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Superconductivity in magnetic multipole states
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Stimulated by recent studies of superconductivity and magnetism with local and global broken inversion
symmetry, we investigate the superconductivity in magnetic multipole states in locally noncentrosymmetric
metals. We consider a one-dimensional zigzag chain with sublattice-dependent antisymmetric spin-orbit
coupling and suppose three magnetic multipole orders: monopole order, dipole order, and quadrupole order.
It is demonstrated that the Bardeen-Cooper-Schrieffer state, the pair-density wave (PDW) state, and the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state are stabilized by these multipole orders, respectively. We show
that the PDW state is a topological superconducting state specified by the nontrivial Z2 number and winding
number. The origin of the FFLO state without macroscopic magnetic moment is attributed to the asymmetric
band structure induced by the magnetic quadrupole order and spin-orbit coupling.
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I. INTRODUCTION

Emergent phenomena in electron systems lacking inversion
symmetry have received a lot of attention in recent condensed
matter physics [1,2]. In such noncentrosymmetric systems,
antisymmetric spin-orbit coupling (ASOC) entangles various
internal degrees of freedom: for instance, spin, orbital, sub-
lattice, and multipole. Recent studies uncovered exotic super-
conducting [3–6] and multipole phases [7–14] induced by the
sublattice-dependent ASOC in locally noncentrosymmetric
systems. In this paper, we clarify nontrivial interplay between
the superconductivity and the multipole order by investigating
the superconductivity in the magnetic multipole states.

Even-parity multipole order has been intensively researched
mainly in the field of heavy-fermion systems. For instance, the
electric quadrupole and magnetic octupole order have been
identified in various materials [15]. Furthermore, the electric
hexadecapole moment [16,17] and magnetic dotriacontapole
moment [18] have been proposed as plausible candidates for
the hidden order parameter in the heavy-fermion superconduc-
tor (SC) URu2Si2.

On the other hand, recent theories [7–13] pointed out the
odd-parity multipole order which may occur in the locally
noncentrosymmetric systems as a result of the antiferro
alignment of the even-parity multipole in the unit cell. For
instance, the “antiferromagnetic moment” in the unit cell
induces a magnetic quadrupole moment [8,12], and the
antiferro stacking of the local electric quadrupole moment
in bilayer Rashba systems is regarded as an electric octupole
order [9]. As a consequence of the spontaneous global inver-
sion symmetry breaking, intriguing magnetoelectric responses
occur in the ferroic odd-parity multipole states [7–14]. Recent
experiments detected a signature of the odd-parity multipoles
in Sr2IrO4 [14,19]. Inspired by these works, we study exotic
superconductivity induced by the odd-parity multipoles and
even-parity multipoles.

Intensive theoretical studies in these years have shown
that noncentrosymmetric SCs are platforms of various
nonuniform superconducting states [1]. In the globally
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noncentrosymmetric systems an infinitesimal magnetic
field stabilizes a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [20,21], which is called the helical superconducting
state [22–24]. Agterberg and Kaur discussed the stability of
the magnetic-field-induced FFLO (helical) state in Rashba
SCs [25]. However, it has been shown that the FFLO order
parameter is hidden in vortex states [26,27].

In the locally noncentrosymmetric systems, the pair-
density-wave (PDW) state [3] or the complex stripe state [4]
may be stabilized, depending on the direction of magnetic
field. These states are not hidden in the vortex states, but a
magnetic field higher than the Pauli-Chandrasekhar-Clogston
limit is required. Reference [3] has shown that the PDW state
is stable in multilayer SCs having “weak interlayer coupling”
and “moderate spin-orbit coupling” when the paramagnetic
depairing effect is dominant. Then, the phase of the supercon-
ducting order parameter modulates layer by layer. Therefore,
the PDW state is an odd-parity superconducting state although
the spin-singlet Cooper pairs lead to the condensation. Since
the odd-parity SC is a platform of topological superconducting
phases [28], topologically nontrivial properties of the PDW
state are implied. Indeed, the PDW state in 2D multilayer
systems has been identified as being a crystal-symmetry-
protected topological superconducting state [5,6].

The previous theories introduced above discussed the
superconducting state in the magnetic field. In this paper, we
investigate the superconductivity caused by the cooperation of
various magnetic multipoles and sublattice-dependent ASOC.
Since this is an early theoretical study for those systems,
we treat a one-dimensional (1D) zigzag chain (Fig. 1) as a
minimal model. Indeed, the zigzag chain is a simple crystal
structure lacking the local inversion symmetry. Although the
superconducting long-range order does not occur in strictly 1D
systems because of divergent fluctuations [29], we investigate
superconducting states with the use of the mean-field (MF)
theory (Sec. II B) by allowing the long-range order. This
treatment is appropriate for our purpose to pave a way to realize
exotic superconductivity in a broad range of systems. Indeed,
our results are justified in quasi-1D coupled zigzag chains, and
some of the results will give new insight on more complicated
three-dimensional (3D) systems with broken local inversion
symmetry.
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FIG. 1. Crystal structure of the 1D zigzag chain. (a) Projection
along the a axis. (b) Projection along the c axis. Blue and red circles
represent the a and b sublattices, respectively. The hopping integrals
are shown by t1 and t2.

We show that the PDW state is stabilized in the magnetic
dipole state [Fig. 2, panel (D)] as in the multilayer systems,
while the conventional Bardeen-Cooper-Schrieffer (BCS) state
is robust in the magnetic monopole state [Fig. 2, panel (M)].
Topologically distinct properties of the PDW state are specified
by the Z2 and Z topological invariants. The Majorana end
state is associated with nontrivial topological invariants. In this
sense, the odd-parity PDW state is regarded as a realization
of the Kitaev superconducting wire [30] without p-wave
Cooper pairs. Ferromagnetic heavy-fermion SCs UGe2 [31],
URhGe [32], and UCoGe [33] have crystal structure consisting
of zigzag chains, and they are likely to show the odd-parity
superconductivity. Therefore, these compounds are candidates
for the PDW state.

Furthermore, we show that the FFLO state is stable in
the magnetic quadrupole state [Fig. 2, panel (Q)] without
macroscopic magnetization. The magnetic quadrupole order
occurs in several materials. For example, 1-2-10 compounds
such as CeRu2Al10 show magnetic quadrupole order in zigzag
chains [34–37]. Because any external magnetic field is not
required for the FFLO state, the orbital effect harmful for
the FFLO state [26,27] is completely eliminated. Thus, the
magnetic quadrupole state is a good platform realizing the
FFLO state which has been searched for more than 50
years [38–41].
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FIG. 2. Magnetic structure in the magnetic (M) monopole state,
(D) dipole state, and (Q) quadrupole state. Projection along the c

axis is shown in (M) and (Q), meanwhile along the a axis is shown
in (D). Black arrows show the ferromagnetic or “antiferromagnetic”
moments in the unit cell.

This paper is constructed as follows. In Sec. II A, we
introduce a model for conduction electrons affected by a
sublattice-dependent ASOC, magnetic multipole order, and
an s-wave attractive interaction. Then, we analyze the model
with the use of the MF theory in Sec. II B. We illustrate
the monopole, dipole, and quadrupole order in Sec. III A.
The symmetry and degeneracy of the band structure are
elucidated by clarifying the symmetry protection. In Sec. III B,
we introduce the order parameter of superconducting states
discussed in this paper. We show that the BCS state is robust
against the magnetic monopole order in Sec. IV. On the other
hand, the dipole order stabilizes the PDW state as shown in
Sec. V A. The PDW state is identified to be a topological
superconducting state in a certain parameter regime (Sec. V B).
Section VI gives the result for the FFLO state induced by the
quadrupole order despite the absence of the external magnetic
field. It is shown that the center-of-mass momentum of Cooper
pairs arises from the asymmetric band structure. Finally, a brief
summary and discussion are given in Sec. VII.

II. MODEL AND FORMULATION

A. Model

First, we introduce a model describing superconductivity
coexisting with magnetic order in a 1D zigzag chain,

H =
∑
k,s

[ε(k)a†
ksbks + H.c.]

+
∑
k,s

[ε′(k) − μ][a†
ksaks + b

†
ksbks]

+ α
∑
k,s,s ′

g(k) · σ̂ ss ′ [a†
ksaks ′ − b

†
ksbks ′ ]

−
∑
k,s,s ′

[ha · σ̂ ss ′a
†
ksaks ′ + hb · σ̂ ss ′b

†
ksbks ′ ]

+ 1

N

∑
k,k′,q

Va(k,k′)a†
k+ q

2 ↑a
†
−k+ q

2 ↓a−k′+ q

2 ↓ak′+ q

2 ↑

+ 1

N

∑
k,k′,q

Vb(k,k′)b†
k+ q

2 ↑b
†
−k+ q

2 ↓b−k′+ q

2 ↓bk′+ q

2 ↑, (1)

where aks and bks are the annihilation operators of electrons
with spin s =↑ , ↓ on the sublattices a and b, respectively.
The wave vector k is directed to the crystallographic c axis.

The first and second terms are the inter-sublattice and intra-
sublattice hopping terms including the chemical potential μ,
respectively. The kinetic energy ε(k) and ε′(k) are obtained
by taking into account the nearest- and next-nearest-neighbor
hoppings,

ε(k) = −2t1 cos
k

2
, (2)

ε′(k) = −2t2 cos k. (3)

The crystal structure and hopping integrals, t1 and t2, are
illustrated in Fig. 1.

The third term is a sublattice-dependent ASOC which
originates from the violation of local inversion symmetry [8].
The g vector is approximated as g(k) = sin kẑ. We choose the
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crystallographic a axis as the quantization axis of the spin,
namely, ẑ = â.

The fourth term expresses the molecular field of magnetic
monopole, dipole, and quadrupole order. This term causes
various superconducting phenomena, which are demonstrated
in this paper. We assume that the Néel temperature TN is much
larger than the superconducting transition temperature TC. In
this situation, the fluctuation of multipole order is ignorable be-
low TC. Effects of superconductivity on the magnetic order are
also ignorable because the energy scale of superconductivity is
much smaller than the magnetic interaction energy. Therefore,
our assumption for fixed magnetic order is justified.

In order to study superconductivity in this system, we
introduce an attractive interaction by the fifth and sixth terms in
Eq. (1), where N is the number of sites in each sublattice. For
simplicity, we assume s-wave superconductivity by adopting
the momentum-independent pairing interaction,

Va(k,k′) = Vb(k,k′) = −V. (4)

Although the spin-triplet p-wave order parameter is induced
by the ASOC through either attractive or repulsive interaction
in the p-wave channel, we neglect the p-wave order parameter.
It has been shown that the admixed p-wave component
does not change the phase diagram unless the p-wave
attractive interaction is comparable to or larger than the s-wave
interaction [42].

The purpose of this paper is to clarify exotic superconduct-
ing phases stabilized by the spin-orbit coupling and magnetic
multipole order. For this purpose, we treat a “deep” zigzag
chain t1/t2 < 1 and assume a moderate ASOC α/t2 = 0.4 so
that the ASOC plays important roles. The attractive interaction
is chosen to be V/t2 = 1.5 unless explicitly mentioned
otherwise.

B. Mean-field theory

Second, we investigate the superconducting state by means
of mean-field (MF) theory. The interaction terms are approxi-
mated as follows:

− V

N

∑
k,k′,q

a
†
k+ q

2 ↑a
†
−k+ q

2 ↓a−k′+ q

2 ↓ak′+ q

2 ↑ + (a → b)

�
∑

k

[�∗
aa−k+ q

2 ↓ak+ q

2 ↑ + H.c.] + N

V
|�a|2 + (a → b), (5)

by introducing the order parameter

�a = −V

N

∑
k′

〈a−k′+ q

2 ↓ak′+ q

2 ↑〉,

�b = −V

N

∑
k′

〈b−k′+ q

2 ↓bk′+ q

2 ↑〉. (6)

Thus, in this paper we assume a single-q state. The conden-
sation energy is optimized with respect to the center-of-mass
momentum q of Cooper pairs. In the BCS state and PDW
state, q = 0 as we introduce in Sec. III B. We also examine the
q 
= 0 state corresponding to the FFLO state [20,21]. The order
parameters of the superconducting states are summarized in
Sec. III B.

We here describe the MF Hamiltonian in a matrix form. We
define k+ ≡ k + q

2 , k− ≡ −k + q

2 , and the vector operator

Ĉ
†
k ≡ (a†

k+↑,a
†
k+↓,b

†
k+↑,b

†
k+↓,ak−↑,ak−↓,bk−↑,bk−↓). (7)

Then, we obtain

HMF = 1

2

∑
k

Ĉ
†
kĤ8(k)Ĉk + W0, (8)

with

W0 = −
∑

k

2[ε′(k−) − μ] + N

V
|�a|2 + N

V
|�b|2. (9)

The explicit form of the 8 × 8 matrix Ĥ8(k) is given by

Ĥ8(k) =
(

Ĥ4(k+) �̂4

�̂
†
4 −Ĥ T

4 (k−)

)
, (10)

where

Ĥ4(k±) =
(

Ĥ
(a)
2 (k±) − μσ̂0 ε(k±)σ̂0

ε(k±)σ̂0 Ĥ
(b)
2 (k±) − μσ̂0

)
, (11)

�̂4 =

⎛
⎜⎝

0 �a 0 0
−�a 0 0 0

0 0 0 �b

0 0 −�b 0

⎞
⎟⎠, (12)

Ĥ
(l)
2 (k±) =

{
ε′(k±)σ̂0 + α sin k±σ̂z − ha · σ̂ (l = a),
ε′(k±)σ̂0 − α sin k±σ̂z − hb · σ̂ (l = b). (13)

We carry out Bogoliubov transformation with using the
unitary matrix Û8(k):

HMF = 1

2

∑
k

Ĉ
†
kÛ8(k)︸ ︷︷ ︸

�̂
†
k

Û
†
8 (k)Ĥ8(k)Û8(k)︸ ︷︷ ︸

Ê8(k)

Û
†
8 (k)Ĉk︸ ︷︷ ︸

�̂k

+W0

= 1

2

∑
k

�̂
†
kÊ8(k)�̂k + W0, (14)

where Ê8(k) is a diagonal matrix,

Ê8(k) =
(

Ê4(k) 0̂
0̂ −Ê4(k)

)
. (15)

From Eq. (6), the order parameters are obtained by

�a = −Va

N

∑
k′

〈[�̂†
k′Û

†
8 (k′)]6[Û8(k′)�̂k′]1〉

= −Va

N

∑
k′

8∑
n=1

[Û †
8 (k′)]n6[Û8(k′)]1nf ([Ê8(k′)]nn), (16)

�b = −Va

N

∑
k′

8∑
n=1

[Û †
8 (k′)]n8[Û8(k′)]3nf ([Ê8(k′)]nn), (17)

where f (E) is the Fermi distribution function. Equations (16)
and (17) are MF gap equations to be solved numerically.

The Bogoliubov quasiparticle operator �̂
†
k and energy Ê4(k)

are expressed with using the indices (s,l), where s represents
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the pseudospin s =↑ , ↓ and l is the pseudosublattice index
l = a,b:

�̂
†
k = (γ †

k↑a,γ
†
k↓a,γ

†
k↑b,γ

†
k↓b,γ−k↑a,γ−k↓a,γ−k↑b,γ−k↓b), (18)

Ê4(k) =

⎛
⎜⎝

Ek↑a 0 0 0
0 Ek↓a 0 0
0 0 Ek↑b 0
0 0 0 Ek↓b

⎞
⎟⎠. (19)

Then, the MF Hamiltonian HMF and free energy � are
obtained as

HMF =
∑
k,s,l

Eksl

(
γ
†
kslγksl − 1

2

)
+ W0, (20)

� = − 1

β

∑
k,s,l

{
ln(1 + e−βEksl ) + βEksl

2

}
+ W0, (21)

where β = 1/T is the inverse temperature.

III. MAGNETIC MULTIPOLE ORDER AND EXOTIC
SUPERCONDUCTIVITY

A. Magnetic and electronic structure in magnetic
multipole states

We investigate the superconductivity in three magnetic
multipole states: monopole, dipole, and quadrupole states.
Before going to the main issue, here we introduce the magnetic
structure corresponding to the multipole order. The symmetry
protection on the single-particle band structure is also clarified.
Later we attribute the origin of exotic superconductivity to the
unusual band structure.

First, we illustrate the magnetic structure in Fig. 2. When
the magnetic moment is “antiferromagnetic” in the unit cell
and directed along the x axis, two antiferromagnetic moments
are regarded as a magnetic monopole [Fig. 2, panel (M)]. On
the other hand, when the antiferromagnetic moment is parallel
to the z axis, a magnetic quadrupole moment is induced in
the unit cell [Fig. 2, panel (Q)]. It has been shown that the
magnetic quadrupole order is stabilized by the sublattice-
dependent ASOC [12]. Indeed, the magnetic structure in 1-2-
10 compounds resembles magnetic quadrupole order [34–37].
This magnetic structure is also induced by the electric field
applied along the c axis as a result of the magnetoelectric
effect [8]. The magnetic monopole and quadrupole are odd-
parity multipoles leading to the spontaneous global inversion
symmetry breaking. Furthermore, we also examine the conven-
tional “ferromagnetic” order which is called magnetic dipole
order in this paper [Fig. 2, panel (D)]. The crystal structure of
ferromagnetic SCs UGe2 [31], URhGe [32], and UCoGe [33]
is composed of coupled zigzag chains [43]. Thus, our study
may be relevant to these ferromagnetic SCs.

Next, we clarify the single-particle energy spectrum. The
band structure is obtained by the normal part Hamiltonian,
which is expressed by using the vector operator D̂

†
k =

(a†
k↑,a

†
k↓,b

†
k↑,b

†
k↓),

H (0) =
∑

k

D̂
†
kĤ4(k)D̂k. (22)

-4
-3
-2
-1
 0
 1
 2
 3

-3 -2 -1  0  1  2  3

(N-1) t1 / t2 = 0.5 

E
n(

k)
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-1
 0
 1
 2
 3
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FIG. 3. Band structure of 1D zigzag chain in (N) normal state, (M)
magnetic monopole state, (D) magnetic dipole state, and (Q) magnetic
quadrupole state. The left panels show the results for t1/t2 = 0.5,
while t1/t2 = 0.1 in the right panels. In (M), (D), and (Q), we choose
the molecular field h = 0.4 and hAF = 0.4.

Without any loss of generality, we choose the chemical
potential μ to be zero in Ĥ4(k) [Eq. (11)]. The itinerant
magnetic multipole states are studied by taking into account
the molecular field ha and hb as follows:

(ha,hb) =

⎧⎪⎨
⎪⎩

(hAFx̂, − hAFx̂) in (M)onopole order,

(hŷ,hŷ) in (D)ipole order,

(hAFẑ, − hAFẑ) in (Q)uadrupole order.

(23)
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TABLE I. Band structure in the magnetic multipole states.

(i) Symmetry (ii) Twofold degeneracy

Monopole yes yes
Dipole yes no
Quadrupole no yes

Then we show the energy band in Fig. 3. In the absence of the
magnetic multipole order, namely, (ha,hb) = (0,0), two bands
are expressed by the following dispersion relation [Fig. 3,
panels (N-1) and (N-2)]:

En(k) = ε′(k) ±
√

ε(k)2 + α2 sin2 k. (24)

Each band has a twofold degeneracy which arises from the spin
and sublattice degrees of freedom entangled by the sublattice-
dependent ASOC. This electronic structure is similar to the
bilayer Rashba system studied in the previous study [44].
On the other hand, we obtain the dispersion relation in the
magnetic multipole states,

En(k) =

⎧⎪⎨
⎪⎩

ε′(k) ±
√

ε(k)2 + α2 sin2 k + (hAF)2 in (M),
ε′(k) ±

√
[ε(k) ± h]2 + α2 sin2 k in (D),

ε′(k) ±
√

ε(k)2 + (α sin k − hAF)2 in (Q).
(25)

Table I shows two main features of the band structure:
(i) symmetry with respect to the inversion of momentum,
k → −k, and (ii) twofold degeneracy. Below, we explain these
features in terms of symmetry in multipole states.

First, in the magnetic monopole state, the collinear an-
tiferromagnetic order spontaneously breaks the inversion
symmetry (P symmetry) as well as the time-reversal symmetry
(T symmetry) in spite of the globally centrosymmetric crystal
structure. However the combined PT symmetry is preserved
since the normal part Hamiltonian H (0) is invariant under the
successive operations of time-reversal and spatial inversion.
This combined operation satisfies (PT )2 = −1 which ensures
a twofold degeneracy in the band structure as proved by the
Kramers theorem. Furthermore, the system transforms under
the twofold rotation as follows:

Rπ
x Ĥ4(k)

(
Rπ

x

)−1 = Ĥ4(−k), (26)

Rπ
z Ĥ4(k)

(
Rπ

z

)−1 = Ĥ4(−k) in (M). (27)

From Eq. (26) or (27), we understand the symmetric en-
ergy dispersion, En(k) = En(−k). Second, in the magnetic
quadrupole state, the band structure preserves a twofold
degeneracy owing to the very same reason as the monopole
state. However, the quadrupole state is neither invariant under
the twofold rotation nor the mirror reflection with respect to
the zx plane which transforms the wave number k to −k:

Rπ
x Ĥ4(k)

(
Rπ

x

)−1 
= Ĥ4(−k), (28)

Rπ
z Ĥ4(k)

(
Rπ

z

)−1 
= Ĥ4(−k), (29)

MzxĤ4(k)M−1
zx 
= Ĥ4(−k) in (Q). (30)

Thus, all the symmetries protecting the symmetric band struc-
ture are broken, and indeed, the band structure is asymmetric

as shown in Fig. 3, panels (Q-1) and (Q-2). Finally, the band
structure is symmetric in the magnetic dipole state since the
ferromagnetic order preserves the P symmetry. Because of the
violation of the T symmetry the combined PT symmetry is
broken, and therefore, the twofold degeneracy is lifted.

We furthermore show the symmetry protection on the
additional degeneracy at k = ±π . For example, two spinful
bands are degenerate at k = ±π in the normal state. This
fourfold degeneracy is protected by the PT symmetry,
inversion-glide symmetry PGyz, and mirror symmetry Mxz.
We here prove the fourfold degeneracy at the inversion-glide-
invariant momentum k = ±π from relations, (PGyz)2 = −1,
{PGyz,PT } = 0, and {PGyz,Mxz} = 0 [45]. Because of the
inversion-glide symmetry, the normal part Hamiltonian at
k = ±π is block diagonalized and decomposed into the ±i

subsectors. The PT symmetry is preserved in each subsector
as ensured by the anticommutation relation between PGyz

and PT . Thus, Kramers pairs are formed in each subsector.
The anticommutation relation betweenPGyz andMxz ensures
that a Kramers pair in the i subsector is degenerate with
another Kramers pair in the −i subsector. Thus, the fourfold
degeneracy is protected by symmetry. The mirror symmetry is
broken in the monopole and quadrupole states, while the PT
symmetry is broken in the dipole state. Therefore, the fourfold
degeneracy is lifted in the multipole states.

Additional degeneracy is also seen at k = ±π in the
dipole state because the normal part Hamiltonian preserves the
magnetic-glide symmetry T Gyz which is a combined symme-
try of the glide symmetry and the time-reversal symmetry. This
antiunitary symmetry ensures the extended Kramers theorem
proving the degenerate single-particle states at k = ±π . The
twofold degeneracy is also protected in the magnetic dipole
state with h along the x axis. Then, the magnetic-screw
symmetry T Sπ

y protects the degeneracy at k = ±π .

B. Superconductivity

We here summarize the order parameter of three supercon-
ducting states which may be stabilized in our model: the BCS
state, the PDW state, and the FFLO state. In the conventional
BCS state, Cooper pairs have the zero in-plane center-of-mass
momentum, that is, q = 0. The order parameter is uniform
between sublattices, (�a,�b) = (�,�). The center-of-mass
momentum is also zero in the PDW state. The sign of the order
parameter, however, changes between sublattices, (�a,�b) =
(�,−�). In the FFLO state, the center-of-mass momentum of
Cooper pairs is finite (i.e., q 
= 0). In the symmetry considered
in this paper, the Cooper pair condensation occurs at a single
q, although the double-q state is stable in the conventional
FFLO state [46]. Therefore, in real space the order parameter
is expressed as �(y) = �eiqy , which is usually called “Fulde-
Ferrell state” [20] or “helical state” [22–25]. As is the case in
the BCS state, the order parameter is uniform in sublattices,
(�a,�b) = (�,�).

IV. BCS STATE ROBUST AGAINST MAGNETIC
MONOPOLE ORDER

First we discuss the superconductivity coexisting with
magnetic monopole order [see Fig. 2, panel (M)]. Figure 4
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FIG. 4. T -hAF phase diagram in the magnetic monopole state for
(a) t1/t2 = 0.5,μ = 1, (b) t1/t2 = 0.1,μ = 1, and (c) t1/t2 = 0.1,

μ = −2. The BCS state is stable in the whole superconducting phase.
In the pink shaded area the PDW state is metastable.

shows T -hAF phase diagrams for several sets of parameters.
It is shown that the conventional BCS state is stable in the
whole phase diagram independently of the parameters μ and
t1/t2. For t1/t2 = 0.5 [Fig. 4(a)], the PDW state is not even a
metastable state. On the other hand, for t1/t2 = 0.1 [Figs. 4(b)
and 4(c)] the PDW state is metastable in a certain parameter
regime, indicated by a negative condensation energy whose
absolute value is smaller than that of the BCS state. The phase
diagram for μ = 2 is similar to that for μ = 1, although we

do not show in Fig. 4. Thus, the BCS state is stable in the
monopole state, irrespective of the number of Fermi surfaces.
We confirmed that the in-plane center-of-mass momentum q

of the Cooper pair is zero in the whole parameter region.

V. PDW STATE BY MAGNETIC DIPOLE ORDER

Second, we study the superconductivity in the magnetic
dipole state [see Fig. 2, panel (D)]. This situation is realized
when the superconductivity occurs in the ferromagnetic
metal. Indeed, such ferromagnetic superconductivity occurs in
uranium-based heavy-fermion SCs UGe2 [31], URhGe [32],
and UCoGe [33], which have a zigzag crystal structure [43].
Although the magnetic dipole moment along the y axis is
assumed, the x axis is equivalent to the y axis in the spin space
since we consider a purely 1D model. Note that both the x and
y axes are perpendicular to the g vector.

A. Phase diagram

Figure 5 shows the T -h phase diagram for t1/t2 = 0.1.
The BCS state is stable in a weakly polarized region (small
h region), while the PDW state is stable in a large parameter
range with high spin polarization (large h region). The phase
boundary of the BCS and PDW states is the first-order phase
transition line. This phase diagram is similar to that obtained
in the two-dimensional bilayer Rashba SCs [3].

The mechanism of the PDW state in a spin-polarized state
has been discussed in Ref. [3]. When the inter-sublattice
hopping is smaller than the spin-orbit coupling, a substantial
condensation energy is gained in the PDW state although
at zero effective magnetic field (h = 0) it is smaller than
the condensation energy of the BCS state which gains
the inter-sublattice Josephson coupling energy. Because the
paramagnetic depairing effect is suppressed in the PDW state
by the spin-orbit coupling [44], at large h the PDW state may
be more stable than the BCS state which is fragile against the
paramagnetic effect.

 0

 0.1

 0.2

 0.3

 0.4

 0  0.005  0.01  0.015  0.02

h

T

t1 / t2 = 0.1, μ = 1.0, V / t2 = 1.0

PDW

BCS

FIG. 5. T -h phase diagram in the magnetic dipole state for t1/t2 =
0.1 and μ = 1. We assume the attractive interaction V/t2 = 1.0. In
the pink (cyan) shaded area the PDW (BCS) state is a metastable
state.
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The zigzag chain is composed of the “a sublattice” and
the “b sublattice,” and thus t1 is the inter-sublattice hopping.
When the system has a small t1/t2 and a moderate ASOC, the
PDW state is stabilized in a large parameter regime as shown
in Fig. 5. As the inter-sublattice hopping t1/t2 is increased,
the PDW state is suppressed. For our choice of parameters,
the PDW state is not stable for t1/t2 > 0.7. Thus, in the
zigzag chain the PDW state may be stable even at a moderate
t1/t2. This is partly because the inter-sublattice coupling is
represented by ε(kF) rather than t1, and ε(k) disappears at k =
±π . As we mentioned in Sec. III A, the fourfold degeneracy
at k = ±π is protected by the inversion-glide symmetry PGyz

and mirror symmetry. This additional degeneracy comes from
the sublattice degree of freedom. Thus, the disappearance of
ε(±π ) is ensured by the nonsymmorphic crystal symmetry.
When the Fermi momentum is close to k = ±π , the PDW
state is favored owing to a small ε(kF).

As shown in Fig. 5, the PDW state may be stable at μ = 1,
where the four energy bands cross the Fermi level [see Fig. 3,
panel (D-2)]. Similarly, the PDW state is stable when two or
three energy bands have the Fermi surface. We confirmed that
the in-plane center-of-mass momentum q of the Cooper pair is
zero in any case. When the chemical potential is in the vicinity
of the band edge and only one band crosses the Fermi level,
however, the PDW state is not stable.

B. Topological superconductivity

In this subsection, we show that the PDW state may be a
1D topological superconducting state specified by the winding
number and the Z2 invariant. A gauge transformation, a

†
k →

a
†
ke

ik/2, is carried out so that the Bogoliubov–de Gennes (BdG)
Hamiltonian is periodic in the Brillouin zone. This unitary
transformation is useful for the discussion of topological
properties in nonsymmorphic systems [47].

First, we elucidate the winding number. In a ferromagnetic
state with magnetic moment along the x or y axis, the system
is invariant under the magnetic mirror reflection which is a
successive operation of time reversal T = iσ̂yK and mirror
reflection with respect to the xy plane Mxy = iσ̂z. K is
the complex-conjugate operator. Thus, the BdG Hamiltonian
derived from Eq. (10) preserves the pseudo-time-reversal
symmetry:

T ′
8 Ĥ8(−k)T ′

8
† = Ĥ8(k), (31)

where

T ′
8 =

(
T ′ 0̂
0̂ T ′∗

)
, (32)

with T ′ = MxyT . Furthermore, the particle-hole symmetry is
implemented in the BdG Hamiltonian:

CĤ8(−k)C† = −Ĥ8(k), (33)

where C = τxK and τx is the Pauli matrix in the particle-hole
space. Combining the pseudo-time-reversal symmetry with the
particle-hole symmetry, we can define the chiral symmetry,

{�,Ĥ8(k)} = 0, (34)

-4
-3
-2
-1
 0
 1
 2
 3

-3 -2 -1  0  1  2  3

νBDI = 0  

νBDI = -1 

E
n(

k)

k

FIG. 6. Chemical potential dependence of the winding number
νBDI for t1/t2 = 0.1, h = 0.40, and � = 0.01. The winding number
is nontrivial, νBDI = −1, when the chemical potential lies in the pink
shaded region. The blue dashed lines represent the chemical potential
at which the winding number is ill defined owing to the gap closing.

with � = −CT ′
8 . The chiral symmetry ensures that the 1D

winding number

ω = 1

4πi

∫ π

−π

dk Tr[q̂(k)−1∂kq̂(k) − q̂†(k)−1∂kq̂
†(k)] (35)

is aZ topological invariant [6,48–53] when a finite gap is open.
The 4×4 matrix q̂(k) is obtained by carrying out a unitary
transformation

V̂ Ĥ8(k)V̂ † =
(

0̂ q̂(k)
q̂†(k) 0̂

)
, (36)

where V̂ is a unitary matrix which diagonalizes � [54].
The BdG Hamiltonian Ĥ8(k) belongs to the symmetry

class BDI because (T ′
8 )2 = +1 and C2 = +1. Therefore, the

winding number ω is identified to be an integer topological
invariant of the BDI class [55–57], νBDI. Figure 6 shows the
chemical potential dependence of the winding number together
with the energy bands shown in Fig. 3, panel (D-2). We obtain
a finite winding number, νBDI = −1, indicating topologically
nontrivial properties when one or three bands cross the Fermi
level. Otherwise, the winding number is trivial, νBDI = 0.

A nontrivial winding number may ensure the Majorana end
state according to the index theorem [49]. Indeed, Fig. 7 shows
the Majorana end states. The energy spectrum εn is obtained in
the open boundary condition, and the nth energy eigenvalue is
arranged in ascending order ε0 < ε1 < · · · . We see the single
Majorana end state protected by the nontrivial winding number
νBDI = −1 in Figs. 7(b) and 7(d).

This single Majorana end state is robust against perturba-
tions, even when the magnetic mirror symmetry is broken.
Indeed, the PDW state with νBDI = −1 is a strong topological
SC specified by the Z2 invariant in the D class [55–57]. The
parity of the winding number is equivalent to the Z2 invariant,
ν, which is explicitly expressed by the Berry phase

W [C] = 1

2π

∑
n∈occupied

∮
C

dk i〈un(k)|∂k|un(k)〉. (37)
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FIG. 7. Energy spectra in the PDW state with open boundaries.
We assume the ferromagnetic molecular field h = 0.4 and (a) μ =
−1.00, (b) μ = −1.50, (c) μ = −2.00, and (d) μ = −2.50. The
number of Fermi surface is 4, 3, 2, and 1. The other parameters
are t1/t2 = 0.1 and (�a,�b) = (0.1, − 0.1). The red points indicate
the Majorana end states. The number of Majorana states is doubled
by the two boundaries.

C represents a time-reversal-invariant (TRI) closed path in the
Brillouin zone, and |un(k)〉 is an eigenstate of Ĥ8(k). Since
the BdG Hamiltonian preserves the particle-hole symmetry,
the Berry phase is quantized as e2πiW [C] = ±1 [58]. Since
the TRI closed path C = {k ∈ [−π : π )} is unique in the 1D
system, we have a single Z2 invariant e2πiW [C] = (−1)ν . In
particular, the normal part Hamiltonian preserves the spatial
inversion symmetry, PĤ4(k)P† = Ĥ4(−k), and the parity of
the gap function is odd, P�̂4PT = −�̂4, in the PDW state.
Then, the Z2 invariant has been evaluated as

(−1)ν =
∏
n

sgn En(�1) sgn En(�2), (38)

where �1 and �2 are the TRI momenta, �1 = 0 and �2 =
π [28]. From this representation, the Z2 invariant is nontrivial
when the odd number of bands cross the Fermi level. This
condition coincides with the situation with νBDI = −1. Thus,
the PDW state is identified to be a 1D Z2 topological SC in
the D class.

An intuitive explanation for the topological superconduc-
tivity is obtained by looking at the band representation of the
BdG Hamiltonian,

Û (k)†Ĥ8(k)Û (k) �
4⊕

n=1

(
En(k) �n(k)
�∗

n(k) −En(−k)

)
, (39)

where Û (k) = (Û4(k) 0̂
0̂ Û∗

4 (−k)
), and Û4(k) is a unitary matrix

which diagonalizes Ĥ4(k). The order parameter in the band
basis approximately has the p-wave form, �n(k) ∼ sin k. In
this sense, the situation is similar to the Kitaev chain [30] for
the spinless p-wave SC. Although the superconductivity is
induced by the conventional pairing interaction in the s-wave

spin-singlet channel, the effective p-wave superconducting
state similar to the Kitaev chain is realized by the inter-
sublattice phase modulation in the order parameter.

Topological superconducting phases in 1D noncentrosym-
metric systems have been clarified theoretically [59,60], and
recently experimental indications for the Majorana state have
been obtained in semiconductors [61,62] and ferromagnetic
atomic chains [63]. In contrast to these systems requiring
the inversion-symmetry breaking, our research proposes the
centrosymmetric topological superconductivity caused by the
spontaneously formed odd-parity PDW order parameter.

Now we briefly comment on the zero energy end states
in Fig. 7(c). When the two bands cross the Fermi level,
we see the two Majorana end states in spite of the trivial
winding number and Z2 number, νBDI = ν = 0. These end
states may be protected by another symmetry. However, the
crystal symmetry other than the mirror symmetry is broken
at the boundary. Thus, we leave the topological protection of
these end states for a future study.

Finally, we propose two experimental tests to identify
the PDW state. (i) As shown above, the Majorana end state
is generated at the end of the chain in the PDW state.
The Majorana end state may be recognized as a zero bias
conductance peak of quasiparticle tunneling spectroscopy in
a normal metal/SC junction [64]. (ii) In the external magnetic
field, vortices appear in the real 3D materials. Then, the
local quasiparticle density of states in the PDW state is quite
different from that in the BCS state. The zero-energy vortex
bound state exists in the PDW state, although it is absent
in the BCS state due to the Zeeman effect [65]. Therefore,
the scanning tunneling microscopy/spectroscopy experiments
may identify the PDW state by measuring the local density of
states.

VI. FFLO STATE BY MAGNETIC QUADRUPOLE ORDER

Finally we clarify the superconductivity in the magnetic
quadrupole state [see Fig. 2, panel (Q)]. We assume t1/t2 = 0.5
in what follows.

As we showed in Sec. III A, energy bands are asymmetric
in the magnetic quadrupole state [see Fig. 3, panel (Q-1)]
in sharp contrast to the normal and other multipole states.
Roughly speaking, the upper (lower) band is distorted into
the positive (negative) momentum direction for parameters in
Fig. 3. This unusual band structure may stabilize an exotic
superconducting state. Indeed, we show that the FFLO state is
stabilized even at zero magnetic field.

A. T -μ phase diagram

We address the T -μ phase diagram for two values of
hAF in Fig. 8. The Cooper pairs have finite center-of-mass
momentum in the whole superconducting phase owing to the
asymmetric band structure. The asymmetry results from
the symmetry of magnetic quadrupole state, and therefore, the
FFLO state is stable irrespective of the parameters unless the
ASOC vanishes. When α = 0, the band structure is symmetric
and the BCS state is stable in a large parameter region.

Let us discuss the phase diagrams in details. We notice
common features in Figs. 8(a) and 8(b). Critical temperature
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FIG. 8. T -μ phase diagram in the magnetic quadrupole state for
(a) hAF = 0.12 and (b) hAF = 0.20. The center-of-mass momentum
of Cooper pairs q is represented by color. The dashed line shows a
first-order phase transition line, while the dash-dotted line shows a
crossover line.

is rather higher for μ � −1 than for μ � −1. This is because
the density of states (DOS) is large in the two-band region,
μ � −1. The critical temperature is furthermore enhanced
in the vicinity of the band edge (μ � −3, − 1,2) because
of the large DOS. Figure 8 also reveals differences between
the “small quadrupole moment region” (hAF = 0.12) and the
“large quadrupole moment region” (hAF = 0.20). In Fig. 8,
we specify the FFLO state with q > 0 (q < 0) by “FFLOq>0”
(“FFLOq<0”). While the center-of-mass momentum q

continuously changes in the small quadrupole moment region,
the FFLOq<0 state is separated from the FFLOq>0 state by
the first-order phase transition line in the large quadrupole
moment region [Fig. 8(b)]. The negative q in the small μ

region comes from the shift of the lower energy band to the
negative momentum side. The sum of the two Fermi momenta
in the lower band is negative. On the other hand, the upper
band favors the FFLOq>0 state, and thus the FFLOq<0 state
competes with the FFLOq>0 state in the two-band region.
As expected, the center-of-mass momentum increases with μ

across the Lifshitz transition. We show the μ and T dependence
of q by color in Fig. 8. We see the continuous change of q in the
small quadrupole moment region [Fig. 8(a)], while we observe
a discontinuous jump at μ � −0.20 in the large quadruple
moment region [Fig. 8(b)].

B. Condensation energy and DOS

In order to elucidate what mainly determines the q in the
FFLO state, we look at the condensation energy �� = �S −
�N, which is the difference of free energy between in the
superconducting state and in the normal state. The free energy
in the normal state is obtained by just assuming �a = �b = 0.

Figures 9(a) and 9(b) show the condensation energy as a
function of q in the small quadrupole moment region. Only
one valley appears and its bottom moves to the positive-q side
with increasing μ. Thus, the optimal q which minimizes the
condensation energy continuously varies.

On the other hand, we find three valleys in the large
quadrupole moment region. In Fig. 9(d), the left and right
valleys lead to a negative condensation energy, while the
middle valley shows a positive condensation energy indicating
a metastable state. When we decrease the chemical potential
to be μ = −0.5 [Fig. 9(c)], the condensation energy takes
a minimum at q = −0.026 which adiabatically changes to
the bottom of the middle valley by increasing μ. This means
that the FFLOq<0 state corresponds to the middle valley
while the FFLOq>0 state corresponds to the right valley. In
other words, the center-of-mass momentum q discontinuously
changes because the valley structure appears in the free energy.
On the other hand, the valley structure is hidden and only the
middle valley has a local minimum in the small quadrupole
moment region.

Next we show the DOS of quasiparticles in order to
clarify the superconducting states corresponding to the three
valleys. At both μ = −0.5 and μ = 0, the DOS shows a
superconducting gap near ω = 0 in the “middle-valley state”
[Figs. 9(e) and 9(f)]. The narrower gap at μ = 0 than at
μ = −0.5 indicates that the “middle-valley state” is not likely
to be stable at μ = 0. Indeed, Fig. 9(d) shows that the
middle-valley state is metastable and the “right-valley state”
is stable. In contrast to the middle-valley state, approximately
half of the DOS is residual at ω = 0 in the right-valley state
[Fig. 9(f)]. Thus, it is implied that although both energy bands
contribute to the superconductivity in the middle-valley state,
the upper (lower) band mainly causes the superconductivity
in the right-valley (left-valley) state. In other words, the lower
band is weakly superconducting and gives rise to the large
residual DOS in the right-valley state. This view is consistent
with the fact that the center-of-mass momentum q in the
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FIG. 9. (a) and (b) The q dependence of the condensation energy �� = �S − �N for a small quadrupole moment hAF = 0.12 at μ = 1
and μ = 2, respectively. (c) and (d) �� for a large quadrupole moment hAF = 0.20 at μ = −0.5 and μ = 0, respectively. The red points show
the optimal q which minimizes the condensation energy. (e) and (f) Superconducting DOS ρS(ω) normalized by the normal state DOS at the
Fermi level ρN(0) for the parameters in (c) and (d), respectively.

right-valley state almost coincides with the sum of the Fermi
momentum in the upper band. Thus, the band-dependent FFLO
state is stabilized by a large magnetic quadrupole moment.
Quasiparticles on the Fermi surface of the upper band form
Cooper pairs, while the mismatch of q and distorted lower band
suppresses the superconducting gap in the lower band. On the
other hand, in the middle-valley state the superconductivity
almost equivalently affects the two bands. Then, q is slightly
negative because the distortion of the lower band is larger than
that of the upper band.

Finally, we suggest an experimental test for the FFLO
state. The measurement of Josephson current in a FFLO
SC/BCS SC junction may identify the single-q FFLO state.
Since Josephson coupling vanishes in this junction due to the
spatial modulation of the order parameter in the FFLO SC, the
junction should carry a small Josephson current. On the other
hand, in an applied transverse uniform current in the BCS SC,
a peak in the Josephson current may be found [66]. The peak
serves as an indicator of the FFLO state.

VII. SUMMARY AND DISCUSSION

In this paper, we investigated the superconductivity in
the magnetic multipole states. In locally noncentrosymmetric
systems with sublattice degree of freedom, not only the
conventional magnetic dipole moment but also some odd-
parity multipole moments may be polarized. Ferroic multipole
states with crystal momentum qM = 0 were considered in the
1D zigzag chain as a minimal model. Exotic superconducting
states were elucidated as follows.

The conventional BCS state is robust against the existence
of “antiferromagnetic moments” in the unit cell which is
regarded as a magnetic monopole. Meanwhile in the dipole
order the odd-parity spin-singlet PDW state is stabilized. The
situation in the latter corresponds to uranium-based heavy-
fermion SCs UGe2 [31], URhGe [32], and UCoGe [33]. It has
been thought that the spin-triplet superconductivity occurs in
these materials. However, our result opens a new possibility
that the ferromagnetic superconductivity in these materials is
attributed to the PDW state. From the theoretical point of view,
the PDW state is identified to be a topological superconducting
state when one of the bands is fully spin polarized. We
showed a nontrivial winding number in the class BDI, as
well as nontrivial Z2 invariant in the class D. The nontrivial
topological numbers ensure the single Majorana end state.

Interestingly, the magnetic quadrupole order combined with
the spin-orbit coupling makes the band structure asymmetric.
As a result of the asymmetric energy band, the FFLO state is
stabilized without spin polarization. This finding paves a new
way for searches of the FFLO state [46]. Although previous
studies researched SCs with a large Maki parameter [38–41],
the external magnetic field applied to stabilize the FFLO state
induces vortices which may obscure the FFLO state. On the
other hand, the FFLO state caused by the magnetic quadrupole
order is free from the vortex. Thus, a conclusive evidence for
the FFLO state may be obtained by searching the supercon-
ductivity coexisting with the magnetic quadrupole order.

The band-dependent properties of the FFLO state were
clarified as follows. When the magnetic quadrupole moment
is small, the upper and lower energy bands are almost equally
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superconducting (if they cross the Fermi level). Then, the
center-of-mass momentum of the Cooper pair is small and
continuously increases with chemical potential. On the other
hand, the center-of-mass momentum discontinuously changes
in the large quadrupole moment region. The origin of this
first-order phase transition in the FFLO state is attributed
to the band-dependent FFLO superconductivity. While the
two bands are almost equally superconducting at small
chemical potentials, only the upper band mainly causes the
superconductivity at large chemical potentials. The two-band
electronic structure is not an artifact of the 1D zigzag chain,
but is a consequence of the nonsymmorphic crystal symmetry
protecting the band degeneracy at the Brillouin zone boundary.

Therefore, the band-dependent FFLO superconductivity may
be realized in various nonsymmorphic crystals hosting the
magnetic quadrupole order.
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