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Ferromagnetic resonance and resonance modes in kagome lattices: From an open to a closed
kagome structure
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We present ferromagnetic resonance (FMR) investigations of 20 nm thick permalloy (Ni80Fe20) elements (width
W = 200 nm, length L = 470 nm, period a = 500 nm) arranged in open and closed artificial kagome lattices. The
measurements were done at 9.4 and 34 GHz to ensure a saturated or near-saturated magnetic state of the kagome
structures. The FMR data are analyzed in the framework of an analytical macrospin model which grasps the
essential features of the bulk and edge modes at these microwave frequencies and is in agreement with the results
of micromagnetic simulations. Polar plots of the resonance fields versus the field angle made by the direction
of the magnetic field with respect to the main symmetry directions of the kagome lattice are compared with
the results of the analytical model. The measured FMR spectra with a sixfold rotational symmetry qualitatively
reproduce the structure expected from the theory. Magnetic dipolar interactions between the elements of the
kagome lattices result in the mixing of edge and bulklike excitations at 9.4 GHz and in a systematic deviation
from the model, especially for the closed kagome lattice.
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I. INTRODUCTION

Advances in nanolithography make it possible to pattern
ferromagnetic films into various types of two-dimensional
(2D) lattices (square [1], triangular [2], honeycomb [3],
kagome [4], or even quasicrystalline [5] or fractal [6] lattices)
in which each element is small enough to be a single-domain
nanoparticle. The magnetic energy F of an array of the
elements
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is described by interactions between the magnetic moments
mi , mj of the ith and j th particles separated by rij and their
interactions with an external magnetic field Hex, and depends
on their shape through demagnetizing factors Nxi , Nyi , and
Nzi along their main axes.

In such systems, the competition between the Zeeman
energy [the third term in Eq. (1)], the shape anisotropy of the
individual nanoelements (the second term), and magnetostatic
interactions (the first term) results in a symmetry of the spin
wave (SW) spectra, including configurational anisotropy [7,8].

Ferromagnetic resonance (FMR) studies have shown a
high sensitivity of the SW spectra to the geometry, separa-
tion, and edge imperfections, as well as a dynamic dipolar
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coupling [9] tuned by the complexity of the magnetization
pattern [6]. In sets of triangular nanorings, FMR spectra with
multiple resonance peaks showing a sixfold symmetry were
validated using a modified Kittel equation and micromagnetic
simulations [2]. The same group of authors characterized
the eigenmode spectra in arrays consisting of noncollinearly
arranged magnetic rectangular elements [10]. They found
two distinct collective FMR modes and explained them as
predominantly localized in elements with different easy-
axis orientations. Additionally, angular FMR measurements
confirmed a fourfold rotational symmetry for the array due
to combination of two (perpendicular to each other) uniax-
ial configurational anisotropies. FMR spectra acquired for
various directions of an applied magnetic field in aperiodic
wire networks on Fibonacci distortions of square antidot
lattices exhibit a fourfold rotational symmetry [11] but with
a more complex behavior than comparable periodic square
antidote lattices [12]. In quasicrystalline Ammann tailings,
FMR spectra exhibit an eightfold rotational symmetry [13].
Finally, in quasicrystalline Penrose tailings (P2T) with a
fivefold symmetry, FMR spectra exhibit a tenfold rotational
symmetry [5].

In most cases, micromagnetic simulations have been shown
to give access to the spatially resolved magnitudes of mag-
netization precession, so that various SW modes [5,6] can be
identified, including even exotic excitations due to the presence
of magnetic monopoles or Dirac strings [14]. Specifically, it
has been found that the topological defects in artificial spin-ice
lattices display distinct signatures in an SW mode spectrum
of square spin-ice lattices, providing a means to qualitatively
and quantitatively analyze monopoles and strings that can be
measured experimentally [14]. These defects have been also
observed in kagome lattices [9].
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Here, we investigate FMR spectra in kagome lattices. The
main purpose of the paper is to provide a general description
of the in-plane angular dependencies of the resonance fields
Hr(φH) in the kagome lattices with a sixfold symmetry. Despite
a series of papers that have addressed the angular dependencies
of the resonance fields in relatively simple [2,6,10] or more
complicated [5,11,13] magnonic structures of mesoscopic
dimensions, there is a dearth of coherent and comprehensive
descriptions of these dependencies. Some attempts to charac-
terize Hr(φH) in a triangular lattice are notable exceptions [2],
however, with no explanation of the origin of a sixfold
rotational symmetry of the spectra for a lattice consisting
of triangles. We show how to describe angular dependencies
of the resonance fields in relatively simple kagome lattices
within the framework of a macrospin model and how to
combine dependencies of bulk modes with edge modes,
which play an important role in spin dynamics of artificial
spin-ice lattices besides modes localized on defects [14]. But
besides that, the resultant polar plots of the resonance fields
in kagome lattices also serve as an example of the Curie
principle [15], which states that a macroscopic cause (i.e.,
symmetry of the kagome lattice) never has more elements of
symmetry than the effect it produces (i.e., symmetry of the
resonance field distribution). In other words, “A symmetry
characteristic of one or another phenomenon is the highest
symmetry of the medium compatible with the occurrence of
this phenomenon” [16].

The individual elements of the kagome lattices may be
connected in a closed structure or in an open kagome lattice,
not connected. Hence, either the exchange or magnetostatic
interactions are expected to have an impact on the angular
dependencies of the FMR spectra. The FMR data obtained in
a fully saturated state (i.e., at 34 GHz) or a nearly saturated
state (at 9.4 GHz) are analyzed with the use of micromagnetic
simulations and an analytical macrospin model for the main
modes confined in the bulk of the nanoelements (bulk, center
modes) as well as modes localized at the edges (edge modes).
In the macrospin model, the first term in Eq. (1) is neglected.
Therefore it is an independent particle (element) approach.
However, some salient characteristics of the experimental
angular dependencies of the resonance field (presented in this
paper as polar plots) can be ascribed to dipolar interactions
between the elements.

II. EXPERIMENTAL DETAILS AND
MICROMAGNETIC SIMULATIONS

A set of permalloy (Ni80Fe20) kagome lattices with a
thickness of 20 nm were fabricated using magnetron sputtering
and liftoff techniques. A thin layer of polymethyl methacrylate
positive resist was spin-coated onto naturally oxidized Si(100)
substrates and then patterned with a Raith 50 electron-beam
lithography writer into open or closed kagome patterns and,
after development, a permalloy film was deposited and the
patterns were lifted off using sonication in acetone. The
approximate length, width, and thickness of one permalloy
stadium is L = 470 nm, W = 200 nm, and t = 20 nm,
respectively Fig. 1(a). In the open structure, the elements are
separated by 20–30 nm so that they interact with each other
via dipolar interactions. In the closed structures Fig. 1(c) the

FIG. 1. The artificial kagome lattice. (a) Scanning electron
microscope image of an open kagome structure fabricated from 20 nm
thick permalloy elements (width W = 200 nm, length L = 470 nm,
period a = 500 nm). (b) Schematic configuration of orientation of
the elements within a macrospin approach. (c) Scanning electron
microscope image of a closed kagome structure with approximately
the same dimensions.

elements are in contact and form an antidot structure. They
will be discussed later in Sec. IV C. FMR measurements
were performed at the microwave frequencies 9.4 GHz and
34 GHz and dc applied magnetic fields 0 < H < 3 kOe
and 0 < H < 15 kOe, respectively, using standard microwave
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cavities. In all FMR experiments, the dc field could be rotated
within the film plane by an angle φH between H and a
reference edge of the kagome [0◦ axis shown in Fig. 1(a)].
Static magnetization measurements performed using a Kerr
magnetometer gave a coercive force of 300 Oe.

Dynamic FMR data were simulated using the Object
Oriented Micromagnetic Framework (OOMMF) code [17]
with periodical boundary conditions for a unit kagome cell
1.79 × 2.065 μm. We used the basic OOMMF package for
which finite temperature is not taken into account. All simu-
lations were performed at zero temperature. The accreditation
cell sizes were 5 × 5 × 10 nm3. For a given magnetic field the
magnetization was allowed to come to equilibrium and then
disturbed with a short pulse that rotated the magnetization
away from equilibrium. The magnetization was then allowed
to evolve using the Landau-Lifshitz-Gilbert equation. The
resulting magnetization oscillations were Fourier transformed
to obtain a power spectrum with peaks corresponding to the
resonances of the kagome structure in a given field oriented in
a given direction. Identification of the various bulk and edge
modes was achieved through mode imaging.

As can be seen in Fig. 1(b), all stadium nanoelements are
arranged in a kagome lattice in a sixfold symmetry with the
main directions at 0◦ + n × 60◦ with n = 0,1, . . . ,5. When
H is applied at φH = 0◦ + n × 60◦ there are two elements
magnetized along the long axis (i.e., the easy direction of the
element) and the other four elements are magnetized at ±60◦
(at 60◦ for short) with respect to the direction of H . When
H is applied at φH = 30◦ + n × 60◦, there are two elements
magnetized along the short axis (i.e., the hard direction of the
element) and the other four elements are magnetized at ±30◦
(30◦ for short) with respect to the applied magnetic field.

The FMR measurements at 9.4 GHz were performed at
5 K and 300 K, and those at 34 GHz were performed at
300 K. Typical resonance spectra at 34 and 9.4 GHz of the
open structure are shown in Figs. 2(a) and 2(b), respectively.
The spectra are rather complex, with 3–4 intensive modes,
depending on the orientation, and some additional weaker
modes, which are most clearly seen in Fig. 2(b): 9.4 GHz
at 300 K. A broad mode seen in Fig. 2(a) centered at 12 kOe
is due to resonance cavity background so that the higher field
modes seen at ∼13–14 kOe cannot be definitely resolved.

OOMMF mode imaging of spatially resolved precessional
magnitude of the magnetization at a resonance frequency for
a given field value gives the answer to how to connect the
observed modes with specific magnetization oscillations in
the nearly decoupled single elements. Let us recall that the
OOMMF simulations are conducted in a frequency-swept
mode at 9 kOe [and at 1 kOe (not shown)] in contrast to
the FMR experiments, which were performed in a field-swept
mode at 34 and 9.4 GHz. In Fig. 3 the mode profiles in the
elements are assigned to the respective simulated frequency
modes for a magnetic field of 9 kOe directed at φH = 60◦
and φH = 30◦. The value of the applied magnetic field of
9 kOe was chosen since it is the mean value of the resonance
fields observed in the FMR measurements taken at 34 GHz,
Fig. 2(a). As confirmed by the micromagnetic simulations,
this external magnetic field is strong enough to fully saturate
the magnetization in the elements except for minute parts at
their edges, when they are magnetized along their short axes.

FIG. 2. (a) FMR spectra for various angles of the applied field H

in kagome lattices: 34 GHz at 300 K. Dashed rectangle depicts region
of interest outside cavity background centered at ∼12 kOe. Dashed
rectangle depicts region of interest outside a wide signal centered at
12 kOe from a resonance cavity. (b) FMR spectra for H applied at
∼30◦: 9.4 GHz at 5 K and 300 K.

For φH = 30◦ a mode at 34.95 GHz corresponds to nearly
uniform excitations in the centers of the elements magnetized
along their long axes, while a mode at 35.53 GHz is due to
excitations of the elements magnetized at 60◦ with respect to
direction of the field. For H directed at φH = 30◦, the mode at
35.20 GHz corresponds to nearly uniform oscillations in the
interior of the elements magnetized along their short axes. The
higher frequency modes at 36.75 and 37.28 GHz are due to SW
excitations in the elements magnetized at φ = 30◦ with respect
to the field direction. We conclude that our simulations clearly
show that the macrospin model can be a good approximation
for SW excitations in the interior of an element which at a
high magnetic field of 9 kOe is almost fully saturated. The
low-frequency modes at 31.69 and 33.48 GHz can be assigned
to “trapped spin waves” or edge modes, which are typical of
localized oscillations at the edges of the elements and will be
also discussed in the framework of the macrospin model [18].
Further on, we will consider mostly the high-frequency edge
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FIG. 3. Left panel: Simulated main modes in the open kagome
lattice for the magnetic field of 9 kOe directed in the two main
directions φH = 60◦ and φH = 30◦. The brighter colors (from yellow
to blue) correspond to greater mode amplitudes. Right panel:
Simulated FMR spectra corresponding to the modes in the left panel
in the frequency domain.

modes (similar to those at 33.48 GHz, i.e., at fields of 9 kOe)
which are accessible to our field-swept FMR experiments. The
low-frequency edge modes (like those at 31.69 GHz) will not
be discussed further since they lie in between 11 and 14 kOe
in FMR measurements at 34 GHz, where they are obscured by
the cavity background. However, as can be seen in Fig. 2(a), in
the field-swept FMR measurements at 34 GHz there are some
modes (at ∼11 and 13 kOe) that are presumably related to
these higher order edge modes.

III. MACROSPIN MODEL

The values of the resonance frequency estimated from
OOMMF simulations for the open kagome lattice as a function
of the azimuthal angle φH are shown in Fig. 4 as the open
squares. In accordance with the symmetry of the kagome lattice
(Fig. 1) the variation of the resonance frequency as a function
of φH exhibits sixfold rotational symmetry due to the kagome
lattice geometry. From an analysis of simulated mode profiles
(Fig. 3, left panel) the modes spanning a frequency range
from ∼35 to ∼38 GHz are the bulklike modes with nearly
uniform oscillations of the magnetization in the interior of the
elements. As mentioned above, the modes covering a lower
frequency range (i.e., 26 to 35 GHz) are the edge modes. Since
the intensities of the edge modes with frequencies spanning a
range of 26–32 GHz are lower than the dominating bulklike
modes, they will not be analyzed further except for the lowest
edge mode with frequencies spanning a range of 35–33 GHz.

Let us describe the ferromagnetic resonance in the open
kagome lattice in the framework of an independent grain
approach, which assumes no coupling between the grains.
Therefore, the resonance spectra of the lattice are the sum
of the individual responses of all elements with a specific
magnetization configuration that depends on the strength of
the applied magnetic field H and the azimuthal angle φH.
For a single element with demagnetizing factors Nx , Ny , Nz

(Nx + Ny + Nz = 1 and Nz � Ny > Nx), the free energy F

FIG. 4. Dependence of the resonance frequencies as a function
of φH for the open kagome lattice at H = 9 kOe. Open squares:
Resonance frequency obtained from numerical simulations using
OOMMF. Black and red lines: The result of calculations according to
Eqs. (5) and (6) and Eq. (7) for the bulk and edge modes, respectively.
δω is the difference between the resonance frequencies of the edge and
bulk modes at φH = 30◦. Lower frequency edge modes at 31–25 GHz
will not be discussed further, since they have low intensities in the
simulated spectra.

consists of the Zeeman and demagnetizing energy terms

F = −HM sin � cos(φ − φH) + 2πM2[Nx sin2 � cos2 φ

+Ny sin2 � sin2 φ + Nzcos2 �], (2)

where M is the magnetization and φ, � are the azimuthal
and polar angles of the magnetization, respectively. Assuming
that H is applied in the plane of the elements (� = 90◦), the
equilibrium condition for magnetization is

H sin(φ − φH) + 2πM�Nyx cos 2φ = 0, (3)

where �Nyx = Ny − Nx . The corresponding resonance an-
gular frequency ω = 2πf (f is the microwave frequency in
GHz) can be easily obtained using Smit’s relation [19] and is

ω = γ {[H cos(φ − φH) + 4πM(Nz − Nx − �Nyx sin2 φ)]

× [H cos(φ − φH) + 4πM�Nyx cos 2φ]}1/2, (4)

where γ is the gyromagnetic ratio. It is easy to show that
for the field orientation along the principal element axes x

and y, Eq. (4) is equivalent to the Kittel equations with the
appropriate Nx , Ny , Nz determined in the simplest [20] form
by the geometry of the single elements by Nx = t/L

1+t/L+t/W
,

Ny = W/L

1+t/L+t/w
, Nz = 1

1+t/L+t/W
. For our permalloy elements

(see Fig. 1), the corresponding demagnetizing factors are
0.035, 0.086, and 0.875 but in reality they may differ slightly
since the simulated mode profiles of magnetization excitations
(see Fig. 3) differ from those of a uniformly magnetized
element. Since in the independent element approach we have
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six elements in a unit cell (Fig. 1), we can introduce into
Eqs. (4) and (3) the angles φU = 0◦,60◦,120◦,180◦,240◦, and
300◦ to label an element oriented at φU with respect to the x

axis in Fig. 1(a):

ω = γ {[H cos(φ − φH)

+ 4πM(Nz − Nx − �Nyx sin2(φ + φU))]

× [H cos(φ − φH) + 4πM�Nyx cos 2(φ + φU)]}1/2 (5)

and

H sin(φ − φH) + 2πM�Nyx cos 2(φ + φU) = 0. (6)

These two relations describe the dependence of the resonance
frequency (field) on the angle φH for bulk quasiuniform modes
which extend into the interior of the elements.

A dispersion relation similar to Eq. (5) can be derived for
the edge modes which are confined on the long edges of the
elements:

ω = γ
([

H + 4πMÑ
(
1 − 3

2 sin2 φH
)]

× {
H + 4πM

[
1 − Ñ

(
3
2 − 1

2 cos 2φH
)]})1/2

. (7)

Ñ plays the role of an effective demagnetizing factor in the
macrospin approximation of the edge modes, and is of the
order of t/(t + de), where de is the edge mode depth [18].
To simplify Eq. (7), we assume that φ = φH since the edge
modes occur for the field H applied perpendicularly (or near
perpendicularly) to the edge, i.e., φH = φ = 30◦ + n × 60◦.
Note that for φH = 90◦, Eq. (7) is the same as Eq. (4) in
Ref. [18] and for φH = 0◦, it has the same form as Eq. (1)
in Ref. [21] for longitudinally magnetized stripes. In our
analysis of the simulated data Nx , Ny , Nz, and Ñ can be
treated as fitting parameters. The best fits are with Nx = 0.015,
Ny = 0.10, Nz = 0.885, and Ñ = 0.18, and are shown in
Fig. 4 assuming M = 800 G and a gyromagnetic ratio of
γ /2π = 2.9 MHz/Oe, which are typical for permalloy [20].
The lower frequency edge modes seen in Fig. 4 can be
ascribed to Ñ = 0.28–0.3 and Ñ = 0.35–0.36. The values of
the dynamical demagnetizing factors Nx , Ny , Nz differ from
those of the static demagnetizing factors calculated from the
geometry of the elements constituting the open kagome lattice
(i.e., Nx = 0.035, Ny = 0.086, and Nz = 0.875). Possible
causes of this discrepancy have been discussed in Ref. [2]. As
to outline to what degree the model of independent elements
estimates a difference between the resonance fields of the edge
and bulk modes for φH = 30◦ ± 20◦ + n × 60◦, it is easy to
approximate this difference as

δH (φH) = Hedge(φH) − Hbulk(φH)

≈ 2πM[(2Ñ − 3Nyx) sin2(φH + n × 60◦) − 3Nx],

(8)

making use of Eqs. (5) and (7). The maximal value of δH is
thus

δH (30◦ + n × 60◦) ≈ 2πM(2Ñ − 3Ny). (9)

For the simulated data shown in Fig. 4 the difference between
the edge and bulk mode frequencies is δω = 1.8 GHz, which
gives approximately δH � δω/2.9 MHz/Oe �620 Oe with
Ñ = 0.21 and Ny = 0.10. This value does not differ much

FIG. 5. Polar plot of resonance fields as a function of φH at
34 GHz and T = 300 K. Open squares: Data points. Blue and red
lines: The result of calculations according to Eqs. (5) and (6) and
Eq. (7), respectively. δH is the difference between the resonance
fields of the edge and bulk modes at φH = 30◦.

from the experimental value of δH = 750 Oe obtained from
the experiment at 34 GHz (Fig. 5) with Ny = 0.11, Ñ = 0.24,
and 2πM = 5 kOe, Eq. (8).

IV. FMR RESULTS AND DISCUSSION

A. FMR at 34 GHz

As shown in Fig. 5, for angular measurements of Hr(φH)
at 34 GHz the values of the resonance field as a function of
angle φH can be plotted in a convenient way as a polar plot. As
can be expected, a sixfold symmetry of the resonance fields
is clearly seen. At 34 GHz, the external magnetic field of
8–10 kOe is high enough to magnetically saturate all elements
of the kagome lattice. It can be seen that the resonance
fields as a function of φH for the open kagome lattice (open
squares) can be satisfactorily described within the macrospin
model both for the bulk modes (dashed blue lines) and the
edge modes (dashed red lines). A fit according to Eqs. (5)
and (6) to the resonance fields of the bulk modes, already
discussed in Sec. III, reproduces the experimental data with
Nx = 0.01, Ny = 0.11, Nz = 0.88 as the fitting parameters.
Since they differ from the static demagnetizing factors, they
may be regarded as mode-specific dynamic demagnetizing
factors [22]. The edge modes, which attain the maximal
values of resonance field of 10 kOe for φH = 30◦ + n × 60◦
(n = 0,1, . . . ,5) can be fitted with Ñ = 0.24. They disappear
abruptly at φH ≈ 10◦ + n × 60◦. As has already been observed
in permalloy stripes [18], the edge modes smoothly convert to
the bulk mode when the applied field is rotated away from
the normal to the edges of about 40◦. However, in the case of
the open kagome lattice, the disappearance of the edge modes
localized at the long edges is rather abrupt, as if they “jump”
to the edge modes localized at the short edges of the stadiums.
They can be seen as the faint edge modes localized at the short
edges for φH = 60◦ in the upper panel in Fig. 3. We expect that
this abrupt transformation in the edge mode is a “fingerprint” of
the dipolar interactions between the elements still present at the
relatively high magnetic fields. If one considers, in accordance
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with Fig. 3, the edge modes which extend by de ∼ 100 nm, the
demagnetizing factor Ñ is 1

2
t

t+de
= 0.083. This is exactly the

value which one should expect for a mode located at ∼8.5 kOe
for φH = 0◦ + n × 60◦ in Fig. 5 and Fig. 2(a) in the bottom
spectrum taken at φH = 0◦.

To sum up, at 34 GHz, the macrospin model for nearly
independent stadium elements satisfactorily describes the
angular dependencies of the resonance field for the open
kagome lattices except for some irrelevant features related to
edge modes. For φH = 30◦ ± 20◦ we observe two bulk modes
as well as one edge mode, while for φH = 60◦ ± 10◦ there
are two bulk modes and one faint edge mode located at about
8.5 kOe.

In agreement with the Curie principle, the polar plot
of Hr(φH) from FMR measurements at 34 GHz exhibits a
simple rosette shape with sixfold symmetry determined by
the symmetry of the kagome lattices arranged from separated
permalloy stadiums with a strong uniaxial shape anisotropy
both for the edge and bulk modes. FMR spectra of the films
patterned into finite quasiperiodic P2P exhibited a tenfold
rotational symmetry despite a fivefold symmetry of the finite
samples [5]. This feature has been explained as resulting
from demagnetizing fields on the edges of third-generation
decagons being too weak to break the tenfold symmetry
expected for the infinite P2P. However, in view of the Curie
principle the tenfold rotational symmetry of the observed FMR
spectra can be seen as resulting just from superposition of
parity invariance of (M × H ) torque important in FMR and
of the fivefold rotational symmetry of the finite P2T lattice.
Hence, the symmetry of FMR spectra of finite quasiperiodic
P2P (tenfold [5]) or of triangular lattices (sixfold [2]) may
serve as the most spectacular examples of the Curie principle
for the (odd) structural symmetry.

B. FMR at 9.4 GHz

As would be expected, a polar plot of the resonance fields
as a function of φH for the open kagome lattice measured at
9.4 GHz shown in Fig. 6(a) (i.e., with the resonance fields
of 0.5–2 kOe) is more complex than that at 34 GHz since
the Zeeman energy is now comparable to the dipolar energy
of the inter-element coupling [7]. Nonetheless, for a wide
range of φH, the general shape of the Hr(φH) dependencies at
T = 300 K is reproduced by the macrospin model with Nx =
0.0375, Ny = 0.0875, Nz = 0.875, and Ñ = 0.20 as the fitting
parameters with a noticeable deviation between the calculated
resonance fields (dashed blue lines) and the experimental data
points (open circles) except for the lowest resonance fields
(i.e., for the elements magnetized along the long axes). This is
clear: for the elements magnetized along their long axes, the
vectors �M and �H are collinear and the magnetization is almost
uniform. When the stadium-like elements have their long axes
oriented at a certain angle with respect to the external field,
the macrospin model of the independent elements requires
that the equilibrium condition Eq. (6) be fulfilled with φ �= φH

everywhere inside the elements. At 9.4 GHz (i.e., at fields
of 1000 Oe) this assumption is fulfilled only approximately
because of inter-element dipolar coupling. Our micromagnetic
OOMMF calculations show that the magnetization at 1000 Oe
is inhomogeneous, mainly at the element edges, for which stray

(a)

(b)

FIG. 6. Polar plots of resonance fields as a function of φH at
T = 300 K (a) and at T = 5 K (b) measured at 9.4 GHz. Open
symbols: Data points. Dotted (red) and dashed (blue) lines: The result
of calculations of the edge and central bulk modes according to Eq. (7)
and Eqs. (5) and (6), respectively.

dipolar fields play a significant role. In effect, �Nyx is almost
always lower than the value assumed in the macrospin model
[see Eq. (5)]. Hence, for the bulk modes φ − φH is almost
always lower than that in the model and the experimental
resonance field H

exp
r is higher than the calculated resonance

fields. A similar behavior can be observed at T = 5 K in
Fig. 6(b). The differences between the 5 K and 300 K x-band
data result from a higher magnetization assumed (900 G)
and modified demagnetizing factors Nx = 0.019, Ny = 0.086,
Nz = 0.895, and Ñ = 0.165 for T = 5 K. However, if we
compare the polar plot for T = 300 K with that obtained
at T = 5 K, we clearly see that the modes at 300 K are
substantially “smoothed,” possibly due to thermal fluctuations
of the magnetization. We have no straightforward explanation
for this temperature effect but we suppose that a sort of
tunneling between the modes takes place at 300 K, while at 5 K
it is suppressed. Besides, it seems that some deviations from
a regular sixfold symmetry seen as “individual dots” in the
polar plot in Fig. 6(b) are fingerprints of a number of defected
elements still present in our kagome lattice. The edge modes
exist above a certain magnetic field Hsat of ∼1200–2000 Oe for
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permalloy stripes with thicknesses of 10–20 nm [18]. For this
reason, at 9.4 GHz the edge modes are observed exclusively at
the highest fields of 1500–2000 Oe (see Fig. 6). They exist in
a limited angle range of ±10◦–15◦ from φH = 30◦ + n × 60◦
and that their resonance fields (open symbols) decrease faster
than the simulated ones (dotted red lines) as H is rotated
from the normal to the long edges. This is in contrast to
the mentioned behavior of the bulk modes, for which the
experimental resonance fields change with the angle φH slower
than those simulated. The most striking feature observed
in the polar plots shown in Fig. 6(a) is the mode splitting
at the angles higher than ±10◦ from 30◦ + n × 60◦, i.e., where
the edge modes disappear. This splitting can be explained in
terms of coupled oscillations [7]. Generally, whenever there
is a coupling, the energy (frequency) splits, as in coupled
resonance circuits. As a result of the coupling, some modes
can be regarded as mixed edge/bulk modes, and the modes
with a lower resonance field as the bulklike modes. From the
simulations we know that in this range of φH, magnetostatic
modes with mixed characteristics can be excited: partially of
the bulk type and partially of the edge type. The splitting is
proportional to the coupling strength. Since the splitting seen
in Fig. 6(a) is 200 Oe, we may argue that the inter-element
dipolar field is of the same order ∼200 Oe. A similar splitting
takes place at 5 K, but we observe all bulklike and edgelike
modes simultaneously, possibly because tunneling between
the modes is suppressed.

Figure 7 shows in detail the behavior of the resonance
fields for these modes near φH ≈ 30◦ at various frequencies.
At 34 GHz (a) both the edge and bulk mode are excited at
full saturation so that Eq. (8) is fulfilled with a difference
between the resonance fields of the edge and bulk modes of
δH (φH) ∝ sin2(φH) as shown in Fig. 7(d). Figure 7(b) shows
that at 9.4 GHz at 300 K the edge mode exists in a narrow

(a) (b) (c)

(d) (e) (f)

FIG. 7. Resonance fields of the edge and bulklike modes as a
function of angle φH in the vicinity of 30◦ ± 20◦ at 34 GHz (a) and
9.4 GHz at 300 K (b) and 5 K (c). Difference between the resonance
field of the edge and bulk (bulklike) modes as a function of φH for the
same frequencies/temperature: (d), (e), (f). Solid black lines show a
trend ∝ sin2(φH) according to Eq. (8).

FIG. 8. Polar plots (black dots) of resonance fields for a closed
kagome lattice measured at 9.4 GHz at T = 300 K as a function of
φH. Blue and red lines show the fits to the polar plot for the open
kagome lattice taken from Fig. 6(a) and scaled to the highest field of
the edge mode at ∼1800 Oe.

range of φH (±10◦ from φH = 30◦) and there is a clear splitting
between the mixed edge/bulk and bulklike modes. However,
since the bulklike mode is on the verge of its stability (notice
that Hr vs φH has a specific triangular shape) δH (φH) decreases
with φH much faster than sin2(φH) [Fig. 7(e)]. At 5 K [Fig. 7(c)]
the bulklike mode exists in a very narrow range depicted by the
dotted line so that the macrospin model no longer describes
the spin wave excitations [Fig. 7(f)]. It is characteristic that the
splitting observed at 300 K is preserved at 5 K; see Figs. 7(b)
and 7(c).

C. Closed kagome lattice

As can be seen in Fig. 8, the resonance field positions in
a closed kagome lattice notably differ from those of the open
kagome lattices. The most important difference is that the
connections in the closed kagome lattice result in an exchange
coupling between the stadium elements, so that the closed
kagome lattice can be regarded as a kind of antidot magnonics
structure [23]. Although the FMR spectra for the closed
kagome lattice show complicated structure in polar plot, we
found it informative to compare the closed kagome structure
experimental results with the simple macrospin model [red
lines in Fig. 6(a)]. Due to the sixfold symmetry of the closed
kagome lattice [Fig. 1(c)] some features characteristic of the
FMR responses observed in the open kagome lattice are clearly
seen in Fig. 8 as we compare the experimental data (black
dots) with the fits (blue and red dotted lines) taken from
Fig. 6(a). In particular, the edgelike modes behind the red
dotted lines smoothly convert to bulk modes with Hr almost
independent of φH ≈ 0◦ + n × 60◦ and the bulk modes with
the lowest resonance fields of 500 Oe. Other modes have a
substantially different behavior than that characteristic of the
open kagome lattice, including a “ring” at Hr ≈ 1000 Oe,
which can be related to a uniform mode of a continuous thin
film, and a lot of unresolved modes characteristic of spin wave
excitations within the individual elements. Moreover, in the
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closed kagome lattice, a “gap” between 500 and 750 Oe is
observed with no spin wave excitations. The sixfold rotational
symmetry of the FMR spectra in the closed kagome lattice is
again in agreement with the Curie principle.

V. CONCLUSIONS

We have studied FMR in open and closed kagome lattices
at 34 and 9.4 GHz in a field-swept mode. The results presented
in this paper show how the spin wave excitations (bulklike and
edgelike) in kagome lattices evolve from a fully magnetically
saturated state (e.g., at 34 GHz in fields of 9 kOe) to a nearly
saturated state at 9.4 GHz in fields of 1 kOe. We focus on the
variations of the resonance fields on an applied field direction
Hr(φH) for the open kagome lattice and we analyze these
variations within the framework of the macrospin model. In
this case, at 34 GHz, the first term in Eq. (1) is negligible in
comparison with the third term.

The Hr(φH) obtained from FMR measurements at 9.4 GHz
shows a more intricate rosette shape with a characteristic
splitting due to dipolar coupling which is comparable with the
third term in Eq. (1). From the splitting of the resonance field
we can estimate the coupling strength to be about 200 Oe.
It appears that the edge modes are the most affected by
the dipole interactions, so that spin wave modes at angles

higher than ±10◦–15◦ from φH = 30◦ + n × 60◦ have a mixed
edge/bulklike character. While FMR in an open kagome lattice
may be approximately described in terms of the macrospin
model, ferromagnetic resonance in the closed kagome lattice
reveals a rich structure with a sixfold rotational symmetry still
preserved in agreement with the Curie principle.

FMR at low magnetic fields would be valuable to observe
other SW excitations of characteristic magnetic defects, such
as monopoles or Dirac strings [14]. We tried to carry out
frequency-swept FMR experiments at low fields but we failed
since the sensitivity of our broad-band coplanar waveguide
setup was too low. Anyway, at low fields (or in remanence) one
would expect some additional SW excitations at frequencies
next to that of the edge excitations. Therefore, further FMR
studies at a remanence state would be valuable to check
whether there is any symmetry for resonances characteristic
of Dirac strings or those localized on monopoles.

ACKNOWLEDGMENTS

This work has been supported by the project “Marie
Sklodowska-Curie Research and Innovation Staff Exchange
(RISE)” Contract No. 644348 with the European Commission,
as part of the Horizon 2020 Programme and by the SYM-
PHONY project operated within the Foundation for Polish
Science Team Program.

[1] R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J.
Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H. Crespi, and
P. Schiffer, Nature (London) 439, 303 (2006).

[2] J. Ding, M. Kostylev, and A. O. Adeyeye, Appl. Phys. Lett. 100,
062401 (2012).

[3] B. Lenk, H. Ulrichs, F. Garbs, and M. Muenzenberg, Phys. Rep.
507, 107 (2011).

[4] E. Mengotti, L. J. Heyderman, A. Fraile Rodriguez, A. Bisig,
L. Le Guyader, F. Nolting, and H. B. Braun, Phys. Rev. B 78,
144402 (2008).

[5] V. S. Bhat, J. Sklenar, B. Farmer, J. Woods, J. T. Hastings, S. J.
Lee, J. B. Ketterson, and L. E. De Long, Phys. Rev. Lett. 111,
077201 (2013).

[6] C. Swoboda, M. Martens, and G. Meier, Phys. Rev. B 91, 064416
(2015).

[7] V. L. Mironov, E. V. Skorohodov, and J. A. Blackman, J. Appl.
Phys. 115, 184301 (2014).

[8] R. P. Cowburn, J. Phys. D: Appl. Phys. 33, R1 (2000).
[9] L. J. Heyderman and R. L. Stamps, J. Phys.: Condens. Matter

25, 363201 (2013).
[10] S. Jain, M. Kostylev, and A. O. Adeyeye, Phys. Rev. B 82,

214422 (2010).
[11] B. Farmer, V. S. Bhat, J. Sklenar, E. Teipel, J. Woods, J. B.

Ketterson, J. T. Hastings, and L. E. De Long, J. Appl. Phys. 117,
17B714 (2015).

[12] V. Bhat, J. Woods, L. D. Long, J. Hastings, V. Metlushko, K.
Rivkin, O. Heinonen, J. Sklenar, and J. Ketterson, Physica C
(Amsterdam, Neth.) 479, 83 (2012).

[13] V. S. Bhat, J. Sklenar, B. Farmer, J. Woods, J. B. Ketterson, J.
T. Hastings, and L. E. De Long, J. Appl. Phys. 115, 17C502
(2014).
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