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Calculation of the magnetic anisotropy with projected-augmented-wave methodology
and the case study of disordered Fe1−xCox alloys
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The magnetic anisotropy energy of tetragonally distorted disordered alloys Fe 1−xCox is calculated by
two different virtual crystal approximation methods and an averaged supercell method within the projected-
augmented-wave (PAW) methodology and the magnetic force theorem. The details of the spin-orbit coupling
implementation in the PAW methodology are given. We compare our results to the recent coherent potential
approximation (CPA) studies, results of full potential calculations, and to the available experiments.
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I. INTRODUCTION

The magnetic anisotropy energy (MAE) of transition metal
intermetallics and alloys is a key property determining the
materials performance as a hard magnet in modern electronic
memory devices [1–5]. With the development of highly
efficient band structure codes, extensive efforts have been
made to calculate the magnetic anisotropy within the the local
spin density approximation (LSDA) [6] and the corresponding
generalized gradient approximation in various bulk, surface,
and multilayer materials. In transition metal systems, where
the magnitude of the anisotropy is much smaller than in the
rare-earths materials, the MAE appears only at second and
higher orders of the perturbation expansion over the spin-orbit
coupling (SOC) imposing stringent requirements for the com-
putational accuracy. First-principles calculations of the MAE
within a relativistic band structure theory based on LSDA
were successful in d-transition metal based ferromagnetic
multilayers [7,8], surfaces and overlayers [9], low-dimensional
nanostructures [10], and adatoms on surfaces [11]. In these
systems, the MAE is two or three orders of magnitude larger
than in the bulk elemental transition metals Fe, Ni, and Co. For
elemental cubic metals or hcp Co, where the MAE magnitude
is of the order of few μeV/atom, the results of first-principles
relativistic simulations are still very controversial [7,12].
However, the LSDA predicts the anisotropy well in ordered
bulk alloys and in intermetallics where the anisotropy of the
magnetic 3d-metal is enhanced due to for example lower
crystal symmetry (e.g., tetragonal distortion) and/or another
heavy element with strong SOC (e.g., Pt, Bi, etc.).

One of the most prominent examples of the systems
where the MAE has been extensively studied in recent
decades are the binary Fe-Co alloys. Since Burkert et al. [13]
have shown from a first-principles calculation a very strong
anisotropy enhancement in these alloys due to a tetragonal
distortion, a number of studies has been done to investigate
thin films of this material (see recent paper by Şaşıoğlu
et al. [14], and references therein). On the basis of the
calculations utilizing the coherent potential approximation
(CPA) [15] for disordered alloys in the framework of the
atomic sphere approximation (ASA), it has been shown that
the MAE in tetragonal FeCo significantly reduces as atomic
disorder increases. Neise et al. [16] investigated the magnetic
anisotropy in the distorted Fe-Co alloys using a full potential

methodology in the framework of the linear combination of
atomic orbitals (FPLO) methods [17]. To model the atomic
disorder they used an averaging of the magnetic anisotropy
calculated over the supercells with random distributions of Fe
and Co atoms for three alloy compositions: Fe1−xCox with
x = 0.5, x = 0.625, and x = 0.75. They also found that the
atomic disorder leads to a decrease of the magnetic anisotropy
compared to the atomically ordered alloys. Both methods
CPA [15] and supercell averaging [16] predict the maximal
MAE for the tetragonal distortion c/a around 1.25 and for the
Co concentration at compositions around x = 0.6. In both
studies it has been demonstrated that the simple standard
virtual crystal approximation (VCA) gives a rather high value
of the MAE compared to the more refined methods of treatment
of the chemical disorder.

Although the CPA is often very successful for the descrip-
tion of the electronic structure of the disordered alloys, it is
an effective medium theory that does not destroy the local
symmetry around a given atomic site. Since the SOC on a
given-atomic site may strongly depend on the symmetry of
the local atomic environment of Fe or Co, the MAE might
be very sensitive on how alloy averaging is performed. The
investigation of this topic is one of the issues of the present
work. To compare the CPA-ASA results with averaging over
the supercells more thoroughly, we investigate in this work
a full range of Fe1−xCox alloy compositions from x = 0 to
x = 1. We will also compare the supercell averaging results for
the MAE with the standard VCA [18–22] and a variant recently
proposed [23]. This variant is not necessarily an improvement,
but rather a convenient description within the PAW method,
since it eliminates the need to construct pseudopotentials for
every considered concentration. In the remaining text we will
refer to this method as VCA2.

Another issue of the present work is motivated by the
growing number of MAE calculations for various transition
metal systems performed within the PAW methodology with
spin-orbit coupling as implemented in the Vienna ab initio
simulation package (VASP) [24]. In this paper we provide a
description of the details of the SOC implementation in the
VASP code. The tetragonally distorted Fe-Co alloys are ideal
examples to check the VASP accuracy for MAE calculations
by comparing to other methodologies and experimental results.
In particular, it has been found in Refs. [13,15] that the VCA
overestimates the MAE and this is fully confirmed in the
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present study using both VCA, as well as VCA2 calculations.
Using random supercells, we also obtain excellent agreement
with previously performed CPA calculations [15]. This proves,
hopefully beyond doubt, that magnetic anisotropy calculations
are feasible within the PAW methodology and compare very
well with other methods.

II. SPIN-ORBIT COUPLING IMPLEMENTATION
IN THE PAW METHOD

In the projector-augmented-wave (PAW) method of Blöchl
[25], the one-electron orbitals ψn are written as

|ψn〉 = |ψ̃n〉 +
∑

i

(|φi〉 − |φ̃i〉)〈p̃i |ψ̃n〉. (1)

The pseudo (PS) orbitals ψ̃n are the variational quantities of
the PAW method, and are expanded in plane waves. φi and φ̃i ,
the all-electron (AE) and pseudo partial waves, are additional
local basis functions that are nonzero only within the PAW
spheres centered at the atomic sites. In the interstitial region
between the PAW spheres, therefore, the true one-electron
orbitals ψn are identical to the PS orbitals ψ̃n. Inside the
PAW spheres the PS orbitals are only a computational tool
and a bad approximation to the true wave functions, since not
even the norm of the true wave function is reproduced. In all
practical implementations of the PAW method, the AE partial-
waves φi are chosen to be solutions of the spherical (scalar
relativistic) Schrödinger equation for a nonspinpolarized atom
at a specific energy εi in the valence regime, and for a
specific angular momentum li . The PS partial waves φ̃i are
equivalent to their AE counterparts outside a core radius rc and
match continuously onto φi inside this radius. The projector
functions p̃i are constructed to be dual to the PS partial
waves, i.e.,

〈p̃i |φ̃j 〉 = δij . (2)

For a comprehensive description of the implementation of the
PAW method in VASP we refer the reader to the paper of
Kresse and Joubert [26] and references therein.

It is straightforward to show that within the PAW method
any (semi)-local operator O acting on ψn can be written as a
pseudo operator Õ that acts on the PS orbitals ψ̃n [25]:

Õ = O +
∑
ij

|pi〉(〈φi |O|φj 〉 − 〈φ̃i |O|φ̃j 〉)〈pj |. (3)

The spin-orbit coupling (SOC) acts predominantly in the
immediate vicinity of the nuclei and we assume its effects
to be negligible outside of the PAW spheres. Under that
assumption and provided that the PS partial waves φ̃i form
a complete basis set within the PAW spheres, the first and third
terms on the right-hand-side of Eq. (3) cancel exactly, and the
contribution of the SOC to the PAW Hamiltonian reduces to
the AE one-center contribution:

H̃SO =
∑
ij

|pi〉〈φi |HSO|φj 〉〈pj |. (4)

In the zeroth-order-regular approximation, HSO is given
by [27]

H
αβ

SO = �
2

(2mec)2

K(r)

r

dV (r)

dr
�σαβ · �L. (5)

Here the angular momentum operators �L is defined as
�L = �r× �p, and �σ = (σx,σy,σz) are the (2×2) Pauli spin
matrices, V (r) is the spherical part of the effective AE potential
within the PAW sphere, and

K(r) =
(

1 − V (r)

2mec2

)−2

. (6)

Using φi(r) = Ri(|r|)Ylimi
(r̂) we rewrite Eq (5) as

H̃
αβ

SO = �
2

(2mec)2

∑
ij

|p̃i〉Rij �σαβ · �Lij 〈p̃j |, (7)

where

Rij = 4π

∫ rc

0
Ri(r)

K(r)

r

dV (r)

dr
Rj (r)dr (8)

and

�Lij = 〈Ylimi
| �L|Ylj mj

〉, (9)

and Ylm are real spherical harmonics.
The action of the SOC operator on the PS orbitals is

evaluated as ∣∣ψ̃α
n

〉 =
∑
αβ

H̃
αβ

SO

∣∣ψ̃β
n

〉
, (10)

where α and β label the spin-up and spin-down components
of the two-component spinor wave functions necessary to
describe noncollinear magnetism [28].

III. COMPUTATIONAL DETAILS

In this work the magnetic anisotropy of Fe1−xCox was
calculated in three different ways. First, the standard VCA
pseudopotential PAW procedure was used. This is applicable
to neighboring elements in the periodic table, say Fe and Co.
In this case, a potential is created for a fictitious element with a
valency between Fe and Co. In many cases, such interpolations
have been proven to be successful for the calculations of
various alloys properties [18–22]. The main advantage of the
VCA method is its simplicity and computational efficiency
explaining its wide spread use compared to full potential
Green’s function based methods. Second, we use the VCA
method of Ref. [23] (VCA2) developed for the pseudopoten-
tial methodology. In this VCA, a specific concentration of
Fe1−xCox is obtained placing Fe and Co PAW potentials at the
same lattice site, and weighting the PAW potential of Co by a
factor of x and the PAW potential of Fe by a factor of 1 − x. The
applicability of the VCA2 within the PAW methodology was
recently demonstrated in [29] for SnxGe1−x alloys. Third, we
used a supercell with 16 atomic sites to describe the chemical
disorder by means of averaging. The positions of the Fe and
Co atoms in the supercell are randomized and eight different
SCs are used for calculating the MAE by averaging. Note that
we took a completely random set of the supercells without the
optimization proposed in Refs. [16,30].
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For all three models we used the equilibrium volume of the
bcc structure calculated using the VCA and kept the volume
constant while varying the c/a ratio of the bct unit cell of
Fe1−xCox from 1.0 to 1.4. In fact, earlier studies by Neise
et al. [16] and Burkert et al. [13] have shown negligible effects
of the volume relaxation on the calculated value of the MAE
in distorted Fe-Co systems.

We use the Vienna ab initio simulation package (VASP)
[24] within the projector-augmented-plane-wave (PAW)
method [25,26]. All calculations were performed using the
PBE GGA (Perdew-Burke-Ernzerhof generalized gradient
approximation) [31] functional. Additionally for some points
PAW LDA (local density approximation) [32] calculations
were done. We note that, in the LDA, we interpolated
the correlation in the same way as the exchange from the
nonmagnetic to the ferromagnetic regime, whereas in the PBE
as well as in the LDA calculations of Ref. [15] the interpolation
scheme of Vosko, Wilk, and Nusair is used [33]. We will
merely use the LDA to demonstrate that the final results are
very sensitive to computational details, in particular in the Co
rich regime. The default energy cutoff of 280 eV was used for
all calculations. The k-point integration was done using the
tetrahedron method with Blöchl corrections [25].

The MAE was determined using the so-called magnetic
force theorem [7,34], by performing a fully self-consistent
calculation for the collinear case and, in the second step,
freezing the potential charge density for different orientations
of the magnetization direction and then taking the energy
differences Ku = E[100] − E[001], where E[100] and E[001] are
the energies with the magnetization in the [100] and [001]
directions of the bct structure, respectively.

We achieve a convergence of the MAE energy of about
0.1 μeV/atom using 4096 k points over the complete BZ for
the VCA and VCA2 cases and 512 k points for the SC. The con-
vergence tests have been performed for up to 32 768 k points
for VCA and VCA2 and using 4096 k points for the supercells.

IV. RESULTS AND DISCUSSION

The equilibrium lattice constants of the nondistorted bcc
Fe1−xCox alloys and magnetic moments of the fictitious atoms
obtained with VCA calculations are presented in Fig. 1.
The corresponding unit cell volumes were used further in
calculations of tetragonal bct structures with varying c/a ratios
including supercell calculations. Interesting to note that the
lattice constant increases up to the concentration x = 0.2 and
then decreases with increasing Co concentration. This agrees
with experimental observations [35]. Clearly the magnetic
moments follow the same trend as the volume.

The dependence of the MAE of the bct alloy Fe1−xCox

on the chemical composition and on the a/c ratio is shown
in Fig. 2 calculated with VCA, VCA2, and the 16 atoms
supercell models. Both VCA results agree well with earlier
VCA calculations [13,15,16]. The MAE has a maximum at
about x = 0.6 and c/a = 1.25. There is no essential difference
between VCA and VCA2 results. Although the VCA PAW
value of the MAE at the maximum is somewhat smaller then
in the TB-LMTO ASA calculations by Turek et al. [15],
Ku ≈ 600 μeV/atom vs Ku ≈ 800 μ eV/atom, respectively,
it is still almost three times larger than the values obtained with
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FIG. 1. Left panel: Calculated lattice constants. Right panel: Cal-
culated total magnetic moment, as a function of the Co concentration
x. The same trend has been shown experimentally in [35].

more refined methods of chemical disorder treatment (CPA and
supercell averaging). Since in this work we cover the entire
range of the Fe-Co alloy concentrations, we can conclude
more on the general performance of the VCA methodology for
the MAE calculations in disordered alloys. Indeed the VCA
describes the trend of the MAE with the alloy concentration
in Fe-Co qualitatively well (the physical reason for this is well
described in [15]). However, it largely overestimates the MAE
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FIG. 2. Calculated uniaxial MAE Ku of tetragonal Fe1−xCox as
a function of the c/a ratio and the Co concentration x. (a) VCA, (b)
VCA2, and (c) supercell calculations.
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value almost in all regions of the compositions, except the
diluted Co rich regime (x > 0.85), see also Fig. 2(c).

We now compare our supercell averaging results to CPA
results obtained by Turek et al. [15]. We obtain close agreement
in the position of the calculated MAE maximum with respect
to the c/a ratio and the alloy concentration (around c/a = 1.25
and x = 0.625) between supercell PAW results and reported
CPA calculations. The only difference is that the supercell
PAW results give a more extended region of positive anisotropy
(easy axis) toward the Co rich region. CPA gives positive MAE
values in the range of 0.22 � x � 0.65, whereas the supercell
PAW have positive MAE values in the range 0.2 � x � 0.8.

In Fig. 3 we show the calculated MAE as a function of
the concentration x for c/a = 1.2 and c/a = 1.25. In this
figure we include the VCA and CPA studies from [15], as
well as the available experimental results for Fe0.5Co0.5 on the
Pd(001) substrate [36] and Fe0.36Co0.64/Pt superlattice [8] for
c/a ≈ 1.18. We note the good agreement between the CPA
and supercell averaged results. Some small differences might
be also related to the fact that the CPA results are derived in the
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FIG. 3. Calculated uniaxial MAE Ku of tetragonal Fe1−xCox as a
function of the Co concentration x for VCA, VCA2, and the supercell
(SC) results. These were calculated with PBE GGA. Additionally
some points were calculated within the supercell method using
the LDA. (a) Calculations for c/a = 1.2: the black cross indicates
an experimental value obtained for Fe0.36Co0.64/Pt superlattice [8]
for c/a ≈ 1.18, the black filled circle indicates the VCA-ASA
calculations from Ref. [15], and the black open circle indicates
the CPA-ASA calculation also from Ref. [15]. (b) Calculations for
c/a = 1.25: the black cross denotes an experimental value obtained
for Fe0.5Co0.5 on Pd(001) [36], the black filled circle indicates the
VCA-ASA calculation from Ref. [15], and the empty circle the
corresponding CPA calculations.

ASA and the LDA. We recall that our VCA values and the TB-
LMTO VCA results of [15] showed also some differences that
obviously cannot be ascribed to the difference in the treatment
of the atomic disorder. Finally, we also observe almost perfect
agreement with the experimental results obtained for the MAE
for films of tetragonally distorted Fe-Co grown on Pt and Pd
substrates. This is also inline with earlier full potential LCAO
calculations by Neise et al. [16].

In Fig. 3 we also compare the MAE value derived in GGA
and LDA. Interestingly the GGA and LDA results are fairly
similar for the Co poor region, but the difference is growing
towards the Co rich region. In this region, the LDA yields
smaller values than the GGA. Considering the scarcity of
experimental results, one cannot draw any definite conclusion
in whether GGA or LDA should be preferentially used for the
calculation of the MAE in the transition metals alloys.

Overall one might conclude that the simple supercell
averaging scheme used in this work for the calculations of
the MAE in disordered Fe-Co alloys in combination with the
PAW as implemented in VASP performs very well compared
to the experiments. The overall agreement between the LDA
CPA and the present supercell LDA and GGA calculations
is excellent, with the exception of the Co rich region. We
will now elaborate on why the results are so sensitive to
the computational parameters for the Co rich case. In Fig. 4
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FIG. 4. (a) Calculated uniaxial MAE Ku for tetragonal Fe0.5Co0.5

(Fe8Co8) and c/a = 1.25 for the eight different random supercells.
The black solid line denotes the average of the MAE of the supercells.
The blue dashed line corresponds to CPA calculations done by Turek
et al. [15] for Fe0.5Co0.5 and c/a = 1.24. (b) Calculated uniaxial
MAE Ku for tetragonal Fe0.1875Co0.8125 (Fe3Co13) and c/a = 1.25 for
the eight different random supercells. The black solid line denotes
the average of the MAE of the supercells.
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we plot the values of the MAE calculated for the individual
random supercells used in the averaging. One can see from the
upper panel that, in general, the variation of the MAE values
calculated for the individual random supercells around the
average is not exceeding the difference between the CPA MAE
and average supercell MAE. The main difference between CPA
and average supercell results is caused, for this particular case,
by one supercell (number 6), which has an essentially lower
MAE than the rest of the supercells. Thus one would expect the
good agreement between supercell averaging and CPA only if
the spread in the MAE among supercells is not too large. This
condition is relatively well satisfied except for the Co rich case.

The value of the MAE calculated for the individual random
supercells for Fe0.1875Co0.8125 (Fe3Co13) alloys are shown in
the lower panel of Fig. 4. One can see that in the Co rich region
the local environment starts to play a more critical role: SOC
on Co is very sensitive to the positions of the only few Fe
atoms in the neighboring shells. This causes the relatively
strong fluctuations of the single-site Co contribution from
negative to positive. In turn, some supercells have negative
and some positive MAE [see Fig. 4(b)]. Obviously in this
region results are very sensitive to the actual computational
parameters and specifically the LDA results differ from the
GGA results. We find it rather remarkable that the CPA
and the supercell method agree so well even in this region
considering that quite different approximations for the one-
electron potentials were used in the first-principles CPA
methodologies [e.g., atomic sphere approximation (ASA)] and
in the PAW (full-potential treatment). In addition, it has been
recently demonstrated [37] that there are some differences, at
least in the ASA, between the values of the MAE calculated
in the framework of the fully relativistic Dirac band structure
formalism and perturbational SOC treatments as used in VASP.
In summary, the achieved agreement between CPA and the
supercell approach is excellent considering these limitations.

V. SUMMARY

The present paper documents how spin-orbit coupling is
implemented in the popular first-principles package VASP. The
paper therefore fills an important gap in the VASP documenta-
tion, as the feature has been distributed and extensively used for
almost a decade despite the lack of appropriate documentation.

To evaluate the performance of the implemented spin-orbit
coupling within the PAW framework, we have considered
calculations of the magnetic anisotropy in tetragonally
distorted FeCo alloys. The reason for this choice is that FeCo
alloys are simple to calculate, the MAE is fairly large and
easy to converge with relatively modest computational setups,
and extensive experimental as well as theoretical reference
data are available.

We conclude that magnetic anisotropy energies derived
within the PAW methodology with spin-orbit coupling are in
good agreement with the results of other full potential methods,
and for Fe-Co, very well describe the experimental data for
tetragonally distorted thin films. Specifically, averaging the
MAE calculated for randomly chosen supercells yields results
very close to the calculations based on the coherent potential
approximation. In the Co rich regime we find the results to be
very sensitive to the details of the calculations, with the LDA
yielding more negative values for the magnetic anisotropy than
the GGA. The previously reported CPA results using the LDA
seem to be in between the present LDA and GGA values. Given
the sensitivity to the computational parameters, we consider
this agreement to be very satisfactory.
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