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Junction systems of odd-frequency (OF) superconductors are investigated based on a mean-field Hamiltonian
formalism. One-dimensional two-channel Kondo lattice (TCKL) is taken as a concrete example of OF
superconductors. Properties of normal and Andreev reflections are examined in a normal metal/superconductor
junction. Unlike conventional superconductors, normal reflection is always present due to the normal self energy
that necessarily appears in the present OF pairing state. The conductance reflects the difference between repulsive
and attractive potentials located at the interface, which is in contrast with the preexisting superconducting
junctions. Josephson junction is also constructed by connecting TCKL with the other types of superconductors.
The results can be understood from symmetry of the induced Cooper pairs at the edge in the presence of
spin/orbital symmetry breaking. It has also been demonstrated that the symmetry argument for Cooper pairs is
useful in explaining Meissner response in bulk.

DOI: 10.1103/PhysRevB.93.224511

I. INTRODUCTION

Odd-frequency (OF) superconductivity [1–5], which is
characterized by pair potential or pair amplitude with odd
functions in time and frequency, has been recognized as a
candidate of intriguing quantum states of matter. While its
realization has been theoretically proposed in a variety of
systems [6–10], there has been a long-standing problem: a
thermodynamic instability arises if we apply a conventional
approach to OF superconductivity, which has succeeded
in describing ordinary even-frequency (EF) superconductors
[11,12]. At the same time, the sign of electromagnetic response
function is reversed from the usual diamagnetic one, indicating
a paramagnetic Meissner response and negative superfluid den-
sity. Therefore its realization in bulk of condensed matter has
been questioned. On the other hand, without such difficulties
the OF superconductivity can exist as a surface state. While
the ordinary EF superconductivity is dominant in bulk, the OF
pairing state is present as an induced state [13–16]. It has been
reported that the paramagnetic Meissner response [17–20] is
observed in this induced OF pairing state [21].

Recent theoretical studies show that the OF pairing can
also be stabilized in a bulk, if we reconsider some conditions
which are usually assumed in the theory of conventional
superconductors. Namely, the sign arising from the OF pair
potential �(−ω) = −�(ω), which causes the thermodynamic
instability, can be canceled by introducing an additional sign.
One of the solutions is to re-examine the conjugate relations
of the frequency-dependent pair potential [22–24]. Using a
path-integral formalism, it has been shown in Refs. [23,24]
that the problem can be resolved by using an unusual conjugate
relation for pair potential, and consequently a description
based on the Hermitian mean-field Hamiltonian is impossible.
Subdominant EF pairings induced in inhomogeneous systems
such as surface or defect have been classified for this kind
of OF pairing based on symmetry arguments [25]. With this
situation, however, recently Josephson junctions have also
been studied by Fominov et al. and peculiar properties are
revealed [26]. Whereas a real current is obtained for the

junction with EF superconductor, the current becomes imag-
inary if we make a junction with paramagnetic OF super-
conductivity realized at, e.g., the edges of p- or d-wave
superconductors. Furthermore, an electromagnetic response
function shows that the superfluid weight becomes complex
number when these diamagnetic and paramagnetic odd-
frequency pairings coexist [26]. These unphysical behaviors at
least indicate that the conventional approach fails in describing
the coexistence of the above OF superconductor.

On the other hand, it has also been established that
there is another type of stable OF superconductivity, which
can be described in the mean-field theory with Hermitian
Hamiltonian. Here, the additional minus sign to resolve the
thermodynamic problem comes from a spatially oscillating
phase of the pair amplitude [11], which is called staggered
pairing [27,28]. The existence of staggered OF pairing has
been clearly demonstrated in the two-channel Kondo lattice
(TCKL) [29,30]. In this paper, for a deeper understanding of
this type of OF superconductors, we take TCKL as a concrete
example. We explore properties of the junction systems to
clarify the difference from already known superconductors.

Superconducting states are classified by internal structures
of the Cooper pairs [31–33]: even (E) or odd (O) in time
(frequency), triplet (T) or singlet (S) in spin space, even
(E) or odd (O) in real space (momentum), and even (E) or
odd (O) in orbital space. To be consistent with Fermi-Dirac
statistics, the exchange symmetry of these indices must be
odd in total. Hence we can have eight classes of symmetry
of Cooper pair labeled by ESEE, ESOO, ETOE, ETEO,
OTEE, OTOO, OSOE, and OSEO. The four successive capital
letters represent symmetries in time, spin, space and orbital,
respectively. We additionally consider uniform and staggered
spatial modulation patterns for pairing states. There is a
similar state called pair density wave (PDW) which also has a
spatially oscillating pair amplitude [34–41]. If the modulation
appears in a staggered manner, PDW is identified as the
staggered pairing or η-pairing [42–46]. These pairing states are
characterized by a finite center-of-mass momentum. Recently,
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TABLE I. Classification of uniform and staggered pairs. For
example, the symbol ESEE means frequency even, spin-singlet
even-parity even-orbital pair (see text for more details). The sign
represents even or odd character of the exchange symmetry. The
symmetry in bracket is a secondarily induced pair from a purely OF
or EF pair potential.

modulation identifier time spin space orbital

uniform ESEE + − + +
ESOO + − − −
ETOE + + − +
ETEO + + + −
OTEE − + + +
OTOO − + − −
OSOE − − − +
OSEO − − + −

staggered ESEE(+OSOE) +(−) − +(−) +
ESOO(+OSEO) +(−) − −(+) −
ETOE(+OTEE) +(−) + −(+) +
ETEO(+OTOO) +(−) + +(−) −
OSOE(+ESEE) −(+) − −(+) +
OSEO(+ESOO) −(+) − +(−) −
OTEE(+ETOE) −(+) + +(−) +
OTOO(+ETEO) −(+) + −(+) −

the Amperean pairing, where the electrons on the same side of
the Fermi surface are paired, is theoretically proposed in the
context of pseudo gap phase in cuprate [47,48]. This Cooper
pair also carries a finite center-of-mass momentum. While
these concepts have been developed without relation to OF
pairing, here we demonstrate that these spatially modulated
states are closely connected to it.

With spatial modulations of pair amplitudes, OF and EF
components mix. Table I summarizes the pairing states. Even
when OF and EF pair amplitudes coexist, we can clearly define
the OF superconductivity in some situations, since the pair
potential can have only OF component. Indeed this is the case
realized in TCKL as will be discussed in this paper. It will
also be demonstrated that the symmetry argument is quite
useful to discuss Meissner response of OF superconductors
and Josephson junctions.

In this paper we discuss the staggered OF superconductivity
in TCKL based on a mean-field Hamiltonian. The model and
bulk properties are discussed in Secs. II and III, which can be
applied to systems in arbitrary dimensions. Junctions in one
dimension are made using OF superconductors and normal
metal to investigate characteristics of Andreev reflection
(Sec. IV) and Josephson current (Sec. V). We summarize the
obtained results in Sec. VI.

II. MODEL

We begin with the two-channel Kondo lattice [49,50] whose
Hamiltonian is given by

HTCKL =
∑
ijσm

(−tij − μδij )c†iσmcjσm

+ J

2

∑
iσmm′

τ i · c
†
iσmσmm′ciσm′ , (1)

where ciσm (c†iσm) is an annihilation (creation) operator of
electrons at site i with spin σ =↑ , ↓ and orbital m = 1,2. We
define the 2×2 Pauli matrix σ and the localized pseudospin
operator τ i at site i. This model is known as an effective model
for f -electron systems with non-Kramers configuration, and
can be applicable to some Pr- and U-based compounds [50].
Since in f -electron systems the spin and orbital moments are
coupled and the total angular momentum is a good quantum
number, the index σ physically describes a Kramers index,
which is connected by the time-reversal symmetry, and the
orbital m a non-Kramers index. For simplicity, we call σ

“spin”, and m “orbital” in the following. The hopping integrals
are given by tij = t for the nearest neighbor sites and otherwise
zero. In Secs. II and III, we consider a general simple bipartite
lattice such as a cubic lattice and do not restrict ourselves to a
one-dimensional chain.

In the previous study [29], TCKL has been investigated by
the dynamical mean-field theory (DMFT), and the existence of
the OF superconductivity has been numerically demonstrated.
The corresponding effective mean-field theory has also been
successfully constructed [30], which qualitatively describes
the pairing state at low temperatures. In this framework,
we first rewrite the localized pseudospin-operator τ i by
introducing pseudofermion as τ i = 1

2

∑
mm′ f

†
imσmm′fim′ with

the local operator constraint
∑

m f
†
imfim = 1 at every site.

In the mean-field theory, this constraint is satisfied only in
the mean value:

∑
m〈f †

imfim〉 = 1. Although this procedure
breaks the local U(1) gauge symmetry of pseudofermions,
it can be justified because of the strong renormalization by
the Kondo effect at low temperature and at low energy.
For ordinary (single-channel) Kondo lattice, which has no
f -electron charge degrees of freedom, it has been established
that the hybridized bands between conduction (c) and localized
f electrons are formed at low temperatures to cause a
heavy-electron state [51]. Intuitively, this is understood by
considering the Kondo lattice as an effective low-energy model
of Anderson lattice which has f -electron charge degrees of
freedom. Namely, the Kondo interaction is written as J ∼
V 2/U with cf hybridization V and the Coulomb repulsion U ,
and J is renormalized by the Kondo effect as J → ∞, which
means U → 0 with V unchanged. Thus the system in the
ground state is effectively mapped onto the noninteracting one,
and charge degrees of freedom are effectively recovered. Also
for TCKL, we have numerically observed the hybridization
bands caused by the Kondo effect in symmetry broken phases
[29,52]. The present approximation can account for this
behavior qualitatively.

The interaction term is decoupled by the mean-field
approximation. This procedure is dependent on the spin [30]:

Jτ i · c
†
i↑mσmm′ci↑m′ → V δmm′f

†
imci↑m′ + H.c., (2)

Jτ i · c
†
i↓mσmm′ci↓m′ → V ei Q·Ri εmm′f

†
imc

†
i↓m′ + H.c., (3)

where we have defined the antisymmetric tensor ε = iσy and
the staggered ordering vector Q = (π,π, · · · ) with the lattice
constant being unity. The vector Ri represents the position
of site i. The mean-field potential V is determined by the
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self-consistent equation

V = −3J

4
〈c†i↑mfim〉 = 3J

4
〈ci↓mfim′ 〉εmm′ei Q·Ri . (4)

Here the middle part (diagonal quantity) and last part (off-
diagonal quantity) can be different in general. However, the
difference causes the channel symmetry breaking [30] and is
energetically unfavorable away from half-filling [29]. Hence
we take the same value as in Eq. (4), which corresponds to
the U(1) symmetry breaking without any other spontaneous
symmetry breaking. This point can also be justified because
the dynamical mean-field theory, which takes full account of
local correlation effects, shows the qualitatively same results
at low energies and low temperatures. For simplicity, in the rest
of this paper, we neglect the self-consistency of the equation,
and we take the mean-field V as an input parameter.

At half-filling, the Cooper pair is likely to be formed since
both the wave vectors k and −k − Q can be placed on the
Fermi surface. In fact, this pairing state can exist away from
half-filling, even though the direct pair between k and −k − Q
cannot be formed on the Fermi surface of conduction electrons.
This is because the condensation energy is gained not by the
pair between conduction electrons, but by the pair between
conduction electron and pseudofermion as shown in Eqs. (2)
and (3). The energy gain is an increasing function of a size of
Fermi surface, and hence the transition temperature becomes
maximum at half-filling [29].

From the expression of Eq. (4) one might think that
the present pairing is an EF pairing, since there is no
time dependence in the pairing amplitude. However, the
pseudofermions are nothing but virtual degrees of freedom,
and must be traced out to evaluate physical quantities. This is
because the fermionic operator fim is introduced to describe
the localized pseudospin and such fermion does not exist
in the original Hamiltonian. Accordingly, experimentally
measurable physical quantities should not directly include
these pseudofermions. The relevant order parameter is then
given by a time-dependent pairing amplitude composed only
of conduction electrons as seen below.

The mean-field Hamiltonian is now explicitly written down
as [30]

H MF
TCKL =

∑
ijσm

(−tij − μδij )c†iσmcjσm

+V
∑
imm′

(δmm′f
†
imci↑m′+εmm′ei Q·Ri f

†
imc

†
i↓m′+H.c.).

(5)

Here the phase of the pair amplitude is fixed. We can
also consider self energies from Green functions [30]. After
tracing out the pseudofermion degrees of freedom, the normal
and anomalous self energies (pair potential) for conduction
electrons are given by

	i(z) = V 2

z
, (6)

�i(z) = V 2ei Q·Ri

z
= V 2 cos( Q · Ri)

z
, (7)

respectively, where z = ε + iη for real frequencies (η is
positive infinitesimal) and z = iεn = (2n + 1)π iT for Mat-
subara frequencies. This expression explicitly demonstrates
the realization of staggered OF superconductivity: the pair
potential has only odd-frequency component. As seen in
Eq. (7) the staggered pairing is regarded as both “Fulde-Ferrell
(FF)” and “Larkin-Ovchinnikov (LO)” states [53,54]. While
the spatial modulation is slowly varying in FFLO pairing, the
spatial oscillation in TCKL is much faster than that in FFLO
state.

We show that the staggered property of pair amplitude can
be removed by the local gauge transformation only for σ =↓
defined by ci↓m → ci↓mei Q·Ri . With this the Hamiltonian is
transformed as

H MF
TCKL → H̃ MF

TCKL =
∑
ijσm

(−tij σ
z
σσ − μδij

)
c
†
iσmcjσm

+ V
∑
imm′

(δmm′f
†
imci↑m′ + εmm′f

†
imc

†
i↓m′ + H.c.). (8)

Thus the staggered nature is completely washed away for
infinite system. At the same time the sign of the hopping
of an electron with ↓ spin is reversed. While we have
emphasized that the staggered nature is important for the
thermodynamically stable OF superconductivity, the present
argument shows that it is not the only way. Namely the effect
from the staggered phase can be replaced by the sign difference
between hoppings of electrons with the two spins. With this
Hamiltonian, the normal and anomalous self-energies are
given, respectively, by

	i(z) = �i(z) = V 2

z
. (9)

Note that we now obtain the uniform OF state, with spin-
symmetry breaking.

III. COOPER PAIRS FORMED IN TCKL

Before we study junction systems, let us discuss the
symmetry of Cooper pairs formed in a bulk of TCKL. The
time-dependent pairing amplitude defined by Fkk′σσ ′mm′(τ ) =
−〈Tτ ckσm(τ )ck′σ ′m′ 〉 has the following structure [30]:

Fkk′σσ ′mm′ (τ ) = εσσ ′εmm′δ−k− Q,k′Fk(τ ), (10)

where Tτ is an imaginary-time ordering operator and O(τ ) =
eτH Oe−τH . The factors εσσ ′ , εmm′ and δ−k− Q,k′ in Eq. (10)
mean spin-singlet, orbital-singlet and staggered pairings,
respectively. From the Fermi-Dirac statistics we have the
relation Fkk′σσ ′mm′ (τ ) = −Fk′kσ ′σm′m(−τ ), which leads to

F−k− Q(τ ) = −Fk(−τ ). (11)

An explicit form of Fk(τ ) can be found in Ref. [30], but it is
not necessary in this paper.

With spatial modulations, EF and OF components should
be mixed due to a broken translational invariance. To see this
explicitly in TCKL, we define

F±
kk′σσ ′mm′(τ ) = Fkk′σσ ′mm′(τ ) ± Fkk′σσ ′mm′(−τ ), (12)

where F+ and F− correspond to the EF and OF pair
amplitudes, respectively. We can show that the exchange of
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TABLE II. Induced pairs in addition to the original OSEO+
ESOO pairs when symmetry breaking fields are present in TCKL.
The components in the different brackets are not identical in the
presence of the symmetry breaking fields. For example, the “spin”
row shows that the spin-up components ↑ 1 and ↑ 2 are different
from ↓ 1 and ↓ 2 due to the spin-symmetry breaking.

broken symmetry lifted components induced pairs

spin (↑ 1, ↑ 2),(↓ 1, ↓ 2) ETEO+OTOO
orbital (↑ 1, ↓ 1),(↑ 2, ↓ 2) ESEE+OSOE
spin-orbital (↑ 1, ↓ 2),(↑ 2, ↓ 1) OTEE+ETOE

the two wave vectors results in

F±
k′kσσ ′mm′(τ ) = ∓F±

kk′σσ ′mm′ (τ ). (13)

As seen from Eq. (13), the exchange symmetry of real space
is odd for EF pair and even for OF pair. For both spin and
orbital indices, the exchange symmetries are odd. Thus the
existing pairs in a bulk of TCKL are OSEO and ESOO (see also
Table I). We note that the primary component is OSEO which
arises from purely odd-frequency pair potential in Eq. (7), and
ESOO is a secondarily induced pair.

We comment also on induced pairs in addition to the
original pairs OSEO+ESOO when symmetry breaking fields
are present. If we apply the Zeeman field, it mixes up
the spin-singlet and spin-triplet. The induced pairs are then
ETEO+OTOO. In a similar manner, when we apply the
external orbital field, which corresponds to a uniaxial pressure,
the orbital-odd and even parts are mixed, which causes
ESEE and OSOE pairs. In addition we can also consider
another symmetry-breaking field. This is called spin-orbital
field, and breaks both spin and orbital symmetries but their
product remains unbroken. In this case the induced pairs are
OTEE+ETOE. These properties are summarized in Table II,
and are important to understanding the Josephson junction
discussed in Sec. V.

For transformed Hamiltonian given in Eq. (8), the OF pair
has a uniform character. In terms of the classification in Table I,
the transformed state belongs to uniform OSEO. Since the
spin symmetry is broken in this picture, the uniform pair with
ETEO is mixed at the same time. Thus the secondarily induced
pairs are transformed from ESOO to ETEO by the local gauge
transformation.

In the following we explain how the OF pairs in TCKL
give the ordinary diamagnetic Meissner effect, although the
odd-frequency superconductors have long been considered to
give a paramagnetic Meissner kernel. While the numerical
calculation [30] shows the diamagnetic response, here we
discuss it by focusing on the structure of the Meissner kernel
and do not enter the details. Following the derivation in
Ref. [30], only the anomalous part contributes to the Meissner
kernel Kxx which can be written in the form

Kxx = − 2e2T
∑

nkk′σσ ′mm′
vx

kv
x
k′

× F
†
kk′σσ ′mm′(−iεn)Fkk′σσ ′mm′ (iεn), (14)

where e is an electric charge, and we define the velocity
vx

k = ∂εk/∂kx along the x direction. We have also introduced

the “daggered” anomalous Green function by F
†
kk′σσ ′mm′(τ ) =

−〈Tτ c
†
kσm(τ )c†k′σ ′m′ 〉. From Hermiticity of the Hamiltonian, we

have the relation

F
†
kk′σσ ′mm′ (−iεn) = F ∗

k′kσ ′σm′m(iεn). (15)

This relation can be explicitly shown by using the spectral
representation. We assume the inversion symmetry in the
original lattice: ε−k = εk.

Let us consider the conventional spin-singlet s-wave (EF)
superconductor as a reference. The anomalous Green’s func-
tion has the structure in the form

F BCS
kk′σσ ′(iεn) = δ−k,k′εσσ ′FBCS

k (iεn). (16)

Here we do not have to know the detailed functional form of
FBCS

k . The orbital degree of freedom is not included here. The
Meissner kernel is then given by

Kxx = −2e2T
∑
nkσ

vx
kv

x
−k(ε2)σσ

∣∣FBCS
k (iεn)

∣∣2
. (17)

For the velocity, we have the relation vx
−k = −vx

k , which gives
the minus sign. In addition, another sign comes from the spin
factor (ε2)σσ = −1, and hence in total the electromagnetic
response is diamagnetic: Kxx < 0. On the other hand, if we
had s-wave spin-triplet OF superconductivity, there would be
no sign from spin-factor. Hence, in this case, the sign of the
Meissner kernel is reversed to give a paramagnetic response
(or sometimes called negative Meissner effect). For p-wave
superconductors, the minus sign comes from spatial part, i.e.,
FBCS

−k = −FBCS
k , instead of spin part.

Now we consider the kernel in TCKL. Substituting Eq. (10)
into Eq. (14), we obtain

Kxx = − 2e2T
∑
nkσm

vx
kv

x
−k− Q(ε2)σσ (ε2)mm

× F∗
−k− Q(iεn)Fk(iεn). (18)

Although the factors from spin and orbital parts give the minus
sign as (ε2)σσ = (ε2)mm = −1, the sign operates twice and
does not affect the total Meissner kernel. For the velocity,
we have vx

−k− Q = vx
k originating from εk+ Q + εk = 0, which

gives no minus sign in contrast to the above s-wave spin-
singlet superconductor. We further transform the expression
in terms of EF and OF pair amplitudes F±

k (iεn) originating
from Eqs. (10) and (12). Using the relation in Eq. (11), the
final expression is written as

Kxx = 2e2T
∑
nk

(
vx

k

)2
[|F+

k (iεn)|2 − |F−
k (iεn)|2]. (19)

Namely the OF pair (OSEO) gives a diamagnetic contribution
and the EF pair (ESOO) shows a paramagnetic response, which
is contrary to the standard wisdom. Although it is not trivial
to determine which parts give the dominant contribution, the
numerical calculation shows that the OF part is more dominant
to give the total diamagnetic response [30]. This fact implies
the importance of the OF pair in TCKL.

The characteristic diamagnetic response by OF pairs in
TCKL is closely related to vx

−k− Q = vx
k with finite center-

of-mass momentum Q. Otherwise we would have another
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minus sign from vx
−k = −vx

k and then the OF pair gives para-
magnetic contribution. This point has also been numerically
demonstrated in Ref. [30].

At the end of this section, let us also consider the Meissner
kernel in the modified TCKL given by Eq. (8). In this case, the
uniform pair amplitudes have the form

Fkk′σσ ′mm′ (τ ) = 1
2εmm′δ−k,k′[εσσ ′F−

k (iεn) + σx
σσ ′F+

k (iεn)].
(20)

The first and second terms in the right-hand side, respectively,
correspond to OSEO and ETEO pairs. The Meissner kernel
has the form

Kxx = − 2e2T
∑

nkk′σσ ′mm′
vx

kσ vx
k′σ ′

× F ∗
k′kσ ′σm′m(iεn)Fkk′σσ ′mm′ (iεn), (21)

instead of Eq. (14). The important point here is that the velocity
is dependent on spin: vk↑ = vk and vk↓ = −vk. Substituting
Eq. (20) into the kernel (21), we obtain the essentially same
result as Eq. (19) which shows diamagnetic response. While we
have no staggered phase here, the additional minus sign comes
from the spin-dependent velocity. Thus we have explicitly
demonstrated that the staggered nature is not the only way to
stabilize OF superconductivity.

IV. N/S JUNCTION

In this section, we consider a tunneling conductance in
normal metal (N)/superconductor (S) junction, where S is
a superconducting TCKL in one dimension. Tunneling con-
ductance can be calculated based on the Blonder-Thinkham-
Klapwijk theory [55], and a similar method is developed also
in the tight-binding system [56,57]. We choose the bulk wave
functions of TCKL satisfying a proper boundary condition and
calculate both the Andreev and normal reflections in this N/S
junction. For simplicity, we take the half-filled case (μ = 0) in
the following, and qualitatively same results can be obtained
for μ �= 0.

The mean-field Hamiltonian introduced in the previous
section can be decomposed into two sets of subsystems:
(ck1↑,c

†
−k−Q,2↓,fk↑) and (ck1↓,c

†
−k−Q,2↑,fk↓) with Q = π . We

focus on the former set. The eigenenergies Ekp are given by

Ek± =
εk ±

√
ε2
k + 8V 2

2
, Ek0 = εk, (22)

and the corresponding eigenoperators by αkp = ukpck1↑ +
vkpc

†
−k−Q,2↓ + wkpfk↑ (p = ±,0) where

uk± = −vk± = V√
E2

k∓ + 2V 2
, wk± = −Ek∓√

E2
k∓ + 2V 2

,

(23)

uk0 = vk0 = 1/
√

2, wk0 = 0, (24)

with εk = −2t cos k and |ukp|2 + |vkp|2 + |wkp|2 = 1. The
dispersion relation is illustrated in Fig. 1. When we take
another subsystems, the behaviors discussed in this section re-
main unchanged. We note that the gapless part αk0 contributes
to the diamagnetic Meissner kernel [30]. This is possible

k

Ek

E

2t

Ec
κ

κ~

FIG. 1. Schematic illustrations for energy dispersion relations in
one-dimensional TCKL given by Eq. (22).

because the Fermi surface is composed of both electron and
hole to form a Bogoliubov particle, as is distinct from an
ordinary metal.

Now we consider the N/S junction. The normal metal with
V = 0 and staggered OF pairing state with V �= 0 in Eq. (5)
are placed at the left- (i � −1) and right-hand (i � 1) sides,
respectively. When the (↑ ,1) conduction electron with the
energy E > 0 is injected from the left, the wave function in N
is written in the vector form as

ψN(i) =
(

1
0

)
eiqi + a

(
0
1

)
e−iqi + b

(
1
0

)
e−iqi . (25)

The results for E < 0 are obtained from the ones for E > 0
by using the particle-hole symmetry. The coefficients a and
b correspond to Andreev and normal reflection weights,
respectively. The wave vector q is determined by the condition
E = εq . Here we have only the two components because
the localized pseudofermions are decoupled in N. A part of
injected electron transmits into S, whose wave function is
written as

ψS(i) = c

⎛
⎝uκ0

vκ0

wκ0

⎞
⎠eiκi + d

⎛
⎝uκ̃+

vκ̃+
wκ̃+

⎞
⎠eiκ̃i . (26)

The wave vectors satisfy the relations Eκ0 = E and Eκ̃+ = E.
Here only the wave functions with positive group velocity
appear. We note that κ̃ becomes imaginary for E < −t +√

t2 + 2V 2 ≡ Ec, where it exists as a quickly damping
evanescent wave.

The N part at left and the S part at right are connected at
the origin by the following tunnel Hamiltonian:

HI = −γ
∑

i=−1,0

∑
σm

(c†iσmci+1,σm + H.c.)

+v
∑
σm

c
†
i=0,σmci=0,σm. (27)

Here we consider the barrier potential v at the edge of the
normal metal. The present setup of the system is schematically
illustrated in Fig. 2(a).
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(a)

(b)

FIG. 2. Schematic illustrations for one-dimensional (a) N/S and
(b) Josephson junction systems. Here the circles show the lattice
sites and the transfer integrals indicated by lines connect the nearest
neighbor sites. The on-site potential v is considered at the edge of the
normal metal in (a). The phases ϕL and ϕR of pair potentials between
left- and right-hand systems are taken as different in (b), and the
Josephson current is calculated at the two sites located at the center
of the chain.

We assume the sites for i � −1 and for i � 1 are described
by the wave functions ψN(i) and ψS(i), respectively. At the
sites i = −1, 0, and 1, we have the relations

EψN(−1) = γ̂ψ(0) + t̂ψN(−2) + Ĥloc,V =0ψN(−1), (28)

Eψ(0) = γ̂ψN(−1) + γ̂ψS(1) + v̂ψ(0), (29)

EψS(1) = γ̂ψ(0) + t̂ψS(2) + Ĥloc,V ψS(1). (30)

The diagonal matrices are made from Eqs. (5) and (27)
as t̂ = diag (−t,t), γ̂ = diag (−γ,γ ) and v̂ = diag (v, − v).
These matrices are 2×2 matrices, and they operate for the
upper two components of ψS, since pseudofermions have no
intersite hopping. We also define the matrix Ĥloc,V which
originates from the local part of Eq. (5). The function ψ(0)
cannot be described in general by either ψN or ψS due to
the presence of the potential v. To determine the coefficients
we need to have another relations. This situation is similar
to a usual quantum mechanics which requires smooth wave
functions at the boundary. We consider the extrapolated wave
functions ψN(1) and ψS(0), which satisfy the relations [56]

EψN(−1) = t̂ψN(0) + t̂ψN(−2) + Ĥloc,V =0ψN(−1), (31)

EψS(1) = t̂ψS(0) + t̂ψS(2) + Ĥloc,V ψS(1). (32)

By solving these equations, we can explicitly derive the
coefficients a, b, c, d and the wave function ψ(0) at the
interface.

The Andreev reflectance A, normal reflectance B, and
transmittances C,D of quasiparticles are defined by

A =
∣∣∣∣ ∂ε−q

∂(−q)

∣∣∣∣|a|2
/∣∣∣∣∂εq

∂q

∣∣∣∣, (33)

B =
∣∣∣∣ ∂ε−q

∂(−q)

∣∣∣∣|b|2
/∣∣∣∣∂εq

∂q

∣∣∣∣, (34)

C =
∣∣∣∣∂Ek0

∂k

∣∣∣∣|c|2
/∣∣∣∣∂εq

∂q

∣∣∣∣, (35)

D =
∣∣∣∣∂Ek̃+

∂k̃

∣∣∣∣|d|2
/∣∣∣∣∂εq

∂q

∣∣∣∣, (36)
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FIG. 3. Reflectances (A,B) and transmittances (C,D) as a func-
tion of energy. The transfer integrals at the junction are chosen as (a)
γ = t and (b) γ = 0.02t . The barrier potential is not included in this
figure.

which satisfy the sum rule of probability flow:

A + B + C = 1 for E < Ec, (37)

A + B + C + D = 1 for E > Ec. (38)

Note that the evanescent wave does not contribute to this sum
rule. From these quantities, we define the conductance by

σ (E) = 4e2

h
(1 + A − B), (39)

where the factor 4 originates from spin and orbital degrees
of freedom and h is the Planck constant. The condition A >

B means the existence of an excess current due to Andreev
reflection, or Cooper pair tunneling into the S part. We note
that in actual systems the energy is given by E = eV0 with
electronic charge e and bias voltage V0.

We first discuss the N/S junction for the v = 0 case.
Figure 3 shows the reflectances and transmittances defined
by Eqs. (33)–(36). We take the hybridization strength �0 ≡
V 2/t = 10−4t , and the gap is then Ec � �0. In the high
transmissivity limit with γ = t for E < Ec shown in Fig. 3(a),
a half of the injected electron transmits into the TCKL
superconducting state (C = 1/2). The other half is reflected
into the normal metal both as electron (B = 1/4) and hole
(A = 1/4). This behavior is in contrast to the ordinary s-wave
superconductor, where the perfect Andreev reflection (A = 1)
can be observed. For small γ case, the energy dependence
is modified while the behavior at low energy remains nearly
unchanged.

The presence of normal reflection in TCKL is related to the
form of the mean-field Hamiltonian given by Eq. (5). Namely,
the gapped structure in spectrum has the characters of both
hybridization (normal) gap and superconducting (anomalous)
gap. Consequently, both the normal and anomalous self ener-
gies are present as in Eqs. (6) and (7), which cause normal and
Andreev reflections simultaneously. Another characteristic
behavior different from ordinary superconductors is that the
transmittance into the superconducting TCKL is finite even at
zero energy. This is due to the presence of the Fermi surface
as shown in Fig. 1. Hence bound states, e.g., in S/N/S junction
or at vortex core are unlikely formed even in the clean limit at
low temperatures.
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FIG. 4. Conductances for the systems with (a) repulsive (v > 0)
and (b) attractive (v < 0) barrier potentials. We take γ = t .

Now we consider the situation with finite barrier potential
at the edge of the normal metal. The conductances are
shown in Fig. 4 for γ = t , where we normalize them by
the normal conductivity σN = 16(e2/h)t2γ 2/(t2 + γ 2)2. It is
characteristic that the peaked structure is observed for v > 0
while there is no such behavior for v < 0. The effect of the
sign of the barrier potential is remarkable near the gap edge
(E = �0), but it is irrelevant in the low-energy limit.

The solutions at low energies can be obtained in a simple
form. In the limit with E � �0 � t , we can use the relations
q = k � π/2 + E/2t , eik̃ � tE/2V 2 and uk̃+ � E/2V . We
then explicitly derive the reflectances for v � t as

A(E) ∼ 1

4

[
1 +

(
v

t

)
E

�0

]
, (40)

B(E) ∼ 1

4

[
1 −

(
v

t

)
E

�0

]
. (41)

The magnitude of the reflectance of Andreev reflection is
enhanced with increasing energy E for v > 0 and is diminished
for v < 0, while the normal reflection shows the inverse
behavior. Thus the results are sensitive to the setup at the
boundaries. By contrast, the conventional spin-singlet s-wave
superconductor does not show such a sign-sensitive behavior
for barrier potential, and there is no difference between
repulsive and attractive potentials. On the other hand, for
sufficiently large magnitude of potentials both with v > 0 and
v < 0, the line shape of the resulting conductance becomes
similar to that of the local density of states (LDOS) at the edge
as will be shown in Fig. 5(a). This nonzero value of σ/σN at
zero energy clearly characterizes the present superconducting
state as distinct from ordinary superconductors.

The present conductance in TCKL is also different from that
in spin-singlet d-wave or spin-triplet p-wave superconductor
junctions [58]. In these junctions, surface Andreev bound state
produces a zero bias conductance peak (ZBCP) [59,60] and the
magnitude of odd-frequency pairing amplitude is significant at
the surface [61,62]. On the other hand, in the present tunneling
spectroscopy of TCKL, the presence of the odd-frequency
pairing does not produce a clear ZBCP.

V. JOSEPHSON JUNCTION

The staggered OF pairing state of TCKL is coupled to the
other types of superconductors in Josephson junctions. We

consider the simple spin-singlet s-wave superconductivity
(ESEE), whose Hamiltonian is given by

Hs-wave = Hc + �
∑
iσσ ′

εσσ ′c
†
iσ c

†
iσ ′ + H.c. (42)

in one dimension. The conduction electron part is written as
Hc. As we mentioned in the introduction, there is a param-
agnetic OF superconductivity which is induced only at the
edge from EF superconductivity in bulk. Here as one of such
examples we take the spin-triplet px-wave superconductor
(ETOE). The Hamiltonian is explicitly written as

Hpx -wave = Hc + �
∑
iσσ ′

σx
σσ ′c

†
iσ c

†
i+1,σ ′ + H.c. (43)

When we make an edge with this Hamiltonian, the local
(s-wave) electron pair is generated at the edge. Since the
spin structure of this pair is a triplet or even with respect to
the spin exchange, the time dependence of the pair must be
odd (OTEE). This induced OF pair at the surface is closely
connected to the Andreev bound state [62].

The Josephson junction can be constructed by connecting
TCKL with one of the above superconductors. The Hamil-
tonian of this system is given by H = HL + HR + HI

each of which describes the semi-infinite left-hand system
(i � −1), semi-infinite right-hand system (i � 2) and the
middle junction part, respectively. We take the spin-singlet
s- or spin-triplet px-wave superconductors as HL and the
TCKL as HR. The Hamiltonian for the junction part is given by

HI = −
∑

σ

γ (c†i=0,σ ci=−1,σ + H.c.)

−
∑

σ

γI(c
†
i=0,σ ci=1,σ + H.c.)

+ v
∑

i=0,1,σ

c
†
iσ ciσ −

∑
σm

γ ′
σm(c†i=1,σ ci=2,σm + H.c.).

(44)

The present setup of the system in one dimension is
schematically illustrated in Fig. 2(b). The Josephson current
I is calculated at the center of this junction:

I = ieγI

∑
σ

〈c†i=0,σ ci=1,σ − c
†
i=1,σ ci=0,σ 〉. (45)

Here the current is well defined because the gauge-symmetry
breaking terms are not included at the junction region, and the
equation of continuity locally holds only by quasiparticle flow.

The Josephson current can be calculated by using the semi-
infinite Green function [63–65]. As an alternative method one
can approximate this by the Green function at the edge of
the finite chain. We take the number of sites as N = 105 in
the following. The semi-infinite left- and right-hand surface
Green functions ĝL

∞(z) and ĝR
∞(z) are explicitly derived from

the Hamiltonians (42) and (43), which can be written in a
Nambu matrix form with respect to spin/orbital index. The
local Green functions at the sites i = 0 and 1 without the
connection by γI are given by

ĝL
0 = [

z1̂ − γ̂ †ĝL
∞γ̂

]−1
, (46)

ĝR
1 = [

z1̂ − γ̂ ′ĝR
∞(γ̂ ′)†

]−1
, (47)
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FIG. 5. (a) LDOS and (b) local pair amplitude at the one-
dimensional edge of the TCKL. The same quantities are also plotted
for the spin-triplet px-wave superconductor in (c) and (d). The
parameters are chosen as �0 = V 2/t = 0.01t for (a) and (b) and
� = 0.01t for (c) and (d). The infinitesimal imaginary part η is taken
as η = 10−4t .

respectively. The indices 0 and 1 mean the site indices at the
junction part. The matrices γ̂ , γ̂I and γ̂ ′ are made from Eq. (44)
in a manner similar to N/S junction. Using these quantities, the
Green functions at the junction are given by

ĝ10 = ĝR
1 γ̂

†
I

[(
ĝL

0

)−1 − γ̂Iĝ
R
1 γ̂

†
I

]−1
, (48)

ĝ01 = ĝL
0 γ̂I

[(
ĝR

1

)−1 − γ̂
†
I ĝL

0 γ̂I
]−1

. (49)

The Josephson current defined in Eq. (45) is then calculated at
finite temperatures from ĝ10(z = iεn).

First we show the LDOS and local pairing amplitude
at the edge of the semi-infinite chain calculated from ĝL

∞
and ĝR

∞. Figures 5(a) and 5(b) show the LDOS proportional
to −Im ĝR

∞(ω + iη)11 and pair amplitude Re ĝR
∞(ω + iη)12,

respectively, for TCKL. The values are normalized by ρ0 =
1/2πt which is the density of states for a normal metal. In con-
trast to the conventional spin-singlet s-wave superconductor,
the LDOS is nonzero at the Fermi level. This is because the
half of the Bogoliubov particles in the OF pairing state have an
energy gap and the others still have the Fermi surface as shown
in Fig. 1. The frequency dependence of the real part of pair
amplitude (or anomalous Green function) shown in Fig. 5(b)
is odd with respect to real frequency. These behaviors are
similar to the ones in bulk [30]. Although here we cannot see
EF components, it appears as the intersite Green functions.

On the other hand, the LDOS at the edge of the spin-triplet
px-wave superconductor has the sharp peak as shown in
Fig. 5(c), which is known as a consequence of the Andreev
bound state [58–60]. This nontrivial localized edge state is
formed when the sign of the gap function felt by quasiparticle is
reversed at the reflection process. Figure 5(d) displays the local
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FIG. 6. Spatial dependence of LDOS at the Fermi energy. The
edge is located at i = 0. The parameters are same as the ones in
Fig. 5.

pair amplitude which is odd in frequency (OTEE), although in
bulk only the spin-triplet px-wave EF pair (ETOE) is formed
[14,62].

Let us discuss how the edge state is connected to the bulk
state. Figure 6 shows the spatial dependence of the LDOS at
the Fermi level. Here the LDOS has the spatial dependence in
the form

−Im ĝi(0 + iη)11/π =
{
ρA(i) for even i (A sublattice)
ρB(i) for odd i (B sublattice) ,

(50)

where ρA and ρB are smooth functions in space. This
oscillating behavior in a staggered manner originates from
half-filled situation with μ = 0, and the period of oscillation
changes for μ �= 0 reflecting the change of Fermi wave vectors.
As shown in Fig. 6(a), the LDOS at the edge of TCKL
is continuously connected to the bulk. A slow relaxation is
characteristic for the metallic state, and is consistent with the
presence of Fermi surface in superconducting state of TCKL.
(In numerical simulation, the healing length, which may be
physically regarded as mean free path, is given by ∼t/η with
small but finite η.) Hence the character of this zero-energy
state can be regarded as similar to the one in bulk TCKL. For
the spin-triplet px-wave superconductor shown in Fig. 6(b),
on the other hand, the zero-energy state located at the edge
vanishes quickly as we go into the bulk state. The edge state
has a different character from the bulk state in this case.

With these preliminaries, now we consider the Josephson
junction. In the following we consider the zero barrier potential
case (v = 0) unless explicitly stated otherwise. The phase
of the pair amplitude in the left-hand system is taken as
ϕL = ϕ, while it is set as zero in the right-hand system
as illustrated in Fig. 2. We begin with the spin-singlet s-
wave superconductor/TCKL junction. However, the Josephson
current completely vanishes in the present simple setup. As
explained later, the absence of Josephson current is related to
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the fact that symmetries of the induced pairs located at the
edges do not match between the left- and right-hand sides.

In order to have finite current, the simplest modification
without changing bulk properties is to change the tunnel matrix
at the interface as

γ ′
σm =

{
γ ′

1 for (σm) = (↑ 1),(↓ 2)
γ ′

2 for (σm) = (↑ 2),(↓ 1) (51)

with γ ′
1 �= γ ′

2. We call this the setup (i). Note that with this
tunnel matrix both the spin and orbital symmetries are broken
but their product is not broken (see also Table II). On the other
hand, the more realistic setup giving finite currents is to modify
the bulk nature of TCKL with keeping the tunnel matrix γ ′

σm =
γ ′. We consider the orbital field both for conduction electrons
and localized pseudospin, whose Hamiltonain is given by

Horb = −h
∑
iσm

σ z
mmc

†
iσmciσm − H

∑
im

σ z
mmf

†
imfim (52)

[called the setup (ii) in the following]. This term breaks
the orbital symmetry and experimentally corresponds to the
uniaxial pressure effect. When we make the junction in real
materials, some stress should be applied to the edge of TCKL.
Hence the effect of Eq. (52) will reasonably appear. For
simplicity we take H = h in the following, but this assumption
does not affect qualitative aspect of the results.

Figure 7 shows the phase ϕ dependence of Josephson
currents, which is normalized by I0 = eγI(|�|/γI)2. Let us
first discuss the case with the setup (i). As shown in Fig. 7(a),
the Josephson current has the functional form of I ∝ sin 2ϕ

for spin-singlet s-wave superconductor/TCKL junction. This
indicates that the first-order coupling vanishes in this case. The
Josephson current for the spin-triplet px-wave superconduc-

(a) s-wave/TCKL 
[setup (i)]

(b) px-wave/TCKL
[setup (i)]

(d) px-wave/TCKL
[setup (ii)]

(c) s-wave/TCKL
[setup (ii)]

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0  0.2  0.4  0.6  0.8  1

v=0
v=0.8t

v=-0.8t

-3

-2

-1

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

v=0
v=0.8t

v=-0.8t

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.2  0.4  0.6  0.8  1

v=0
v=0.8t

v=-0.8t

-30

-20

-10

 0

 10

 20

 30

 0  0.2  0.4  0.6  0.8  1

v=0
v=0.8t

v=-0.8t

FIG. 7. Relative phase ϕ dependencies of the Josephson current
I for (a) spin-singlet s-wave and (b) spin-triplet px-wave supercon-
ductors connected to TCKL with the setup (i) [γ ′

1 = 2γ ′
2 = t , H =

h = 0]. The results for the setup (ii) [γ ′
1 = γ ′

2 = t , H = h = 0.2t]
are shown in (c) and (d). The parameters are chosen as � = 0.01t ,
�0 = V 2/t = 0.01t , γ = γI = t , and T = 0.003t . The results for
finite barrier potentials (v = ±0.8t) are also shown.

tor/TCKL junction have the form I ∝ sin ϕ as seen in Fig. 7(b).
On the other hand, the results are changed for the setup (ii) as
shown in Figs. 7(c) and 7(d). The first-order coupling survives
for s-wave superconductor/TCKL junction, while it vanishes
in the junction using px-wave superconductor.

These behaviors can be qualitatively understood by con-
sidering the two-site model (zero-dimensional system) that
simulates the edges of right- and left- superconductors. Here
we focus on the case with the setup (ii), and the more detailed
analysis including the setup (i) is given in Appendix. The local
spin-singlet s-wave pairing field term is given by Eq. (42), and
the pairing field for TCKL by Eq. (5). We directly connect these
two sites by the matrix defined by the third line of Eq. (44).
The Josephson current is explicitly evaluated as

I = 4e(γ ′)2 sin ϕ T
∑

n

F L(iεn)
∑
mm′

F R
mm′(iεn) + O((γ ′)4)

(53)

within the lowest-order approximation. The left- and right-
anomalous Green functions are given by

F L(z) = |�|
z2 − |�|2 = F L(−z),

F R
mm′(z) = εmm′�m(

z + σ z
mmh − �m

)2 − �2
m

, (54)

where �m(z) = V 2/(z + σ z
mmH ) is the orbital-dependent hy-

bridization function. For h = H = 0 the anomalous Green
function of TCKL is a purely odd function with respect to
frequency, but the EF component mixes in the presence of
orbital fields. From these expressions, it is clear that the
Josephson current becomes zero if we take zero orbital field
(h = H = 0). With finite orbital field, on the other hand,
F L and F R have the same parity in frequency space, and
the first-order contribution to the Josephson current becomes
finite. Namely, the induced EF pair in TCKL contributes to the
Josephson coupling. For spin-triplet px-wave superconduc-
tor/TCKL junction, the Josephson coupling is expressed by
odd-frequency spin-triplet s-wave (OTEE) and odd-frequency
spin-singlet s-wave (OSEO) pairings. In this case, although
the parities in frequency match, the first-order coupling with
respect to γ ′ vanishes due to the different structures in spin.
Thus we obtain consistent results with numerical calculations
for a chain discussed above.

Next we discuss the above Josephson junction from
symmetry point of view. Originally, the OSEO+ESOO pairs
are present in TCKL without any field as discussed in Sec. III.
On the other hand, for spin-singlet s-wave superconductor the
ESEE pair and the induced OSOE pair are present at the edge.
In a similar manner, the ETOE and induced OTEE pairs exist
for spin-triplet px-wave superconductor. Thus no symmetries
match between TCKL and the other superconductors, and the
first-order coupling in Josephson junction becomes zero. In
fact, this vanishing current persists to higher orders. To explain
this behavior, we must specify the component of orbital-triplets
in s- and px-wave superconductors. In the present setup, since
we do not include the orbital degrees of freedom explicitly,
the triplet component is identified as Tz = 1 or −1 and no
Tz = 0 component. Thus the mismatch between orbital-singlet
in TCKL and orbital-triplet (Tz = ±1) in s- and px-wave
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superconductors gives exactly zero current in the present
system.

With the tunnel matrix in the setup (i), the spin-
orbital symmetry breaking is present and the induced
pair is OTEE+ETOE according to Table II. Hence
the first-order Josephson coupling survives for px-wave
superconductor/TCKL junction, but it vanishes for s-wave
superconductor/TCKL case. Similarly, with uniaxial pressure
in the setup (ii), the ESEE+OSOE pairs are newly generated
at the edge of TCKL. Hence the first-order contribution to
Josephson current becomes nonzero for TCKL/spin-singlet
s-wave superconductor junction. Since we rely only on the
symmetry of Cooper pairs, the above discussion should be
applicable also to systems in higher dimensions.

Finally, we make a comment on the effect of a barrier
potential v at the junction part (i = 0,1). The phase ϕ

dependence of the currents with repulsive and attractive
potentials are shown in Fig. 7. The functional forms are not
influenced qualitatively by the sign of v, since the barrier
potential does not create any new species of Cooper pairs.
In addition, we do not observe the difference between v > 0
and v < 0. This behavior is consistent with results in the N/S
junction: the sign of the barrier potentials does not affect the
behaviors in the low-energy limit as shown in Fig. 4.

VI. SUMMARY AND DISCUSSION

We have investigated the staggered OF pairing realized
in TCKL from a symmetry point of view. Although the
pair potential is purely odd function with respect to time
(frequency), both OF and EF components of pair amplitude
are present due to the absence of translational invariance
even in the bulk. The existing pairs in bulk are identified
as primary OSEO and secondary ESOO pairs. We have
also shown that a local gauge transformation changes the
staggered state into uniform one with spin-symmetry broken
state. The mechanism for the diamagnetic Meissner effect
has been explained by focusing on the symmetry of pair
amplitude and structure of the Meissner kernel. In addition
to time/spin/space/orbital structures of Cooper pairs, the finite
center-of-mass momentum, which affects the sign of the
velocity, plays an important role for diamagnetic response.

The N/S junction has been constructed and it is shown
that the normal reflection is always present in addition to
Andreev reflection. This behavior is in contrast with ordinary
BCS superconductors, where only the Andreev reflection is
observed for high transmissivity limit. The difference lies in the
presence of normal self energy in the superconducting state of
TCKL. Due to a finite density of states, the transmittance into
TCKL is also nonzero even at low energies. Hence the bound
state at e.g. superconducting vortex core is unlikely to be
formed. When we consider the barrier potential at the interface,
the conductance shows the difference between attractive and
repulsive potentials, although no such difference is observed
in conventional superconductors.

We have also investigated the Josephson junction using
Green function formalism. We connect TCKL both with
spin-singlet s-wave and spin-triplet px-wave pairing states.
Here a uniaxial pressure effect is considered for TCKL,

which is naturally expected at the edge of real materials.
For TCKL/spin-singlet s-wave superconductor junction, the
relative phase ϕ dependence of Josephson current becomes
I ∝ sin ϕ. It becomes I ∝ sin 2ϕ for TCKL/px-wave super-
conductor junction, where no first-order coupling appears.
These Josephson currents can be qualitatively described by a
zero-dimensional system. The symmetry of the pairs induced
at the edge is a key ingredient to understand the current phase
relations of Josephson junctions.

TCKL studied in this paper is regarded as a low-energy
effective model that describes two localized f -electrons in
Pr3+ or U4+ ion coupled to conduction electrons [50]. One
of the candidates is UBe13 [66,67], where non-Fermi liquid
behavior is found and the two-channel Kondo effect has
been considered as its possible origin [68]. The point-contact
spectroscopy measurements have been performed, and ZBCP
originating from surface Andreev bound state is observed
[69,70], while there is another interpretation that the effect
of Andreev reflection does not enter in the conductance of
UBe13 [71]. If the presence of ZBCP by Andreev reflection
is established, then it indicates that our theory is not directly
applied to this compound. In this case, further studies with
realistic complications are necessary to be compatible with the
experiments, although in this work we only focus on OF prop-
erties using simple setup. On the other hand, recently Pr-based
compounds such as PrIr2Zn20, PrTi2Al20 and PrV2Al20 have
also been attracting attention due to the observed two-channel
Kondo behavior and superconductivities [72–75]. To clarify
transport properties of these superconducting compounds,
information from junction systems will be useful.
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APPENDIX: TOY-MODEL ANALYSIS
FOR JOSEPHSON JUNCTION

We consider the simple two-site model given by H =
HL + HI + HR where

HL = �c
†
L↑c

†
L↓ + H.c., (A1)

HI = −
∑
σm

γ ′
σmc

†
Lσ cRσm + H.c., (A2)

HR = − h
∑
mσ

σ z
mmc

†
RσmcRσm − H

∑
m

σ z
mmf

†
RmfRm,

+ V
∑
mm′

(δmm′f
†
RmcR↑m′ + εmm′f

†
Rmc

†
R↑m′ ) + H.c.

(A3)

Here, HL and HR simulate the edge of the s-wave supercon-
ductor and TCKL, respectively.

224511-10



TUNNELING AND JOSEPHSON EFFECTS IN ODD- . . . PHYSICAL REVIEW B 93, 224511 (2016)

The tunnel matrix is given by Eq. (51), and the current is
simply defined by

I = ie
∑
σm

γ ′
σm〈c†Lσ cRσm − c

†
RσmcLσ 〉. (A4)

We can solve this model analytically, which helps us under-
stand the basic properties of Josephson junction. We define the
Green function

G(τ ) =
⎛
⎝−〈Tτ cL↑(τ )c†R↑1〉

−〈Tτ c
†
L↑(τ )c†R↑1〉

⎞
⎠. (A5)

The first component of this vector is relevant to current. Its
Fourier transformation G(z) satisfies the equation

G = −ĝσ̂ zγ ′
1Ĝ1c + ĝσ̂ z

∑
m

(γ ′
m)2Ĝmσ̂ zG, (A6)

where c =t (1,0) is the constant vector and

ĝ = 1

z2 − |�|2
(

z |�|eiϕ

|�|e−iϕ z

)
, (A7)

Ĝm = 1(
z + σ z

mmh − �m

)2 − �2
m

×
(

z − σ z
mmh − �m σz

mm�m

σ z
mm�m z + σ z

mmh − �m

)
, (A8)

�m = V 2/
(
z + σ z

mmH
)
. (A9)

The other contributions to current can also be calculated in
a similar manner. From the above equations, we can obtain
Eq. (53).

For the special case with γ ′
1 = γ ′

2 = γ ′ and H = h = 0,
namely without any symmetry breaking fields, the Green
function matrix

∑
m Ĝm becomes diagonal. Correspondingly,

the anomalous parts in the second term of the Eq. (A6), which
is relevant to higher-order Josephson couplings, are effectively
dropped from the equation and the Josephson coupling terms
vanish in general. This behavior is consistent with the results
discussed in Sec. V.
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