parameter ρ0 = 0.1. The bands’
order parameters for this case are δ1 = 0.186, |δ2| = 0.304; N (ε) has
a typical two-band shape, although the two maxima are not exactly
positioned at |δ1,2|. (c) The total DOS for a set of scattering parameters
ρ0. Note that with increasing scattering, in the gapless state, the DOS
acquires a V shape with a nonzero minimum.
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− δ

δ ν

ρ

δ

ε

ε

FIG. 5. Peak positions of DOS N (ε) vs ρ0 marked as dots along
with the bands’ order parameters |δ1,2|; solid lines are for t = 0.2.
The dashed lines are |δ1,2| for t = 0.05.

where the gap does not coincide with the order parameter
[27,28].

A remarkable feature of DOS is worth noting: although
�1 �= |�2|, the calculated energy intervals where Nν(ε) = 0
(the energy gaps) are the same for the two bands; see
panel (b) of Fig. 4. This was noticed some time ago by
Schopohl and Scharnberg who studied the two-band model
for superconducting transition metals [4].

In Fig. 5 the positions of DOS N (ε) maxima are plotted
along with the bands’ order parameters |δ1,2| to show that,
while the first peak is positioned only slightly under δ1, the
second peak is well above |δ2| for all scattering parameters ρ0.
This feature has to be taken into account when, e.g., STM data
on N (ε) are interpreted.

It is worth noting that the energy dependence of DOS N (ε)
in the gapless state, shown in the panel (c) of Fig. 4, has a
V shape which should not be confused with a similar shape,
e.g., in one-band d-wave materials. Another feature to note is
that in the gapless state (in this case ρ0 > 0.25) the two-band
signature is hardly seen. This feature is pronounced in Fig. 6

ρ

δ

δ

ε

FIG. 6. The density of states N normalized on Nn vs energy ε (in
units 2πTc0) for n1 = 0.7, t = 0.2 in the gapless state with ρ0 = 0.27.

where both N1 and N2 are shown for n1 = 0.7. We also observe
that the band with n2 = 0.3 and a larger value of the order
parameter (|δ2| = 0.083) has nearly constant density of states
N2(ε)/Nn ≈ 0.3 at all energies, close to the normal state value.
This has implications for, e.g., thermal conductivity.

Zero-bias DOS N0

At zero energy, the system (49) is simplified. Multiply the
first equation by n1, the second by n2, and add them up: 0 =
n1δ1g1 + n2δ2g2. Next, substitute g2 = −(n1δ1/n2δ2)g1 back
to the first of Eqs. (49) to obtain for g1

2δ1

n2ρ
=

√
1 − n2

1δ
2
1

n2
2δ

2
2

g2
1 − n1δ1

n2δ2

√
1 − g2

1 . (50)

This can be resolved relative to g1. After simple algebra one
obtains the total zero-energy DOS N0:

N0

Nn

= n1(δ2 − δ1)

δ2
Re

√√√√1 −
[(

n2
2δ

2
2 − n2

1δ
2
1

)
ρ2

0 − 4δ2
1δ

2
2

]2

16n2
1ρ

2
0δ

4
1δ

2
2

.

(51)

For n1 = n2,δ1 = −δ2 = δ, this reduces to

N0(ρ0,T )

Nn

= Re

√
1 − 4δ2(ρ0,T )

ρ2
0

. (52)

Clearly, the solution of ρ̃ = 2|δ(ρ̃)| separates the domain ρ0 <

ρ̃, where N0 = 0 and the superconductivity is gapped, and the
gapless region ρ̃ < ρ0 < ρc.

An example of numerically evaluated DOS for n1 = 0.5 at
t = T/Tc0 = 0.2 is the left curve of Fig. 7. The lower boundary
of the gapless domain, ρ̃ ≈ 0.236, is ≈ 0.91 of the critical
value 0.26, close to the estimate for this domain at T = 0 for
magnetic impurities of a single-band isotropic material [27].

ε

ρ

FIG. 7. Left: the zero-bias DOS (normalizeed to Nn) as a function
of ρ0 for λ = −0.6, t = 0.2, and n1 = 0.5; in this case, ρ̃ ≈ 0.236
and ρc ≈ 0.26 so that for 0.236 < ρ0 < 0.26 the superconductivity
is gapless. Right: DOS(ρ0) at zero energy for the same λ and t , but
n1 = 0.7.
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FIG. 8. DOS N0/Nn at zero energy vs reduced temperature T/Tc

for n1 = 0.7 and the set of scattering parameters indicated. Note that
the temperature is normalized here on actual Tc, unlike most of the
text where T/Tc0 is used.

Similarly one can extract an equation for ρ̃ from Eq. (51)
for n1 �= n2:

ρ̃ = 2δ1|δ2|
n1δ1 + n2|δ2| . (53)

An interesting feature of N0(ε) seen at the right of Fig. 7 is
a sharp drop near ρ0 = 0.28 at which t = 0.2 corresponds to
the critical temperature. This feature is seen better yet on the
plot of N as a function of temperature at fixed ρ0 in Fig. 8. We
observe that the temperature interval of the gapless state near
Tc increases with growing ρ0 and covers all T ’s when ρ0 → ρ̃,
with ρ̃ in this case slightly larger than 0.28. Another feature
worth noting is a fast drop of zero-bias N0 near Tc, the nature
of which at this stage is not clear.

F. Energy and specific heat

Substituting the self-consistency Eqs. (12) in the functional
(13) one obtains

�

Nn

= −2πT
∑
ν,ω

nν[�νfν + 2ω(gν − 1)]

−2πT
n1n2

τ

∑
ω

(f1f2 + g1g2 − 1). (54)

We normalize �(T )/Nn on 4π2T 2
c0:

Fn − Fs

4π2T 2
c0Nn

= t
∑
ν,l

nν[δνfν + t(2l + 1)(gν − 1)]

+ t n1n2ρ12

∑
l

(f1f2 + g1g2 − 1). (55)

Since we can calculate δν and fν at a given temperature, it is
an easy task to evaluate the condensation energy; see Fig. 9.
The inset in this figure shows that the normalized condensation
energy at T = 0 scales approximately as T 2

c , a nearly universal
property of all superconductors [29,30].

ρ

ρ

ρ

π

ρ

Δ

FIG. 9. The temperature dependence of the condensation energy
normalized on 4π 2T 2

c0Nn for n1 = 0.7 and the set of scattering
parameters ρ0. The inset shows that the normalized condensation
energy at T = 0 scales approximately as T 2

c .

Having the condensation energy, one finds the thermody-
namic critical field Hc = √

8π (FN − FS). We normalize it to
the zero-T value H (0)

c = √
4πN (0)�0(0) for the clean case

and n1 = n2 to get

hc(t) = Hc(t)

H
(0)
c

= 2
√

2 eγ
√

�(t), (56)

where �(t) is the right-hand side of Eq. (55). With this
normalization, the clean limit hc(0) = 1 for n1 = n2. Figure 10
shows numerical results for parameters indicated.

The specific heat can now be evaluated for fixed n1 and ρ0.
An example is shown in the upper panel of Fig. 11. The lower
panel of Fig. 11 shows the specific heat vs reduced temperature
for a few n1 of clean materials. Note that the jump at Tc in this
case is given in Eq. (30) as a function of n1, n2. On the other
hand, Tc0(n1) is given in Eq. (21) which allows one to evaluate

λ

ρ

ρ

ρ

ρ

FIG. 10. The thermodynamic critical field hc(t) = Hc/Hc0 for
n1 = 0.7 and λ = −0.6.
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ρ

(Δ
ρ

= −
=

Δ

FIG. 11. Top: the specific heat vs T/Tc0(0.7) for a few scattering
parameters ρ0. Bottom: the specific heat vs T/Tc0(n1) for n1 = 0.5,
0.7, and 0.9. Inset: the specific heat jump at the critical temperature
calculated numerically (dots) and according to Eq. (57) (solid line).

the jump �C/Cn as a function of Tc0:

�C

Cn

∣∣∣∣
Tc

= 48

7ζ (3)λ2

(
ln

Tc0(n1)

Tc0(0.5)
− 2

|λ|
)−2

. (57)

The inset in the lower panel shows this dependence. For n1 =
n2, analytic evaluation of the specific heat jump is done in
Appendix B for any scattering rate.

G. Penetration depth

If the ground state functions (called f (0), g(0) in this section)
are known, one can study perturbations of the uniform state
by a weak magnetic field; i.e., the problem of the London
penetration depth. The perturbations, f (1), g(1), are found from
Eqs. (1) and (2) which include gradient terms and magnetic
field. We have for the first band [16]

v1�f1 = 2�1g1 − 2ωf1 + n1

τ11
[g1〈f 〉1 − f1〈g〉1]

+ n2

τ12
[g1〈f 〉2 − f1〈g〉2]. (58)

The second equation is obtained by 1 ↔ 2. Two equations for
f +

1,2 are obtained from these by complex conjugation and by

v → −v [15]. Normalizations g2
ν + fνf

+
ν = 1 complete the

system.
We now note that the London approximation suffices for

the problem of weak field penetration. In this approximation
only the overall macroscopic phase θ depends on coordinates
whereas the order parameter modulus remains unperturbed.
We thus replace � → �eiθ(r) and look for solutions in the
form

fν = (
f (0)

ν + f (1)
ν

)
eiθ(r), f +

ν = (
f (0)

ν + f (1)+
ν

)
e−iθ(r),

gν = g(0)
ν + g(1)

ν , ν = 1,2. (59)

Note that the first corrections f (1)
ν , g(1)

ν depend on k (or v) in the
form v P with P = ∇θ + 2π A/φ0, so that their Fermi surface
averages vanish (unless the material does not have inversion
symmetry, the case we do not consider).

We obtain for the corrections in the first band

g
(1)
1 �′

1 − f
(1)
1 ω′

1 = if
(0)
1 v1 P/2,

g
(0)
1 g

(1)
1 + f

(0)
1 f

(1)
1 = 0,

(60)

where

�′
1 = �1 + n1f

(0)
1 /2τ11 + n2f

(0)
2 /2τ12, (61)

ω′
1 = ω + n1g

(0)
1 /2τ11 + n2g

(0)
2 /2τ12 (62)

contain only the unperturbed f (0), g(0). System (60) yields [31]

g
(1)
1 = if

(0)2
1 v1 P

2
(
�′

1f
(0)
1 + ω′

1g
(0)
1

) = i
f

(0)2
1 g

(0)
1

2ω′
1

v1 P . (63)

The correction g
(1)
2 is obtained by the replacement 1 → 2.

To evaluate the penetration depth we turn to the Eilenberger
expression for the current density [15],

j = −4π |e|NnT Im
∑
ω>0

〈vg〉, (64)

where 〈vg〉 = 〈vg(1)〉 since 〈vg(0)〉 = 0. Substitute here g(1)
ν of

Eq. (63) and compare with the London relation

4π

c
ji = −(λ2)−1

ik

(
φ0

2π
∇θ + A

)
k

. (65)

Here, (λ2)−1
ik is the tensor of the inverse squared penetration

depth; summation over k is implied. Hence, the in-plane
component of this tensor is

λ−2
xx = 16π2e2NnT

c2

∑
ν,ω

nν

〈
v2

x

〉
ν

f 2
ν gν

ω′
ν

. (66)

Only the unperturbed functions f (0), g(0) enter the penetration
depth; for brevity we dropped superscripts (0). Since we know
how to evaluate f ’s at each temperature, the evaluation of the
London penetration depth is straightforward.

For numerical work we normalize λ−2
xx (T ,ρ0) on the zero-T

value for clean bands:

λ−2
xx (0,0) = 8πe2Nn

c2

〈
v2

x

〉 = 8πe2Nn

c2

∑
ν

nν

〈
v2

x

〉
ν
. (67)
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λ

λ
ρ

ρ

λ

FIG. 12. The inverse square of the in-plane penetration depth
normalized on the zero-T clean limit value vs t = T/Tc0 for a set of
scattering parameters ρ0. In this calculation 〈v2

x〉1/〈v2
x〉2 = 1 and the

intraband ρ11 = ρ22 = 0.

Hence, we have for the dimensionless penetration depth

�−2
xx = λ−2

xx (T ,ρ0)

λ−2
xx (0,0)

=
∑

ν,ω nν

〈
v2

x

〉
ν
f 2

ν gν/ην∑
ν nν

〈
v2

x

〉
ν

, (68)

ην = l + 1

2
+ nνgνρνν

2t
+ nν̄gν̄ρ12

2t
, ρμν = �

2πTc0τμν

.

(69)

Here, gν = √
1 − f 2

ν ; ν̄ denotes the value other than ν; in fact,
�−2 depends only on the ratio of averaged Fermi velocities.

Numerically evaluated �−2
xx (t) is shown in Fig. 12 for the

scattering parameters indicated. In this particular calculation
ρ11 = ρ22 = 0; incorporating the intraband scattering does not
change qualitatively the behavior of the superfluid density with
respect to interband scattering and will be presented elsewhere.

We note that for a weak interband scattering the low
temperature superfluid density (SFD) is nearly T independent,
as expected for gapped materials. With increasing interband
scattering, the flat domain of SFD shrinks and disappears
altogether in the gapless state starting roughly with ρ0 ≈ 0.27.
Remarkably, in the gapless state SFD becomes close to linear,
the behavior commonly ascribed to the order parameter nodes.
To show that the latter interpretation can be misleading, we plot
SFD for ρ0 = 0.27 along with the known result for the d-wave
materials in Fig. 13.

V. DISCUSSION

Many Fe-based compounds are thought to have ±s sym-
metry of the order parameter. By considering a model with
the interband coupling λ12 < 0 (repulsion) we assure that the
bands’ order parameters �1 and �2 have opposite signs.

Using the quasiclassical approach, we formulate equations
governing two-band systems with exclusively interband cou-
pling and interband scattering. To describe thermodynamic
properties we construct the energy functional, minimization
of which gives the two-band Eilenberger equations along

ρ

ρ

ρ

FIG. 13. The superfluid density ρs vs t = T/Tc0 for n1 = 0.7
and ρ0 = 0.27 of the gapless state normalized on the value at T = 0.
Superfluid densities for s- and d-wave clean cases are shown for
comparison.

with the self-consistency equations. This allows us to evaluate
the condensation energy along with the specific heat and, in
particular, the specific heat jump at Tc.

Except for some limiting cases which are dealt with
analytically, we resort to numerical solutions which have
the advantage of being straightforward, especially when the
analytic approach is too cumbersome if at all possible. For
completeness we reproduce some of the known results within
our approach.

We focus on properties which are affected by the pair-
breaking character of the interband scattering. The question
of pair breaking in Fe-based materials has been raised in
the past, basically on the basis of work by Abrikosov and
Gor’kov on magnetic impurities; see, e.g., Refs. [26,32].
However, the source of the pair-breaking was not specified,
so that this approach was not generally accepted. Still, it
seemed to describe a number of observed properties such as
the power-law low temperature dependence of the superfluid
density [33] or the experimentally observed scaling of the
specific heat jump �C ∝ T 3

c [34].
Interband scattering by nonmagnetic disorder has qualita-

tively similar pair-breaking features. In fact, for two bands
with equal DOS, the Tc suppression is described by the
Abrikosov-Gor’kov equation (35) for a one-band d-wave
material. By evaluating the energy dependence of the density of
states, we show that sufficiently strong nonmagnetic interband
scattering results in a gapless state, and we determine the range
of scattering parameters where this state emerges.

The presence of two bands, however, brings in an extra
feature: the critical temperature is suppressed not only by the
interband scattering but also by a mismatch of bands’ DOS
n1 and n2. The Tc dependence on n1 has a domelike shape
of Fig. 1, which suggests that the ubiquitous domes Tc(x)
at phase diagrams of, e.g., Fe-based compounds (x is the
doping variable) could be related to changes with x of the
DOS mismatch of bands involved.
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It is worth noting that the strong pair breaking regime when
Tc → 0 in a two-band system with nonmagnetic interband
scattering differs from the strong spin-flip scattering by
magnetic impurities. The point is that the latter is always
complicated by possibility of moments ordering or by glassy
and Kondo phenomena, which are clearly absent for the
nonmagnetic interband scattering.

Properties of the gapless state in the two-band case are
richer than in the one-band Abrikosov-Gor’kov situation.
Particularly interesting are properties of DOS in the gapless
state. We show that whereas the energy dependence N1(ε) of
the “major” band with larger normal state DOS n1 has the
ubiquitous V shape, the DOS on the “minor” band is close
to being normal. This suggests a high heat conductance often
seen in Fe-based compounds.

Turning to our results on effects of the interband scattering
upon the penetration depth, it is instructive to recall the
experimental situation. What is commonly measured with
high accuracy are changes in the London penetration depth,
�λ(T ) ≡ λ(T ) − λ(0). At low temperatures, these are related
to the superfluid density ρs ≡ λ(0)2/λ(T )2 ≈ 1 − 2�λ/λ(0).
It is convenient to analyze low-temperature behavior as
�λ(T ) ≈ AT n. According to conventional picture, the line
nodes of the order parameter result in a linear behavior,
n = 1, whereas fully gapped order parameters (e.g., s++ or
s±) give nearly flat exponential variation, which in practice is
indistinguishable from n > 3.

In the presence of symmetry-imposed line nodes (e.g.,
d wave), intensifying scattering causes monotonic increase
of the exponent from n = 1 to n = 2 [35–38], whereas in
the conventional s wave (including multiband s++) the low
temperature SFD ρs(T ) remains exponentially flat (whereas
Tc does not change).

However, we show in this work that for fully gapped ±s

pairing, where potential interband scattering is pair breaking,
the superfluid density evolves from exponentially flat to nearly
linear as shown in Figs. 12 and 13. The corresponding
exponents in power-law fits would change from n > 3 to well
below n = 2. In fact, for a strong Tc suppression, in the gapless
regime, the entire curve of ρs(T ) is surprisingly close to a
clean d-wave dependence; see Fig. 13. Thus, in principle, one
can change the s-wave-like to the d-wave-like behavior of
ρs(T ) just by introducing disorder, resulting in a change of the
interband scattering. Interesting enough, such a behavior has
been seen in BaFe2As2 doped with Co or Ni: the exponent n

decreased after irradiation [39].
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APPENDIX A: SELF-CONSISTENCY EQUATIONS

Consider the first of the self-consistency equations (12):

− �1

|λ|n2
= 2πT

ωD∑
ω

f2. (A1)

Add and subtract to the right-hand side 2πT
∑ωD

ω (�2/ω) to
have

2πT

ωD∑
ω

�2

ω
− 2πT

∞∑
ω

(
�2

ω
− f2

)
. (A2)

In the second convergent sum, ωD is replaced with ∞, whereas
for the first sum use the identity

2πT

ωD∑
ω

1

ω
= 1

λ̃
− ln

T

Tc0
, λ̃ = |λ|√n1n2. (A3)

We then obtain

�2 ln
Tc0

T
+

√
n1�1 + √

n2�2

λ̃
√

n2
= 2πT

∞∑
ω

(
�2

ω
− f2

)
.

(A4)

APPENDIX B: THE CASE n1 = n2

In this case �1 = −�2 = �, f1 = −f2 = f , and g2 =
g1 = g. Examine first the situation near Tc:

f = �

ω′ − �3

2ω′ 3
, g = 1 − �2

2ω′ 2
+ 3�4

8ω′ 4
. (B1)

The self-consistency condition for this situation is

�/λ = −πT

ωD∑
ω

f. (B2)

Substituting here f of Eq. (B1), one has

� = −λ

2

(
A� − D

2
�3

)
, (B3)

with

A =
ωD∑
0

2πT

ω′ = ln
ωD

2πT
− ψ

(
ρ + 1

2

)
,

D =
∞∑
0

2πTc

ω′ 3
c

= − 1

8π2T 2
c

ψ ′′
(

ρc + 1

2

)
. (B4)

Here, ρc = 1/2πTcτ . Near Tc, only terms of order not smaller
than (δt)3/2 should be retained. Since � ∝ (δt)1/2, one can set
T = Tc in the coefficient D. Hence, one obtains

�2 = 2

D

(
A + 2

λ

)
. (B5)

We now transform the logartihmic term in A:

ln
ωD

2πT
= ln

ωD

2πTc0
+ ln

Tc0

Tc

+ ln
Tc

T

= ψ

(
1

2

)
+ 1

λ̃
+ ln

Tc0

Tc

+ δt, (B6)
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where the definition of Tc0, ln(2ωDeγ /πTc0) = 2/|λ|, has been
used. Next, we expand the psi-function term in A,

ψ

(
ρ + 1

2

)
= ψ

(
ρc + 1

2

)
+ ρc

2
ψ ′

(
ρc + 1

2

)
δt. (B7)

Finally, using Eq. (35) for Tc, we obtain

�2 = −16π2T 2
c

ψ ′′
(

1 − ρc

2
ψ ′

)
δt, (B8)

where psi functions are taken at (ρc + 1)/2.
Now we turn to the functional (13):

�

Nn

= −2�2

λ
− 2πT

∑
ω

{
2[�f + ω(g − 1)] − f 2

2τ

}
.

(B9)

Substituting here f of Eq. (B1) and � of Eq. (B8) we obtain
after straightforward algebra

Fs − Fs

Nn

= 4π2T 2
c

ψ ′′

(
2 − ρcψ

′′′

3ψ ′′

)(
1 − ρc

2
ψ ′

)2
(δt)2,

(B10)

where the psi functions are taken at (ρc + 1)/2. The specific
heat jump follows:

Cs − Cn

Cn

∣∣∣
Tc

= − 24

ψ ′′

(
1 − ρcψ

′′′

6ψ ′′

)(
1 − ρcψ

′

2

)2

. (B11)

In the clean limit, this gives 12/7ζ (3) = 1.43. Since Tc can
be evaluated for each ρc, one can plot the jump vs Tc/Tc0,
Fig. 11(b).

In fact, this behavior of �C/Cn(Tc) is qualitatively similar
to the one-band d wave (although there the clean limit value is
2/3 of 1.43). One can associate this similarity to the fact that
in both cases 〈�〉 = 0.
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