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The remarkable robustness of high-temperature superconductors against disorder remains a controversial
obstacle towards the elucidation of their pairing state. Indeed, experiments report a weak suppression rate of the
transition temperature Tc with disorder, significantly smaller than the universal value predicted by extensions
of the conventional theory of dirty superconductors. However, in many high-Tc compounds, superconductivity
appears near a putative magnetic quantum critical point, suggesting that quantum fluctuations, which suppress
coherent electronic spectral weight, may also promote unconventional pairing. Here we investigate theoretically
the impact of disorder on such a quantum critical pairing state, considering the coupling of impurities both
to the low-energy electronic states and to the pairing interaction itself. We find a significant reduction in the
suppression rate of Tc with disorder near the magnetic quantum critical point, shedding new light on the nature
of unconventional superconductivity in correlated materials.
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I. INTRODUCTION

Elucidating the nature of unconventional superconductivity
(SC) remains a major challenge in condensed matter physics.
The fact that unconventional SC is found in proximity to a mag-
netic instability in many heavy-fermion [1,2], organic [3,4],
cuprate [5], and iron-based compounds [6] led to the proposal
that magnetic fluctuations promote the binding of the electrons
in Cooper pairs, resulting in unconventional gap functions that
change sign across the Brillouin zone (such as d-wave and
s+−-wave gaps) [7–20]. Indeed, in the phase diagram of high-
temperature superconductors such as electron-doped cuprates
and iron pnictides, the maximum value of Tc is observed very
close to a putative antiferromagnetic (AFM) quantum critical
point (QCP) [21–24], as shown in Fig. 1. Consequently, the
possibility of pairing mediated by quantum critical fluctuations
has been extensively investigated recently [25–34].

Experimentally, a major tool to probe unconventional SC
has been the behavior of Tc with disorder [35]. In conventional
superconductors displaying an s-wave gap, weak nonmagnetic
impurity scattering is known to be inconsequential to Tc

[36], whereas magnetic impurities suppress Tc according to
the Abrikosov-Gor’kov (AG) expression [37]. For a small
pair-breaking scattering rate τ−1, AG yields the universal
suppression rate (dTc/dτ−1)AG = −π/4, confirmed experi-
mentally [38] (see Fig. 1). Qualitatively, extensions of the
AG theory to d-wave and s+− superconductors reveal that
nonmagnetic impurities are in general pair breaking. However,
quantitatively, the experimentally observed suppression of
Tc with disorder in cuprates and pnictides is rather small
compared to the AG-based results [39–44]. Several scenarios
have been proposed to reconcile this robustness of SC against
disorder, including strong correlation effects [45,46], spatial
inhomogeneity of the gap function [47–49], spin-fluctuation-
mediated pairing [50,51], disorder-induced enhancement of
magnetic fluctuations [52], distinct intra- and interorbital
scattering [53–56], and even models advocating for a standard
s-wave gap in the pnictides [57].
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In this paper, to shed light on our understanding of
unconventional SC, we focus on how disorder affects critical
AFM-mediated pairing beyond the AG paradigm. In particular,
we consider the impact of disorder on a general spin-fermion
model that describes SC promoted by quantum critical AFM
fluctuations, which can be applied to both cuprates and
pnictides. Previously, Ref. [50] found a strikingly resilient
SC state against the effects of disorder near an AFM-QCP.
Here, instead of solving the coupled Eliashberg equations
[58], we express them in a convenient functional form [9,59–
61] that allows us to compute directly dTc/dτ−1 and gain
invaluable insight on the different processes by which weak
impurity scattering affects Tc. Specifically, in the limit of weak
scattering, three independent contributions arise:

dTc

dτ−1
=

(
dTc

dτ−1

)
f

+
(

dTc

dτ−1

)
b,1

+
(

dTc

dτ−1

)
b,2

. (1)

The first term, which yields the results of Fig. 1, arises
from the direct coupling of disorder and the low-energy
electronic states. This coupling leads to a decrease of the
electronic coherent spectral weight near the QCP, which in
turn suppresses the reduction of the pairing vertex caused by
pair-breaking scattering, in agreement with the general results
from Ref. [50]. In particular, at the QCP, we find the value
( dTc

dτ−1
Q

)
f

≈ −0.45, which is about half of the value expected

from AG theory. The last two terms in the equation above
arise from the coupling of disorder and the bosonic degrees
of freedom that promote the pairing interaction—in this case,
spin fluctuations. In general, ( dTc

dτ−1 )
b,2

< 0 comes from the
suppression of the correlation length of the quantum critical
fluctuations by disorder. On the other hand, ( dTc

dτ−1 )
b,1

> 0
appears due to the renormalization of the electron-boson
vertex, and is generally larger than |( dTc

dτ−1 )
b,2

|. Consequently,
the impact of disorder on the pairing interaction leads to an
additional reduction of dTc/dτ−1 with respect to the AG value.
Our results offer a fresh perspective on the robustness of
unconventional SC against disorder, lending support to the
proposal that quantum critical pairing plays an important role
in copper- and iron-based SC.
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FIG. 1. Phase diagram displaying a SC dome near an AFM-QCP.
The dashed lines are schematic, whereas the solid lines are the results
of our calculations. The red solid line denotes the SC transition
temperature of the clean system Tc as a function of the distance
to the QCP, r . Both quantities are in units of the paring energy
scale � for a cutoff �c = 3� (see text). The blue solid line denotes
the suppression rate of Tc with pair-breaking scattering τ−1 = τ−1

Q ,
dTc/dτ−1, due to the coupling between disorder and the low-energy
electronic states. The blue dotted line is the standard AG universal
value (dTc/dτ−1)AG = −π/4.

The paper is organized as follows: Section II introduces
the spin-fermion model and the SC gap equations. Section III
discusses the coupling between disorder and the fermionic
degrees of freedom, which yields ( dTc

dτ−1 )
f

, whereas Sec. IV dis-
cusses the coupling between disorder and the bosonic degrees
of freedom, which yields ( dTc

dτ−1 )
b1

and ( dTc

dτ−1 )
b2

. Section V is
devoted to the concluding remarks. Analytical approximations
to ( dTc

dτ−1 )
b1

and ( dTc

dτ−1 )
b2

are given in the Appendix.

II. SPIN-FERMION MODEL AND THE LINEARIZED
GAP EQUATIONS

Our starting point is the low-energy spin-fermion model, in
which electrons couple to a bosonic AFM order parameter φq ,
whose fluctuations are described by the magnetic susceptibility
χb(q,�n). We focus on the electronic states ckσ and dkσ ≡
ck+ Qσ in the vicinities of a pair of hot spots, i.e., points of the
Fermi surface connected by the AFM ordering vector Q. The
action is given by [26,50]

S =
∫

k

( − iωn + εc(k))c†kσ ckσ

+
∫

k

( − iωn + εd (k))d†
kσ dkσ

+ λ

∫
k,q

φ−q · (c†k,ασ αβdk+q,β)

+
∫

q

χ−1
b (q,�n)φq · φ−q, (2)

where
∫
k

= T
∑

n

∫
ddk

(2π)d , λ is the coupling constant, εd (k) ≡
εc(k + Q), and ωn = (2n + 1)πT is the fermionic Matsubara

FIG. 2. Schematic Fermi surfaces of (a) the cuprates and (b) iron
pnictides, respectively. Pairs of hot spots (blue or purple points) are
connected by dashed lines corresponding to the momentum Q =
(π,π ), for the cuprates, and Q = (π,0) or (0,π ), for the pnictides.
Spin fluctuations are peaked at these wave vectors in the two materials.

frequency. Because the behavior of this action is dominated by
the states near the hot spots [28], we linearize the spectrum near
them, εc(k) ≈ vc · k and εd (k) ≈ vd · k, where k is measured
with respect to the Fermi momentum. Thus, by focusing on
a single pair of hot spots, this model can in principle be
applied to either cuprates or pnictides. Indeed, as shown in
Fig. 2, there are four pairs of hot spots in the typical Fermi
surface of the cuprates [in which Q = (π,π )] and eight for
the iron pnictides [in which Q = (π,0) or (0,π )]. Hereafter,
for simplicity, we consider the special case |vc| = |vd |, but the
main results should remain valid otherwise.

For such a low-energy model, the magnetic susceptibility
can be expanded as χ−1

b (q,�n) = χ−1
0 (r0 + q2 + �2

n/v
2
b),

where χ−1
0 is the magnetic energy scale determined by high-

energy states, r0 is the distance to the bare AFM quantum
critical point, and vb is the spin-wave velocity. The coupling
to the electronic degrees of freedom, however, fundamentally
changes this propagator by introducing Landau damping, i.e.,
the decay of magnetic excitations in electron-hole pairs. Within
one loop, the renormalized magnetic susceptibility becomes
χ−1 = χ−1

b − (q,�n), where  is the standard Lindhard
function. Expanding it for small momentum and frequency,
we find

χ (q,�n) = χ0

ξ−2 + q2 + |�n|/γ , (3)

where ξ−2 = r0 − χ0(0,0) is the inverse squared cor-
relation length, which vanishes at the QCP, and γ −1 =
λ2χ0/(2πv2

F sin θ ) is the Landau damping. Experimentally, the
distance to the QCP can be accessed by the NMR spin-lattice
relaxation rate, since T1T ∝ ξ−2 for a quasi-two-dimensional
system. Here, θ is the angle between vc and vd . To complete
the model, we introduce the contributions from the small-
momentum and large-momentum impurity potentials, u0 and
uQ, respectively:

Simp =
∫

kk′
u0(c†kσ ck′σ + d

†
kσ dk′σ ) +

∫
kk′

uQ(c†kσ dk′σ + H.c.).

(4)
For a pointlike impurity, such as considered in Ref. [50], it

follows that u0 = uQ.
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Σc(k, ωn) =
dk−q,ωm

φq,ωn−ωm

+

τ−1
0

+
ck ,ωn

τ−1
Q

dk ,ωn

FIG. 3. Feynman diagrams for the fermionic self-energy �,
including the fermion-boson coupling and disorder scattering.

The spin-fermion model (2) has been studied by a variety of
different techniques, from large-N [26,27] and renormaliza-
tion group (RG) [62,63] to quantum Monte Carlo [28]. Here,
we consider the large-N approach, where N is the number of
hot spots. Its main advantage is that it allows one to set up
an Eliashberg-like approach to compute Tc. This is because,
as shown in Ref. [26], the vertex corrections are suppressed
by the factor 1/N and, thus, the SC gap equations can be
obtained by evaluating the one-loop self-energy shown in
Fig. 3. The normal component of the self-energy has a real part
�′, which can be absorbed as a renormalization of the band
dispersion, and an imaginary part �′′, which gives rise to a
frequency-dependent fermionic coherent spectral weight Z−1

n

according to Zn = 1 − �′′/ωn. The anomalous component of
the self-energy Wn is proportional to the frequency-dependent
SC gap, �n = Wn/Zn. Spin fluctuations promote attraction
in the SC channel in which the gap changes sign from one
hot spot to another, i.e., Wc

n = −Wd
n ≡ Wn, corresponding to

either a d-wave gap or an s+− gap, depending on the position

of the hot spots in the Brillouin zone (see Fig. 2). In the Nambu
spinor representation, the fermionic self-energy is in the
form [9]

�(iωn,k) = iωn(1 − Zn)σ0 + ζσ3 + Wnσ1 , (5)

where σi are Pauli matrices. In principle, both Zn and Wn

depend on the momentum k. In our approach, where only
pairs of hot spots are considered, the momentum dependence
is neglected and only the frequency dependence is considered.
We note that, as discussed in Refs. [27] and [31], the
contributions from states beyond the hot spots can give rise
to important effects. However, in what concerns the linearized
gap equations, these effects become important when the energy
scale associated with the curvature of the Fermi surface is
comparable to Tc (see Ref. [31]). Therefore, our approach is
suitable for Fermi surfaces whose curvatures are small. In this
case, the fermionic Green’s function is given by

G−1(iωn,k) = iωnZn − εσ3 − Wnσ1
(6)

=⇒ G(iωn,k) = − iωnZn + εσ3 + Wnσ1

(Znωn)2 + ε2 + W 2
n

,

where we absorbed the real part of the normal self-energy ζ in
the electronic dispersion ε.

By computing the one-loop self-energy in Fig. 3, the
linearized Eliashberg equations (T = Tc) in the presence of
disorder can be written as

iωn(1 − Zn,c(k)) = 3λ2T
∑
m

∫
d2q

(2π )2

χ0

ξ−2 + q2 + |ωn − ωm|/γ
−iωmZm,d

(ωmZm,d )2 + ε2
d (k − q)

− i
sgn(ωn)

2τ
, (7)

Wn,c(k) = T
∑
m

∫
d2q

(2π )2

−3λ2χ0

ξ−2 + q2 + |ωn−ωm|
γ

Wm,d

(ωmZm,d )2 + ε2
d (k − q)

+ (2τ0)−1Wn,c

|ωn|Zn,c

+ (2τQ)−1Wn,d

|ωn|Zn,d

. (8)

The subscripts c, d refer to the fermionic states around
the two hot spots. The equations for Zn,d and Wn,d as-
sume similar forms. The total impurity scattering rate is
given by τ−1 = τ−1

0 + τ−1
Q , where τ−1

0 = 2πnimpu
2
0Nf is the

small-momentum scattering rate and τ−1
Q = 2πnimpu

2
QNf is

the large-momentum scattering rate, with nimp denoting the
concentration of impurities and Nf the density of states at the
Fermi level. Both Eqs. (7) and (8) contain the two-dimensional
integral over momenta q‖ and q⊥, i.e., the components of q
parallel and perpendicular to the Fermi surface. Focusing at
the hot spot (k = 0), the fermionic self-energy is∫

d2q

(2π )2

χ0

ξ−2 + q2 + |ωn − ωm|/γ
−iωmZm,d

(ωmZm,d )2 + ε2
d (q)

=
∫

dq⊥
(2π )

χ0/2√
ξ−2 + q2

⊥ + |ωn − ωm|/γ
−iωmZm,d

(ωmZm,d )2 + (vf q⊥)2

≈ χ0

4vf

−isgn(ωm)√
ξ−2 + |ωn − ωm|/γ , (9)

where, in the last step, we considered that

ξ−2 + |ωn − ωm|/γ 	
(

ωmZm

vf

)2

, (10)

which naturally establishes a cutoff:

�c = max

(
v2

f

γ
,
vf

ξ

)
= max

(
8�

9π sin2 θ
,
4
√

r�

3 sin θ

)
, (11)

where r = ξ−2γ

2π
is the energy scale of the AFM fluctuations,

and � = 9
16λ2χ0 sin θ is an effective coupling constant. Note

that this cutoff arises not from the bandwidth, but from
the restriction in the momentum integration. For notation
convenience, we define

A(ωn − ωm) = χ0

2
√

ξ−2 + |ωn − ωm|/γ . (12)

Therefore, the Eliashberg equations are given by

Zn = 1 + 3λ2T

2vf ωn

∑
m

sgn(ωm)A(ωn − ωm) + τ−1
0 + τ−1

Q

2|ωn| ,

(13)
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Wn = 3λ2T

2vf

∑
m

Wm

Zm

A(ωn − ωm) + Wn

(
τ−1

0 − τ−1
Q

)
2|ωn|Zn

. (14)

Our goal is to investigate how dTc/dτ−1 deviates from the
universal AG result, (dTc/dτ−1)AG = −π/4. To gain insight
into this problem, we reexpress the Eliashberg equations
as a functional form [9,59–61]. In particular, after defining
�̄n = T Wn/(Zn|ωn|) and restricting the solution to even-
frequency pairing, W (−ωn) = W (ωn), solving the Eliashberg
equations becomes equivalent to finding the zero eigenvalue η

of K̂mn�̄n = η�̄m. Here, the matrix K̂ is given by

K̂m�=n =
√

�

T

(
1√|m − n| + r/T

+ 1√
m + n + 1 + r/T

)
,

K̂nn =
√

�

T

1√
2n + 1 + r/T

− π (2n + 1)

−
√

�

T

∑
n′ �=n

sgn(ωn′)√|n − n′| + r/T
− τ−1

Q

T
, (15)

where m,n are non-negative integers. Tc is obtained when the
largest eigenvalue η vanishes. These equations reduce to those
studied in Ref. [50] when τ−1

0 = τ−1
Q . The main advantage of

this functional approach is that it allows us to study the impact
of weak disorder on Tc without having to solve explicitly the
disordered equations. This is accomplished by employing the
Hellmann-Feynman theorem:

dTc

dτ−1
= −

〈
dK̂

dτ−1

〉/〈
dK̂

dTc

〉
≡ −

(
dη

dτ−1

)/(
dη

dTc

)
,

(16)
where 〈· · · 〉 refers to an average with respect to the normalized
eigenvector �̄n of the system without disorder and η =∑

m,n K̂mn�̄m�̄n. Next, we divide the contributions to ( dTc

dτ−1 )
into two classes: those arising from the coupling between
disorder and the fermionic degrees of freedom, ( dTc

dτ−1 )
f,i

, and
those arising from the coupling between disorder and the
bosonic degrees of freedom (i.e., the pairing interaction),
( dTc

dτ−1 )
b,j

. While the former corresponds simply to the τ−1
Q

term in Eq. (15), the latter is implicit in the kernel (15)
via the dependence of the pairing interaction A(�n) on
disorder. Because of the Hellmann-Feynman theorem, these
contributions can be treated independently and just added up
in the end:

dTc

dτ−1
=

∑
i

(
dTc

dτ−1

)
f,i

+
∑

j

(
dTc

dτ−1

)
b,j

. (17)

III. SUPPRESSION OF Tc DUE TO THE COUPLING OF
DISORDER AND THE ELECTRONIC DEGREES

OF FREEDOM

We first investigate how the coupling between disorder and
the fermionic states affects the suppression rate ( dTc

dτ−1 ). As it
is immediately clear from Eq. (15), there is only one term in
the kernel that depends on the impurity scattering explicitly,
giving rise to the contribution ( dTc

dτ−1 )
f

. In particular, because

only the large-momentum scattering rate τ−1
Q appears in the

functional K̂ , Tc is insensitive to small-momentum scattering

τ−1
0 –an extension of the Anderson theorem to sign-changing

SC gaps. Before we numerically evaluate (16), it is instructive
to consider two limiting cases: the BCS limit and quantum
critical pairing.

A. BCS Limit

The BCS limit corresponds to the case in which the system
is far away from the QCP and the coupling constant is small,
r 	 �c 	 �. The pairing interaction then becomes frequency
independent and small, A(�n) ∝ r−1/2, and the fermionic
coherence factor can be approximated by Zn ≈ 1. In this limit,
Eq. (15) becomes

Kmn ≈ 2

√
�

r
− π (2n + 1)δmn =⇒

�̄n�0 = 2

π (2n + 1)

√
�

r

∑
m� �c

2πT

�̄m. (18)

Defining the quantity c = ∑
m �̄m, we obtain the self-

consistent equation:

c = c

π

√
�

r

∑
n��c/(2πT )

1

n + 1/2

= c

π

√
�

r

[
ψ

(
�c

2πT
− 1

2

)
− ψ

(
1

2

)]

=⇒ Tc ≈ �c

2π
exp

[
−π

√
r

�
− ψ

(
1

2

)]
, (19)

which agrees with the standard BCS expression. Here, ψ(x) is
the digamma function.

As shown in Eq. (18), the matrix elements of K̂ are
independent of T , but the eigenvalue η still depends on T

via the changes in the matrix size Nc, which is set by the hard
cutoff �c via Nc = �c/(2πT ). To take this effect into account,
consider a reduction in the matrix size by 1, Nc → Nc − 1,
which means that the last row and the last column no longer
take part in the determination of the eigenvalue. Then, the
change in η = ∑

m,n K̂mn�̄m�̄n is given by

δη = −
∑
m

(
K̂mNc

+ K̂Ncm

)
�̄m�̄Nc

+ K̂NcNc

(
�̄Nc

)2

= K̂NcNc

(
�̄Nc

)2
. (20)

Therefore, we find

δη

δTc

= − �c

2πT 2

δη

δNc

= �c

2πT 2
K̂NcNc

(
�̄Nc

)2
, (21)

yielding

dTc

dτ−1
Q

= −
(

dη

dTc

)−1
dη

dτ−1
Q

= 1

Nc

1

K̂NcNc

(
�̄Nc

)2 . (22)
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Using Eq. (18), we have K̂NcNc
= −π (2Nc + 1) ≈

−2πNc. Furthermore, from the same equation, we have

�̄Nc
= c

π
(
Nc + 1

2

)
√

�

r
, (23)

where c = ∑
m� �c

2πT
�̄m. The value of c can be obtained by

normalizing the eigenvector:

�c
2πT∑
n=0

�̄2
n = 1 =⇒ c

π

√
�

r
=

(∑
n

1

(n + 1/2)2

)−1/2

. (24)

Therefore,

�̄Nc
= 1

Nc + 1/2

(∑
n

1

(n + 1/2)2

)−1/2

≈
√

2

πNc

=⇒ dTc

dτ−1
Q

≈ − 1

Nc

1

2πNc

(
πNc√

2

)2

= −π

4
, (25)

recovering the Abrikosov-Gor’kov universal value for dirty
superconductors.

B. Quantum critical pairing limit

The second limiting case corresponds to the system at
the QCP, for which r ∝ ξ−2 = 0. In this case, the pairing
interaction is strongly frequency dependent, A(�n) ∝ �

−1/2
n .

From Eq. (13), we find that as T → 0 the low-frequency
coherent factor vanishes as Z−1(ω � �c) ∝ ω1/2, a hallmark
of non-Fermi liquid behavior. An interesting property of the
system of equations at the QCP is that they converge in the
limit �c → ∞, i.e., Tc and ( dTc

dτ−1 ) do not depend on the cutoff.
In this limit, the K̂ matrix becomes

K̂nn =
√

�/T√
2n + 1

− π (2n + 1) − 1

τQT

− 2

√
�

T

[
ζ

(
1

2
,1

)
− ζ

(
1

2
,n + 1

)]
(26)

K̂m�=n =
√

�

T

(
1√|n − m| + 1√

n + m + 1

)
, (27)

where ζ ( 1
2 ,x) is the Hurwitz ζ function. Clearly, the only free

parameter is the combination �
Tc

. By numerically diagonalizing
the matrix, we find Tc ≈ 0.5�. Analysis of the eigenvalue
problem for large frequencies reveal that �̄n ∝ n−3/2, which
explains why the problem converges for �c → ∞. This is to
be contrasted with the BCS case, in which �̄n ∝ n−1, implying
that the sum does not converge and a cutoff is needed.

To compute ( dTc

dτ−1 ), we use the Hellmann-Feynman theorem,
Eq. (16). Using the equations above, we find

∂K̂mn

∂τ−1
0

= 0,
∂K̂mn

∂τ−1
Q

= −δmn/T (28)

and

∂K̂mn

∂T
= − K̂mn

2T
− π (2n + 1)

2T
δmn. (29)

Hence, we obtain(
dη

dT

)
= − π

2T

∞∑
n=0

�̄2
n(2n + 1)

=⇒ dTc

dτ−1
Q

= − 2

π

( ∞∑
n=0

�̄2
n(2n + 1)

)−1

. (30)

The term inside the brackets does not depend on any free
parameters and therefore can be evaluated numerically. Nu-
merical evaluation gives dTc/dτ−1

Q ≈ −0.45, which is smaller
than the AG universal value obtained away from the QCP.

C. General case

Therefore, the two limiting cases (r = 0 and r 	 �c 	 �)
suggest that proximity to the QCP promotes the robustness of
Tc against pair-breaking disorder. Before presenting the results
for a general distance r from the QCP, we first explain how the
high-energy cutoff �c is set in our calculation. In the section
discussing the BCS limit, we set a hard cutoff Nc = �c/(2πT )
in the Matsubara sum. Although this procedure does not affect
the behavior of Tc in the limit of �c 	 Tc, it will make Tc

behave discontinuously as �c and r decrease. To avoid such
a discontinuity, we set instead a soft cutoff in the Matsubara
sum by including an appropriate continuous function f (ωn)
that is strongly suppressed above �c and nearly 1 below �c.
Specifically, we change the bosonic propagator to

1

|ωn − ωm|/γ + q2 + ξ−2
→ f (ωn)f (ωm)

|ωn − ωm|/γ + q2 + ξ−2

(31)

with f (ω) = [exp ( |ω|−�c

�d
) + 1]

−1
, where �d = 0 gives the

hard energy cutoff. This function has the property that when
|ω| � �c, f (ω) ≈ 1, and when |ω| 	 �c, f (ω) ≈ 0. In our
calculation, �d is set to be �d = max (0.1�,0.3�c). We
emphasize that none of our results qualitatively change for
�d = 0 or �d small. Thus, at the QCP, the matrix K̂ with such
soft high-energy cutoff becomes

K̂m�=n =
√

�

T

(
fmfn√|n − m| + r/T

+ fmfn√
n + m + 1 + r/T

)

(32)

K̂nn =f 2
n

√
�

(2n + 1)T + r
− π (2n + 1)

− fn

√
�

T

∑
m�=n

sgn(ωm)fm√|n − m| + r/T
− 1

τQT
, (33)

where

fn�0 = f [π (2n + 1)T ] (34)

is the weight function. In the clean limit (τ−1
Q = 0), it is

straightforward to compute Tc by diagonalizing the matrix K̂ .
As shown in Fig. 4(a), we find that Tc is generally suppressed
away from the QCP for a fixed value of the cutoff �c.

We are now in position to compute the suppression rate of Tc

by disorder using the Hellmann-Feynman theorem, Eq. (16),
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combined with the solution of the clean system discussed
above. From Eqs. (32) and (33), we have ∂K̂/∂τ−1

0 = 0 and
∂K̂/∂τ−1

Q = −1/T , i.e., only large-momentum scattering is

pair breaking. Since we apply the soft cutoff here, the weight
function f also depends on temperature, as shown by Eq. (34).
We have:

∂K̂m�=n

∂T
= − π

�d

√
�

T
fmfn((2n + 1)(1 − fn) + (2m + 1)(1 − fm))

(
1√|n − m| + r/T

+ 1√
n + m + 1 + r/T

)

+ r

2T 2

√
�

T
fmfn

[
(|n − m| + r/T )−

3
2 + (n + m + 1 + r/T )−

3
2
] − K̂mn

2T
,

∂K̂nn

∂T
= π

�d

√
�

T
fn

∑
m�=n

sgn(ωm)fm(|2m + 1|(1 − fm) + (2n + 1)(1 − fn))√|n − m| + r/T
− r

2T 2

√
�

T
fn

∑
m�=n

sgn(ωm)fm

(|n − m| + r/T )3/2

− K̂nn

2T
− π (2n + 1)

2T
− 2π (2n + 1)

�d

√
�

T

f 2
n (1 − fn)√

2n + 1 + r/T
+ r

2T 2

√
�

T

f 2
n

(2n + 1 + r/T )3/2
. (35)

Calculating these expressions, we present in Fig. 4(b)
dTc/dτ−1

Q in the proximity of a QCP. The results agree with our
expectations and reveal that Tc is indeed in general more robust

FIG. 4. (a) Transition temperature of the clean system (Tc) as a
function of the distance to the QCP r and the cutoff �c (in units
of the effective coupling �). (b) The suppression of Tc by disorder,
dTc/dτ−1, when the system is near the quantum critical point r = 0.
Only the effects of the coupling of disorder to the fermionic degrees
of freedom are included. In the plot, we used the soft cutoff procedure.

against disorder at the QCP (r = 0), especially when compared
to the AG universal value −π/4 ≈ −0.785. Although the pre-
cise values for Tc and −dTc/dτ−1

Q depend on the ratio �c/�,

the general trend is robust, and −dTc/dτ−1
Q remains well below

the AG universal value π/4, as shown in Fig 1. To understand
this behavior, we note that the last term of the Eliashberg
equation (14), proportional to τ−1

Q , effectively reduces the

pairing vertex to Wn → Wn/(1 + τ−1
Q

2Zn|ωn| ). Therefore, because

at the QCP the fermionic coherent weight Z−1 ∝ ω1/2 vanishes
at the Fermi surface, the effect of disorder on the pairing
vertex becomes less relevant at low frequencies, where the gap
function is the largest. As the system moves away from the
QCP, Z−1 enhances at the Fermi level and disorder becomes
more relevant.

IV. SUPPRESSION OF Tc DUE TO THE COUPLING OF
DISORDER AND BOSONIC DEGREES OF FREEDOM

Our analysis so far agrees with the general results from
Ref. [50] and mirrors the standard AG approach for con-
ventional dirty superconductors, with disorder impacting the
electronic degrees of freedom. In this regard, one of the main
differences between the conventional and unconventional SC
cases stems from the reduced coherent electronic spectral
weight near the QCP. There is, however, another important
difference between the two cases: while in the former the
pairing interaction arises from an independent degree of
freedom (phonons), in the latter it arises from the same
electronic degrees of freedom (AFM fluctuations). Since
disorder affects the fermionic states, it must then change also
the AFM fluctuation spectrum.

Within our functional approach to the Eliashberg equations,
including this effect is straightforward within linear order
in τ−1. Specifically, we need to compute how the pairing
interaction, as defined in (9), changes in the presence of
disorder. We identify two processes through which the bosonic
degrees of freedom are affected by disorder scattering, as
shown in Figs. 5(b) and 5(c) (see also Ref. [64]). The first
process, Fig. 5(b), corresponds to the renormalization of
the electron-boson vertex by disorder and gives rise to the
contribution ( dTc

dτ−1 )
b,1

for the suppression of Tc. The second
process, Fig. 5(c), corresponds to the renormalization of the
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(a)

(d)

(c)

(b)

FIG. 5. (a) Two contributions to the derivative of Tc with respect
to the total scattering rate τ−1 = τ−1

0 + τ−1
Q that arise from the

coupling between disorder and bosonic degrees of freedom. The
positive contribution b1 corresponds to the dressing of the fermion-
boson vertex by disorder (inset b), whereas the negative contribution
b2 corresponds to the dressing of the bosonic self-energy by disorder
(inset c). (d) The change of Tc due to the coupling of disorder to
the bosons, (dTc/dτ−1)b = (dTc/dτ−1)b,1 + (dTc/dτ−1)b,2, when the
system is around the QCP r = 0.

bosonic self-energy and gives rise to the contribution ( dTc

dτ−1 )
b,2

.
In the spirit of the large-N expansion, the renormalization of
the disorder vertex by the bosonic fluctuations is small by a
1/N factor and therefore will not be considered hereafter.

A. Electron-boson vertex renormalization

We first calculate how the electron-boson vertex is renor-
malized by disorder. As shown in Fig. 5(b), the vertex
correction δλ is given by

δλ = nimpu
2
∫

d2k

(2π )2
Gc

(
iωn,k − q

2

)
Gd

(
iωm,k + q

2
+ Q

)

= nimpu
2

|vc × vd |
∫

dε1dε2

(2π )2

1

iωnZn + vc · q/2 − ε1

× 1

iωmZm − vc · q/2 − ε2
, (36)

where nimp is the impurity concentration and u is the impurity
potential. Since the effect is the same for small and large

momentum scattering, we do not distinguish them here. Using
the result

∫ ∞

−∞

dp

ia − c − p
= −iπsgn(a) , (37)

we obtain

δλ = −λ
sgn(ωnωm)

8πNf τ |vc × vd | . (38)

Note that the vertex correction depends only on the
external frequencies of the two fermion legs. In the ladder
approximation, we find the renormalized vertex λr

λr = λ

(
1 + sgn(ωnωm)

8πNf τ |vc × vd |
)−1

=⇒ dλr

dτ−1

∣∣∣∣
τ−1=0

= − λ
sgn(ωnωm)

2ϒ
, (39)

where we defined the energy scale ϒ = 4πNf v2
f sin θ . Thus,

we have two different behaviors depending on whether the
external frequencies have the same sign (λ+) or different signs
(λ−) [65]:

λ± = λ

(
1 ± 1

2ϒτ

)−1

,
dλ±
dτ−1

∣∣∣∣
τ−1=0

= ∓ λ

2ϒ
. (40)

B. Bosonic self-energy renormalization

We now calculate the renormalization of the particle-hole
bubble by disorder. As shown in Fig. 5(c), we have

(i�m,q) = − 2T
∑

n

∫
d2q

(2π )2
λrλGc

(
iωn,k − q

2

)

× Gd

(
iωn + i�m,k + q

2
+ Q

)

= λ2

2|vc × vd |T
∑

n

sgn[ωm(ωm + �n)]

1 + 1
2ϒτ

sgn[ωm(ωm + �n)]
.

(41)

Therefore, the particle-hole bubble does not depend on q.
In the static limit, we find

(0) = λ2�c

2π |vc × vd |
(

1 + 1

2ϒτ

)−1

. (42)

Thus, since the correlation length is given by ξ−2 = r0 −
χ0(0), and using the definition r = ξ−2γ

2π
, we find

dr

dτ−1
= �c

4πϒ
. (43)
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The above result is consistent with previous works that
found a reduction of the magnetic order parameter with
disorder in itinerant AFM systems [66,67]. We can also
calculate the correction to the Landau damping γ −1 ≡
χ0[(0) − (i�n)]/|�n|. We find

(0) − (i�n)

= λ2

2|vc × vd |T
|�n|/(2πT )∑

m=1

[(
1 + 1

2ϒτ

)−1

+
(

1 − 1

2ϒτ

)−1
]

= λ2|�n|
4π |vc × vd |

[(
1 + 1

2ϒτ

)−1

+
(

1 − 1

2ϒτ

)−1
]
,

(44)

yielding

γ −1 = λ2χ0

2π |vc × vd | [1 − (2ϒτ )−2]−1,
dγ −1

dτ−1
= 0. (45)

Therefore, the Landau damping γ depends only quadratically
on the scattering rate and does not contribute to the leading
order in τ−1.

C. Total suppression rate of Tc

Using the results of the previous sections, we can rewrite
the matrix elements in Eqs. (32) and (33) as

K̂m�=n =
√

�

T

(
fmfn(λ+/λ)2

√|n − m| + r/T
+ fmfn(λ−/λ)2

√
n + m + 1 + r/T

)
,

K̂nn = 2(λ−/λ)2f 2
n√

2n + 1 + r/T

√
�

T
− π (2n + 1) − 1

τQT

− fn

√
�

T

Nc∑
m �= n

m = 0

fm

[
(λ+/λ)2

√|n − m| + r/T

− (λ−/λ)2

√
n + m + 1 + r/T

]
. (46)

While ∂η/∂T is the same as Eq. (35), the term ∂η/∂τ−1

acquires two new contributions arising from the vertex
renormalization (b1) and from the self-energy renormalization
(b2): (

∂η

∂τ−1

)
b

=
(

∂η

∂τ−1

)
b,1

+
(

∂η

∂τ−1

)
b,2

. (47)

Using Eq. (40), we find the contribution from the vertex renormalization:

ϒ

(
∂K̂m�=n

∂τ−1

)
b,1

=
√

�

T
fmfn

[ −1√|n − m| + r/T
+ 1√

n + m + 1 + r/T

]
,

ϒ

(
∂K̂nn

∂τ−1

)
b,1

= 2f 2
n

√
�

T
(2n + 1 + r/T )−1/2 +

√
�

T

∑
m �= n

m = 0

fmfn

(
1√|n − m| + r/T

+ 1√
n + m + 1 + r/T

)
. (48)

Similarly, we find the contribution from the bosonic self-energy renormalization:

ϒ

(
∂K̂m�=n

∂τ−1

)
b,2

= − fmfn

�c

8πT

√
�

T

[
(|n − m| + r/T )−

3
2 + (n + m + 1 + r/T )−

3
2
]
,

ϒ

(
∂K̂nn

∂τ−1

)
b,2

= − 2f 2
n

�c

8πT

√
�

T
(2n + 1 + r/T )−

3
2 + �c

8πT

√
�

T

∑
m �= n

m = 0

fmfn

[
(|n − m| + r/T )−

3
2 − (n + m + 1 + r/T )−

3
2
]
.

(49)

It is now straightforward to compute ( dTc

dτ−1 )
b,1

and ( dTc

dτ−1 )
b,2

numerically, using the solution of the clean system obtained in
the previous section. The red curve in Fig. 5(a) shows ( dTc

dτ−1 )
b,1

as a function of the distance to the QCP, whereas the blue curve
shows ( dTc

dτ−1 )
b,2

. Surprisingly, not only is the former larger in
magnitude than the latter, but it is also positive, whereas the
latter is negative. The result ( dTc

dτ−1 )
b,2

< 0 is straightforward

to understand qualitatively: because r ∝ ξ−2 is enhanced by
disorder, according to Eq. (43), the system behaves as it
moves away from the QCP, which effectively reduces Tc,
according to the behavior found previously in the clean system
in Fig. 1. On the other hand, the result ( dTc

dτ−1 )
b,2

> 0 is less
straightforward to understand qualitatively, particularly since
disorder may enhance or suppress the vertex λ depending on

the frequencies of the two external fermions, as shown by
Eq. (40).

This unexpected result can be understood by analyzing the
expression for the coherent spectral weight Z−1

n [Eq. (13)]
in the presence of the renormalized electron-boson coupling
λr (and in the absence of other impurity terms). At the QCP,
we find that at low frequencies, ω � �c, Zn is effectively re-

duced by this vertex renormalization, ( dZ
dτ−1 )

b1
= − 1

ϒ |ω|
√

��c

2π
.

Consequently, because Zn appears in the denominator of the
pairing kernel in the gap equation (14), the SC transition
temperature is enhanced by this effect. Note that the pairing
kernel also has a factor of λ2 in the numerator; however,
because the sign of the vertex correction δλ in Eq. (38)
changes depending on the relative frequencies of the external
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fermions, it does not compensate for the effect arising from
the suppression of Zn in the denominator. Indeed, the only
reason Zn is efficiently suppressed by λ2 is because of
the term sgn(ωm) inside the sum in Eq. (13), which is
compensated by the same term sgn(ωm) in Eq. (39). Such
compensation leads to the cutoff dependence of dZ/dτ−1 and
outweighes the impact of disorder on the renormalized pairing
kernel.

Analytically, we can obtain approximate expressions for
both ( dTc

dτ−1 )
b,1

and ( dTc

dτ−1 )
b,2

at the QCP, r = 0. The details are
shown in Appendix and give

ϒ

�

(
dTc

dτ−1

)
b,1

≈ 0.6
√

�c

�
,

(50)
ϒ

�

(
dTc

dτ−1

)
b,2

≈ −0.045�c

�
.

The reason why ( dTc

dτ−1 )
b,2

grows faster with �c is because
high-energy states contribute more to the particle-hole bub-
ble than to the vertex correction. In Fig. 5(d) we present
the net result ϒ

�
( dTc

dτ−1 )
b,1

+ ϒ
�

( dTc

dτ−1 )
b,2

as a function of the
distance to the QCP and of the cutoff. Clearly, for a wide
regime of parameters the net effect of the coupling between
disorder and bosonic degrees of freedom is an enhancement
of Tc.

V. CONCLUDING REMARKS

In this work, we used a variational approach to investigate
how different effects contribute to the suppression rate of Tc by
disorder, dTc

dτ−1 , in the case of an unconventional superconductor
in which pairing is mediated by quantum critical fluctuations.
By studying the spin-fermion model in the large-N hot-spot
approximation, we identified three different contributions to
the reduction of Tc with impurity scattering, dTc

dτ−1 = ( dTc

dτ−1 )
f

+
( dTc

dτ−1 )
b,1

+ ( dTc

dτ−1 )
b,2

, as outlined in Eq. (1). ( dTc

dτ−1 )
f

arises from
the pair-breaking effect promoted by the coupling between
the electrons and the large-momentum impurity potential. As
shown in Fig. 4(b), ( dTc

dτ−1 )
f

is always negative, albeit reduced
with respect to the Abrikosov-Gor’kov value near the QCP.
Such a reduction stems from the suppression of quasiparticle
spectral weight near the QCP and has its roots on the non-Fermi
liquid character of the AFM QCP.

While this trend agrees with results from previous works on
similar spin-fermion models [50,51], our variational approach,
by means of the Hellmann-Feynman theorem, allows us to
also assess the effect of the coupling between disorder and
the pairing interaction (i.e., the bosonic degrees of freedom)
without having to solve the complicated disordered problem.
Two contributions arise: ( dTc

dτ−1 )
b,1

, due to the dressing of the

electron-boson vertex by impurities, and ( dTc

dτ−1 )
b,2

, due to the
dressing of the bosonic self-energy by impurities. Surprisingly,
we find ( dTc

dτ−1 )
b,1

> 0 close to the QCP and larger in magnitude

than ( dTc

dτ−1 )
b,2

< 0. While the latter behavior can be understood
as a result of the suppression of the magnetic correlation length
by disorder, the former stems from the enhancement of the

quasiparticle spectral weight promoted by the renormalization
of the electron-boson coupling.

It is interesting to discuss the relative magnitudes of these
effects. Our analytical approximations, combined with the
numerical results, show that at the QCP the two effects
arising from the coupling of disorder to the bosons behave
as | dTc

dτ−1 |b,2
∼ 0.04

sin θ
| dTc

dτ−1 |b,1
. Therefore, unless the system is

very close to perfect nesting (θ = 0), the positive contribution
( dTc

dτ−1 )
b,1

overcomes the negative contribution ( dTc

dτ−1 )
b,2

, as
illustrated in Fig. 5(d). Consequently, the suppression rate
of Tc enforced by the direct coupling of the fermions to
the impurity potential ( dTc

dτ−1 )
f

is even more reduced as
compared to the Abrikosov-Gor’kov value. In particular,
we can estimate using our analytical expressions | dTc

dτ−1 |b,1
∼

λ2χ0

EF
| dTc

dτ−1 |f , implying that this additional enhancement of Tc

is generally smaller than the reduction promoted by pair-
breaking effects. Equivalently, within an expansion in the
number of hot spots N , this additional contribution acquires a
prefactor of 1/

√
N . Thus, the universal value ( dTc

dτ−1
Q

)f ≈ −0.45

obtained at the QCP (i.e., the value obtained when r = 0 and
�c → ∞) is an upper boundary value that may in principle
be used to test this model. Experimentally, it would be
interesting to obtain ( dTc

dτ−1 ) experimentally in electron-doped
cuprates or iron pnictides near the putative AFM QCP by
introducing disorder in a controlled way via, for instance,
irradiation.

In summary, we have shown that the suppression of Tc by
weak disorder in an AFM quantum critical SC is significantly
reduced compared to the universal value obtained from the
Abrikosov-Gor’kov theory of conventional dirty SC. Our work
highlights the importance of the incoherent electronic spectral
weight and of the feedback of the electronic states on the
pairing interaction to describe the properties of this uncon-
ventional pairing state. Qualitatively, our results agree with
several experimental observations in cuprates and pnictides
reporting a robust SC state against disorder. Extensions of this
promising framework to include higher-order contributions
from the impurity scattering would be desirable to achieve
more quantitative comparisons with experiments, such as the
critical value of the impurity scattering that destroys the
quantum critical SC state.
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APPENDIX: ANALYTICAL CALCULATION OF
( dTc

dτ−1

)
b,1

AND
( dTc

dτ−1

)
b,2

AT THE QCP

Here we focus on the case where the system is at the QCP,
r = 0, and apply the hard cutoff procedure for Nc 	 1. We
start by computing ( dTc

dτ−1 )
b,1

. In this case, the expressions (48)
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simplify to

ϒ

(
∂Knn

∂τ−1

)
b,1

=
√

�

T

[
2ζ

(
1

2
,1

)
− ζ

(
1

2
,Nc − n

)

−ζ

(
1

2
,Nc + n

)
+ 1√

2n + 1

]
,

ϒ

(
∂Km�=n

∂τ−1

)
b,1

= −
√

�

T

[
1√|m − n| − 1√

m + n + 1

]
,

(A1)

where ζ (a,x) is the Hurwitz ζ function. In the limit Nc 	 1,
the off-diagonal term is much smaller than the diagonal one.
Consequently, the change in the eigenvalue is given by

ϒ

√
T

�

(
dη

dτ−1

)
b,1

= 2
Nc∑

n=0

�̄2
n(

√
Nc − n +

√
Nc + n),

(A2)
where the eigenvectors are normalized,

∑
n �̄2

n = 1. As dis-
cussed in the solution of the clean case, �̄n�n0 ≈ An−3/2 for
1 � n0 � Nc, with A > 0. Thus, we obtain

ϒ

√
T

�

(
dη

dτ−1

)
b,1

≈ 4
√

Nc

n0∑
n=0

�̄2
n + 2A2

∫ Nc

n0

dn

(√
Nc − n + √

Nc + n

n3

)

≈ 4
√

Nc

n0∑
n=0

�̄2
n + 2A2

√
Nc

n2
0

, (A3)

yielding

ϒ

(
dη

dτ−1

)
b,1

≈ 8√
2π

√
�c

�
, (A4)

where we used the clean limit result Tc ≈ �/2. Therefore, Tc

actually increases due to the dressing of the fermion-boson
vertex by disorder. To evaluate the change in Tc due to this
effect, we use Eq. (30):

−
(

dη

dT

)
= − π

2T

∞∑
n=0

�̄2
n(2n + 1) ≈ 1.6π

�
, (A5)

where the last step was obtained by the numerical solution of
the clean system at the QCP. Therefore we obtain

ϒ

�

(
dTc

dτ−1

)
b,1

≈ 0.6

√
�c

�
. (A6)

This approximate analytical expression is in very
good agreement with the numerical results, as shown in
Fig. 6(a).

We now move on to compute ( dTc

dτ−1 )
b,2

at the QCP. From
Eq. (49) for r = 0 we have the following:

ϒ

(
∂K̂nn

∂τ−1

)
b,2

= �c

4πT

√
�

T

[
ζ

(
3

2
,1

)
− ζ

(
3

2
,n + 1

)

− 1

2(2n + 1)3/2

]
,

FIG. 6. Contribution to the suppression rate (dTc/dτ−1) arising
from the impurity dressing of (a) the fermion-boson coupling and (b)
the bosonic self-energy. Solid curves are the numerical result; dashed
curves are the analytical approximations.

ϒ

(
∂K̂m�=n

∂τ−1

)
b,2

= − 1

2

�c

4πT

√
�

T

[
1

|m − n|3/2

+ 1

(m + n + 1)3/2

]
. (A7)

As a result, using the same procedure as above, we
obtain

ϒ

√
T

�

4πT

�c

(
dη

dτ−1

)
b,2

=
∑

n

�̄2
n

[
ζ

(
3

2
,1

)
− ζ

(
3

2
,n + 1

)]

− 1

2

∑
m,n

�̄m�̄n

[
1 − δmn

|m − n|3/2
+ 1

(m + n + 1)3/2

]
.

(A8)
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Using the numerical solution of the clean system at the
QCP, we find for the right-hand side of the equation

ϒ

√
T

�

4πT

�c

(
dη

dτ−1

)
b,2

≈ −1, (A9)

yielding

ϒ

�

(
dTc

dτ−1

)
b,2

≈ −0.045
�c

�
. (A10)

As shown in Fig. 6(b), the numerical results agree well with
this expression.
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