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Critical behavior of the two-dimensional Ising model with long-range correlated disorder
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We study critical behavior of the diluted two-dimensional Ising model in the presence of disorder correlations
which decay algebraically with distance as ∼ r−a . Mapping the problem onto two-dimensional Dirac fermions
with correlated disorder we calculate the critical properties using renormalization group up to two-loop order.
We show that beside the Gaussian fixed point the flow equations have a nontrivial fixed point which is
stable for 0.995 < a < 2 and is characterized by the correlation length exponent ν = 2/a + O((2 − a)3).
Using bosonization, we also calculate the averaged square of the spin-spin correlation function and find the
corresponding critical exponent η2 = 1/2 − (2 − a)/4 + O((2 − a)2).
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I. INTRODUCTION

Effects of quenched disorder on critical behavior attracted
considerable attention for several decades [1–6]. Among vari-
ous aspects of this problem influence of disorder correlations
is of particular interest. Examples include spin models with
correlated random bonds [7–14] and random fields [15–18],
quantum transport and localization [19–21], polymers in
random media [22], disordered elastic systems [23,24], and
percolation [25].

The two-dimensional (2D) Ising model is historically
important for studying criticality since its critical behavior
deviates from the mean-field picture but still allows for an
exact solution [26]. According to the Harris criterion [27]
uncorrelated random bond or random site disorder modifies
the critical behavior provided that the heat capacity exponent
of the pure system is positive, αpure > 0. Although uncorrelated
disorder is only marginally irrelevant for the 2D Ising system,
since αpure = 0, its effects on the critical behavior were a
subject of intensive theoretical and numerical studies [28].
Apart from the purely academic interest, this problem has
potential applications; e.g., it was observed that domain
formation in membranes with quenched protein obstacles
without preferred affinity can be described by a diluted 2D
Ising model [29].

The solution of the pure 2D Ising model can be for-
mulated in terms of free 2D Majorana fermions whose
mass is proportional to the reduced temperature [30]. The
presence of disorder adds a four-fermion interaction with
the coupling constant proportional to the concentration of
impurities [31–33]. The resulting model has been intensely
studied by renormalization group methods. These studies not
only confirmed the marginal irrelevance of the disorder but
also revealed the presence of logarithmic corrections to the
critical behavior of the pure model. In particular, it was found
that the specific heat singularity modifies from C ∼ ln(1/τ )
to C ∼ ln ln(1/τ ) where τ = (Tc − T )/Tc if the temperature
goes sufficiently close to the critical temperature Tc [31,32].
The calculation of the correlation function is a much more
difficult task since in the fermionic picture the spin operator is
a nonlocal object so that even for the pure case it requires some
efforts to recover the well-known result ηpure = 1

4 . Initially it
was argued [31,33] that disorder modifies the critical exponent

to η = 0, but later it was realized that the behavior of the N th
moment of the spin-spin correlation function averaged over
disorder configurations is [34,35]

G(r)N ∼ (ln r)N(N−1)/8

rN/4
, (1)

while in the pure model G(r)N ∼ r−N/4.
Real systems may contain extended defects such as linear

dislocations or grain boundaries which are either aligned
in space or may have random orientation. The presence
of extended defects or long-range (LR) correlated disorder
modifies the Harris criterion opening a possibility for relevance
of disorder in two dimensions. Almost a half century ago,
McCoy and Wu proposed the disordered 2D Ising model in
which impurities are perfectly correlated in one direction and
uncorrelated in the transverse direction [7]. Though it was
originally argued that the phase transition in this model is
smeared, later it was shown that it is sharp but controlled
by an infinite-randomness fixed point [36]. An extension of
this model to d dimensions was proposed in Ref. [9], where
extended defects are infinitely correlated in εd dimensions and
randomly distributed in the remaining d̃ = d − εd dimensions.
Values εd = 0, 1, 2 correspond to uncorrelated point-like,
linear, and planar defects, respectively, while noninteger values
of εd may describe systems containing fractal-like defects
[37]. The critical equilibrium and dynamic behavior of these
and related models were studied using a double expansion
in ε = 4 − d and εd in Refs. [10,11,37–43]. The numerical
studies of systems with parallel linear [44] and planar defects
[45,46] were also performed.

Weinrib and Halperin proposed an alternative model [8]
with LR correlated disorder whose correlations decay with the
distance r as a power law, g(r) ∝ r−a . The critical behavior
of this model has been studied to two-loop order using a
double ε = 4 − d, δ = 4 − a expansion [12] and also direct
calculations in d = 3 [13]. These studies suggest that the phase
transition belongs to a universality class different from that for
systems with uncorrelated disorder if the correlation length
exponent of the pure (undiluted) model satisfies νpure < 2/a.
The condition holds for a < d, while for a > d the usual Harris
criterion [27] is recovered and this condition is substituted
by νpure < 2/d. Although results of Refs. [8,12,13] are in
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qualitative agreement and predict an emergence of the new type
of critical behavior governed by the so-called LR disorder fixed
point, they do not agree on quantitative level. In particular,
results of Refs. [8,12] suggest that in the new universality
class the correlation length exponent is ν = 2/a to the second
order in ε = 4 − d and δ = 4 − a (and even probably to all
orders; see [8,47]), whereas calculations performed directly in
three dimensions [13] are in favor of a nontrivial value of the
exponent, which differs from ν = 2/a already in the two-loop
approximation. In principle the discrepancy can be explained
by breaking down the ε = 4 − d-expansion at large ε. In order
to verify this conjecture one needs a controllable method
which does not rely on ε = 4 − d expansion with analytical
continuation to ε = 2. Subsequently, these analytic results
have been checked by numerical calculations [48–51]. In turn,
these have not led so far to common agreement either. Results
of computer simulations in Ref. [48,51] support the analytic
result ν = 2/a, whereas the critical exponents obtained in
numerical studies in Refs. [49,50] deviate from this prediction
raising the question about dependence of the critical exponents
on the peculiarities of disorder distribution.

In this paper we reconsider this problem using mapping
of the 2D Ising model with LR correlated disorder to
disordered 2D Dirac fermions, thus approaching the problem
from low dimensions. This has been done to one-loop order
in Refs. [20,52]. We extend these calculations to two-loop
order and also compute the averaged square of the spin-spin
correlation function to the lowest order using bosonization.
Since the calculations are done directly in two dimensions
and are well controlled in the limit of small δ = 2 − a they
provide a test for the possible breaking down of the ε = 4 − d

expansion.
The rest of the paper is organized as follows: Section II

introduces fermionic representation of the 2D Ising model
with correlated disorder. We give a short description of
renormalization of this model in Sec. III. We present two-loop
scaling functions in Sec. IV together with their analysis
within the framework of δ expansion. Section V is devoted to
calculation of the averaged square of the spin-spin correlation
function using mapping to the sine-Gordon model. We end the
paper with conclusions in Sec. VI. Some technical points are
given in the appendices.

II. MODEL

The random bond 2D Ising model can be described by
two-dimensional real Majorana fermions whose action reads
[53]

SM =
∫

dz̄dz [χ∂̄χ + χ̄∂χ̄ + im(z)χ̄χ ], (2)

where χ̄ (z) and χ (z) are one-component Grassmann fields, z =
x + iy, ∂ = 1

2 (∂x − i∂y), and m(z) = m0 + δm(z) is coupled
to the energy operator ε(z) = iχ̄ (z)χ (z). Here m0 = (Tc −
T )/Tc and δm(z) encodes spatial variations in bond strength
for a given realization of disorder. Using the two-component
spinor notation � = (χ,χ̄)T action (2) can be rewritten as

SM = 1

2

∫
d2r �̄(r)[/∂ + m(r)]�(r), (3)

where /∂ = γj∂
j with γj = σj (j = 1,2) being the Pauli

matrices. Note that �̄ is not an independent field; it is related
to � by �̄ = �T γ0 with γ0 = σ2. We assume that δm(r) is
a Gaussian random variable with zero mean and a variance
decaying as a power law

δm(r)δm(0) = g(r) ∼ r−a, r → ∞. (4)

To simplify calculations we follow [34] and introduce two
Majorana fermions �1 and �2 which combine to form a com-
plex Dirac fermion ψ = (�1 + i�2)/

√
2. The corresponding

action reads

SD =
∫

d2r ψ̄(r)[/∂ + m(r)]ψ(r). (5)

Note that ψ̄ and ψ are independent and we may change
variable ψ̄ → −iψ̄ . Then the resulting action at criticality,
m0 = 0, corresponds to the Dirac fermions in the presence
of random imaginary chemical potential −iδm(r). Changing
variable ψ̄ → −ψ̄σ3 one can see that action (5) also describes
the 2D Dirac fermions with random mass disorder [54].

In what follows we are going to use dimensional regu-
larization. To that end we have to generalize the problem to
arbitrary d and replace the Pauli matrices by a Clifford algebra
represented by the matrices γi satisfying the anticommutation
relations [55]:

γiγj + γjγi = 2δijI, i,j = 1, . . . ,d. (6)

To average over disorder we use the replica trick introducing
n copies of the original system [56]. The resulting replicated
action reads

S = −i

n∑
α=1

∫
ddrψ̄α(r)(/∂ + m0)ψα(r)

+ 1

2

n∑
α,β=1

∫
ddrddr ′g(r − r ′)ψ̄α(r)ψα(r)ψ̄β(r ′)ψβ(r ′).

(7)

The properties of the original system with quenched disorder
are then obtained by taking the limit n → 0. It is convenient to
fix the normalization of the disorder distribution (4) in Fourier
space. We take disorder potential to be random Gaussian with
zero mean and the correlator

δm(k)δm(k′) = (2π )dδd (k + k′)g(k). (8)

We choose

g(k) = u0 + v0k
a−d ; (9)

here u0 and v0 are bare coupling constants. The LR coupling
constant v0 is relevant only for a < d. Note that if one neglects
the SR term u0 in Eq. (9) it will be ultimately generated by the
RG flow. The bare propagator of the action (7) can be written
as

〈ψ̄α(k)ψβ(−k)〉0 = δαβ

γj kj + im0

k2 + m2
0

. (10)

III. RENORMALIZATION OF THE MODEL

Using the bare propagator (10) one can calculate the
correlation functions for the action (7) perturbatively in u0
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and v0. The integrals entering this perturbation series turn out
to be ultraviolet (UV) divergent in d = 2. To make the theory
finite we are using the dimensional regularization [57] and
compute all integrals in d = 2 − ε. Following the works [8,20]
we perform a double expansion in ε = 2 − d and δ = 2 − a

so that all divergences are transformed into the poles in ε

and δ while the ratio ε/δ remains finite. In the framework
of the minimal subtraction scheme we do not include these
finite ratios into the counterterms choosing them to be the
pole part only. We are interested in the case 0 < a < 2, so that
0 < δ < 2; however, one has to take with caution the numerical
estimations for δ > 1 computed using the results obtained
perturbatively in δ. We define the renormalized fields ψ , ψ̄ ,
mass m, and dimensionless coupling constants u and v in such
a way that all poles can be hidden in the renormalization factors
Zψ , Zm, Zu, and Zv , leaving finite the correlation functions
computed with the renormalized action

SR =
n∑

α=1

∫
k

ψ̄α(−k)(Zψγjkj − Zmim)ψα(k)

+ 1

2

n∑
α,β=1

∫
k1,k2,k3

[μεZuu + μδZvv|k1 + k2|a−d ]

× ψ̄α(k1)ψα(k2)ψ̄β(k3)ψβ(−k1 − k2 − k3), (11)

where
∫
k

:= ∫
ddk

(2π)d and we have introduced a renormalization
scale μ. Since the renormalized action is obtained from the
bare one by the fields rescaling

ψ0 = Z
1/2
ψ ψ, ψ̄0 = Z

1/2
ψ ψ̄, (12)

the bare and renormalized parameters are related by

m0 = ZmZ−1
ψ m, (13)

u0 = μεZuZ
−2
ψ u, v0 = μδZvZ

−2
ψ v, (14)

where we have included Kd/2 in redefinition of u and v. Kd =
2πd/2/[(2π )d�(d/2)] is the surface area of the d-dimensional
unite sphere divided by (2π )d . The renormalized N -point
vertex function �(N ) is related to the bare �̊(N ) by

�̊(N )(ki ; m0,u0,v0) = Z
−N /2
ψ �(N )(ki ; m,u,v,μ). (15)

To calculate the renormalization constants it is enough to
renormalize the two-point vertex function �(2) and the four-
point vertex function �(4). We impose that they are finite at
m = μ and find the renormalization constants using minimal
subtraction scheme [58]. To that end it is convenient to split
the four-point function in the short-range (SR) and long-range
(LR) parts:

�(4)(k1,k2,k3,k4) = �(4)
u (ki) + �(4)

v (ki)|k1 + k2|a−d . (16)

The renormalization constants are determined from the condi-
tion that �(4)

u (0; m = μ) and �(4)
v (0; m = μ) are finite.

Since the bare vertex function does not depend on the
renormalization scale μ the renormalized vertex function

satisfies the renormalization group equation[
μ

∂

∂μ
− βu(u,v)

∂

∂u
− βv(u,v)

∂

∂v
− N

2
ηψ (u,v)

−γ (u,v)m
∂

∂m

]
�(N )(ki ; m,u,v,μ) = 0, (17)

where we have introduced the scaling functions

βu(u,v) = −μ
∂u

∂μ

∣∣∣∣
0

, βv(u,v) = −μ
∂v

∂μ

∣∣∣∣
0

, (18)

ηψ (u,v) = −βu(u,v)
∂ ln Zψ

∂u
− βv(u,v)

∂ ln Zψ

∂v
, (19)

ηm(u,v) = −βu(u,v)
∂ ln Zm

∂u
− βv(u,v)

∂ ln Zm

∂v
, (20)

γ (u,v) = ηm(u,v) − ηψ (u,v). (21)

The subscript “0” stands for derivatives at fixed u0, v0, and m0.
The dimensional analysis gives

�(N )(ki ; m,u,v,μ) = λ−d+N (d−1)/2�(N )(λki ; λm,u,v,λμ),

(22)

which can be rewritten in an infinitesimal form as[
μ

∂

∂μ
+

∑
i

ki

∂

∂ki

+ m
∂

∂m
− d + N (d − 1)

2

]

×�(N )(ki ; m,u,v,μ) = 0. (23)

Subtracting Eq. (17) from Eq. (23) we arrive at[
βu

∂

∂u
+ βv

∂

∂v
+

∑
i

ki

∂

∂ki

+ (1 + γ )m
∂

∂m

+N
2

[d − 1 + ηψ ] − d

]
�(N )(ki ; m,u,v) = 0. (24)

Equation (24) is a linear first-order partial differential equation
which can be solved by the method of characteristics [59]. It
reduces this equation to a set of ordinary differential equations
which determines a family of curves along which the solution
can be integrated from some initial conditions given on a
suitable hypersurface. The characteristics lines of Eq. (24)
can be found from the flow equations

dũ(ξ )

d ln ξ
= βu(ũ(ξ ),ṽ(ξ )), (25)

dṽ(ξ )

d ln ξ
= βv(ũ(ξ ),ṽ(ξ )), (26)

dk̃i(ξ )

d ln ξ
= k̃i(ξ ), (27)

dm̃(ξ )

d ln ξ
= [1 + γ (ũ(ξ ),ṽ(ξ ))]m̃(ξ ) (28)

with the initial conditions ũ(1) = u, ṽ(1) = v, k̃i(1) = ki ,
m̃(1) = m. The solution of Eq. (24) propagates along the
characteristics lines (25)–(28) according to

d ln MN (ξ )

d ln ξ
= d − N

2
[d − 1 + ηψ (ũ(ξ ),ṽ(ξ ))], (29)
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with the initial condition MN (1) = 1, and thus satisfies the
scaling relation

�(N )(k̃i(ξ ); m̃(ξ ),ũ(ξ ),ṽ(ξ )) = MN (ξ )�(N )(ki ; m,u,v).

(30)

MN (ξ ) encodes the anomalous scaling dimension of the fields
ψ and ψ̄ . The critical behavior of the system is expected to be
controlled by a stable fixed point (FP) of the renormalization
group (RG) flow which is defined as simultaneous zero of β

functions (18):

βu(u∗,v∗) = 0, βv(u∗,v∗) = 0. (31)

Stability of a FP can be determined from the eigenvalues of
the stability matrix

M =
(

∂βu(u,v)
∂u

∂βu(u,v)
∂v

∂βv (u,v)
∂u

∂βv(u,v)
∂v

)
. (32)

The FP is stable provided that both eigenvalues calculated at
the FP (31) have negative real parts. We can identify ξ in
Eqs. (25)–(30) with the correlation length. Then the solution
(30) can be written in the vicinity of the FP (31) as

�(N )(ki,m) = ξNdψ−dfN (kiξ,mξ 1/ν), (33)

where we have identified the correlation length exponent

1

ν
= 1 + γ (u∗,v∗), (34)

and the anomalous scaling dimension of the fields ψ and ψ̄

dψ = 1
2 [d − 1 + ηψ (u∗,v∗)]. (35)

For instance, in the critical point we have

〈ψ̄(r)ψ(0)〉 ∼ r−2dψ . (36)

IV. FIXED POINTS, THEIR STABILITY
AND SCALING BEHAVIOR

A. Renormalization to two-loop order

In order to renormalize the theory (11) to two-loop order
we need the diagrams contributing to the two- and four-point
vertex functions �(2)(p) and �(4)(pi = 0) in the replica limit
n → 0 which are shown in Fig. 1 and Fig. 2. In the one-
loop approximation there are two diagrams contributing to
the two-point vertex function �(2)(p) each of which we split
into two parts Aa

1 and Aa
2. The first part is computed at zero

external momentum and the second part is the part which is
linear in the external momentum �p. The same is applied to the
two-loop diagrams Cab

2 and Cab
3 . The diagrams contributing to

the four-point function are computed at zero external momenta
and expanded in small parameters ε and δ keeping the ratio ε

δ

finite. Within the minimal subtraction scheme we need only
the poles in ε and δ for the two-loop diagrams while for the
one-loop diagrams one has to keep also the contributions which
are finite in the limit ε,δ → 0. The poles of the diagrams
shown in Fig. 1 and Fig. 2 are calculated with the help of the
formulas given in Appendix B and collected in Tables I and
II, respectively. The vertex functions �(2)(p), �(4)

u (pi = 0),
and �(4)

v (pi = 0) are computed in Appendix A. Using these

b

a a

a ba b

a

−p

γ

Aa
1 Aa

2

Bab
1 Bab

2 Bab
3

FIG. 1. The one-loop diagrams contributing to the two-point
vertex function �(2) (first row) and to the four-point vertex function
�(4) (second row) in the replica limit n → 0. Solid lines correspond to
the propagator (10) and dashed lines to the disorder vertex (9) which
is split in the SR and LR parts. The indices a, b, c take values 0 or 1,
depending on whether the dashed line stands for u vertex or v vertex.

functions we find the Z factors:

Zu = 1 + 4u

ε
+ 4v

δ
− u2

(
2

ε
− 16

ε2

)
+ 4v3

u(ε − 3δ)

−uv

(
28

δ + ε
− 32

δε
− 8

δ

)
− v2

(
10

δ
− 4ε

δ2
− 16

δ2

)
,

(37)

Zv = 1 + 4u

ε
+ 4v

δ
+ 16u2

ε2
− 4v2

δ

(
1 − ε

δ
− 4

δ

)

− 8uv

δ + ε

(
1 − ε

δ
− 4

δ
− 4

ε

)
, (38)

Zm = 1 + 2u

ε
+ 2v

δ
+ 6u2

ε2
+ v2

(
2ε

δ2
+ 6

δ2
− 2

δ

)

+ 4uv

(
3

δε
+ 1

δ
− 2

δ + ε

)
, (39)

Zψ = 1 + u2

ε
+ 4uvε

δ(δ + ε)
+ v2(2ε − δ)

δ2
. (40)

For the SR disorder it was argued that the contribution coming
from the nonzero mass in the numerator of the bare propagator
(10) vanishes, so that one can neglect it from the beginning
[60]. We have found that this holds also for the case of the LR
disorder at least to the two-loop order; i.e., the contributions
in the angular brackets in Tables I and II cancel each other in
Eqs. (37)–(40). From Eqs. (37)–(40) using the definitions (18)–
(21) we obtain the two-loop expressions for the β functions

βu(u,v) = εu−4u(u+v)+8u(u+v)2+4v(u+v)2, (41)

βv(u,v) = δv−4v(u+v)+4v(u+v)2, (42)
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ab
a

c

a
b a b

a b ca b ca b c

a b c

a

b c

a

b c

a

b cb c

aa

b c

a

b c

a

b

c

a
b

c

a b

a b

b

c

c

−p

γ

Cab
1 Cab

2 Cab
3

Dabc
1 Dabc

2 Dabc
3

Dabc
4 Dabc

5 Dabc
6

Dabc
7 Dabc

8 Dabc
9

Dabc
10 Dabc

11 Dabc
12

Dabc
13 Dabc

14 Dab
15

FIG. 2. The two-loop diagrams contributing to the two-point
vertex function �(2) (first row) and to the four-point vertex function
�(4) in the replica limit n → 0. The indices a, b, c take values 0 or 1,
depending on whether the dashed line stands for u vertex or v vertex.

and for the other scaling functions giving the critical expo-
nents:

ηψ (u,v) = −2u2 + 2v2 − 4ε

δ
uv − 4ε

δ
v2, (43)

ηm(u,v) = −2u − 2v + 4uv + 4v2 − 4ε

δ
uv − 4ε

δ
v2,

γ (u,v) = −2(u + v) + 2(u + v)2. (44)

Note that the ratio ε
δ

is finite within our regularization scheme.
Though it is present in the scaling functions ηm and ηψ , all these
ratios magically cancel each other in the β and γ functions,
leaving their coefficients pure integer constants.

B. Expansions in small ε and δ

We now analyze the renormalization group flow using
expansion in small ε and δ. The β functions have three FPs:
Gaussian, short-range correlated, and long-range correlated
disordered FPs.

(i) Gaussian fixed point, given by

u∗
G = v∗

G = 0, (45)

describes the pure 2D Ising model with the correlation length
exponent νpure = 1/[1 + γ (u∗

G,v∗
G)] = 1. Following Ref. [34]

one can estimate singularity in the free energy. Using the
action (5) one can express the partition function of the Ising
model as Z2

Ising = ∫
Dψ̄Dψe−SD ∼ det[/∂ + m0] with m0 ≡

τ . Applying the identity ln det = tr ln we find Fsing ∼ τ 2 ln τ ,
so that C ∼ ln(τ−1) and αpure = 0.

(ii) Short-range correlated disordered fixed point (SR FP),
given by

u∗
SR = ε

4
+ ε2

8
, v∗

SR = 0, (46)

merges with the Gaussian FP at d = 2. This implies that the SR
correlated disorder is marginally irrelevant in two dimensions.
As a consequence it results only in logarithmic corrections to
the scaling behavior of the pure 2D Ising model. The two-loop
logarithmic corrections are calculated in Appendix C. For the
correlation length and the specific heat we find

ξ ∼ τ−1(ln τ−1)1/2

[
1 + o

(
ln ln τ−1

ln τ−1

)]
, (47)

Csing ∼ ln ln τ−1

[
1 + o

(
1

ln τ−1

)]
; (48)

i.e., the subdominant two-loop logarithmic corrections identi-
cally vanish.

The Gaussian FP becomes unstable with respect to the LR
correlated disorder for δ > 0. This reproduces the extended
Harris criterion [8], which states that the critical behavior of
the pure system is modified by the LR correlated disorder if
νpure < 2/a. Indeed, substituting into the last relation νpure = 1
one arrives at a < 2 which means δ > 0.

(iii) Long-range correlated disordered fixed point (LR FP)
reads

u∗
LR = δ3

16(δ − ε)
, v∗

LR = δ

4
− δ2ε

16(δ − ε)
. (49)

In two dimensions the LR FP reduces to

u∗
LR = δ2

16
+ O(δ3), v∗

LR = δ

4
+ O(δ3). (50)

Let us perform the stability analysis of the LR FP. The two
eigenvalues of the stability matrix (32) computed at the LR
FP (50) at d = 2 are shown in Fig. 3 as functions of δ. Both
eigenvalues are complex conjugated with the negative real
parts for 0 < δ < δmax, where the LR FP is stable. There are
no stable FPs for δ > δmax. Expansion of the eigenvalues in
small δ gives

λ
(LR)
1,2 = −δ + δ2

2
+ O(δ3) ± i

√
δ

2

(
δ + δ2

4
+ O(δ3)

)
. (51)
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,

FIG. 3. The eigenvalues of the stability matrix in two dimensions
(d = 2) as a function of δ. There are two complex conjugated
eigenvalues: the red solid curve at the bottom is the real part and
the blue curve at the top is the imaginary part. The dashed lines are
the series expansions (51).

It is straightforward to see that the value of δmax that follows
from the expansion (51) is δmax = 2, whereas numerical
diagonalization of the stability matrix (32) gives δmax ≈ 1.005
(see Fig. 3 for more details). It is tempting to make more
precise the value of δmax by applying the familiar resummation
technique [5] to the two-loop series (41), (42) at fixed ε,
δ [22,61]. However, at d = 2 (i.e., at ε = 0) the leading
contribution to the first β function (41) vanishes, making the
series too short to allow for a reliable resummation.

Thus, while according to the extended Harris criterion the
LR FP may be stable for δ > 0 we reveal the existence of the
upper bound δmax for its stability. Indeed, reasonable values of δ

lie between 0 and 2, but δ = 1 corresponds to the case of defect
lines with random orientation [23]. One can argue that these
lines may break the 2D system into disconnected domains:
this is the argument that can also be applied to the McCoy
and Wu model [7]. Therefore one should take values δ > 1
with caution since strong correlations may destabilize the
LR FP and drastically modify the critical behavior. Since we
cannot identify any stable and perturbative in disorder FP for
δ > δmax, two scenarios are possible: (a) smearing of the sharp
transition that is manifested in a runway of the renormalization
group flow; (b) a new universality class controlled by a
nonperturbative infinite-randomness FP. In the latter case one
may expect relevance of rare regions which make a difference
between the typical and average correlations: the correlation
function between two arbitrary spins separated by a large
distance x acquires a broad distribution [62]. Thus, the typical
correlation function is very different from the averaged one
which is dominated by rare strongly coupled regions of spins
with atypical large correlations. As a result, there can be two
correlations lengths, typical and averaged, and therefore two
critical exponents νtyp � νavr.

Substituting FP (50) into Eqs. (34) and (44) we get the
correlation length exponent

1

ν
= 1 − δ

2
+ O(δ3), (52)

where the corrections of the second order in δ magically cancel
each other. Indeed, comparing Eq. (42) and Eq. (44) one can

observe that at least to two-loop order

βv(u,v) = v(δ + 2γ (u,v)). (53)

Calculating it at any FP and taking into account Eq. (34) we
obtain

v∗(δ + 2(ν−1 − 1)) = 0, (54)

which is in agreement with the conjecture of Refs. [8,47] that
the identity

ν = 2/(2 − δ) = 2/a (55)

is exact at the LR FP with v∗ �= 0.

V. SPIN-SPIN CORRELATION AT CRITICALITY:
BOSONIZATION

We now focus on the scaling behavior of the two-point
correlation function at criticality. Let us denote the correlation
function in a given realization of disorder by G(r) and
introduce the set of critical exponents

G(r)N ∼ r−ηN . (56)

In the absence of multifractality one expects ηN = Nη1 and
η1 ≡ η is the standard pair correlation function exponent.
Since the correspondence between the spin operators in the
Ising model and the Majorana fermions is nonlocal, reexpress-
ing the spin-spin correlation function in terms of fermions is
complicated and is well defined only in two dimensions. Thus
the anomalous dimension calculated in Ref. [52] from the
scaling of the two-point fermionic correlation function cannot
be directly connected with the critical exponent η. Nevertheless
using the Dirac representation allows one to derive a compact
formula for the square of the correlation function [34]

G(r)2 =
〈

exp

[
iπ

∫ r

0
dr ′ψ̄(r ′)ψ(r ′)

]〉
, (57)

where the averaging is performed with the Dirac action (5). The
direct calculation of the spin-spin correlation function from the
fermionic representation (57) has been performed only for the
pure system and involves a cumbersome algebra [31]. A more
simple way to get access to the spin-spin correlation function
is to use bosonization. The latter maps the 2D Dirac fermions
(5) into the sine-Gordon theory [34,55]

SSG =
∫

d2r

{
1

2
[∇ϕ(r)]2 − �m(r)

π
cos[

√
4πϕ(r)]

}
, (58)

where � is the UV cutoff. The two-point spin correlation
function becomes a two-point correlation function of the
operator

O(r) = sin
√

πϕ(r). (59)

Note that we bosonize the Dirac fermions so that this method
gives not the two-point function but the square of the two-point
function

G(r)2 = 〈O(r)O(0)〉SG (60)

since the two Majorana fermions, i.e., two copies of the Ising
model, have been combined to the Dirac fermions. Averaging
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in (60) is performed with action (58). After averaging over
disorder we obtain

G(r)2 = 〈O(r)O(0)〉SG. (61)

To get a perturbative expansion for the correlation functions of
the operator (59) one has to compute the correlation functions
of exponentials of field ϕ(r):〈

n∏
j=1

eiβj ϕ(rj )

〉
0

=
∫

Dϕ exp

{
− 1

2

∫
d2r[∇ϕ(r)]2

+
n∑

j=1

iβjϕ(rj )

}
. (62)

It can be shown [55] that this correlation function is not
vanishing only for

∑n
j=1 βj = 0 and is given by〈

n∏
j=1

eiβj ϕ(rj )

〉
0

=
∏
j<k

(�|rj − rk|)βj βk/(2π). (63)

For the pure 2D Ising model at criticality, i.e., at m(r) = 0,
one finds

G(r)2 =〈O(r)O(0)〉0 = 1
2 〈ei

√
π[ϕ(r)−ϕ(0)]〉= 1

2 (�r)−1/2, (64)

and thus ηpure = 1/4 for the pure system. We now calculate the
first-order correction in disorder. Applying the replica trick to
the action (58) we derive the replicated action

S = 1

2

n∑
α=1

∫
d2r[∇ϕα(r)]2 − �2

2π2

n∑
α,β=1

×
∫

d2rd2r ′g(r − r ′) cos[
√

4πϕα(r)] cos[
√

4πϕβ(r ′)].

(65)

Here we perform calculations directly in two dimensions to
one-loop order that allows us to put u0 = 0. We calculate the
averaged squared spin-spin correlation function for one replica
α = 1 to the first order in u0 and v0 in Appendix D and obtain

〈O1(r)O1(0)〉S = 1

2
(�|r|)−1/2

[
1 + u0 ln r�

4π
+ v0|r|δ

4πδ

]
.

(66)

To renormalize the spin-spin correlation function we introduce
the renormalization constant

O̊ = Z
1/2
O O, (67)

which can be found from the relation

˚
G(r)2 = ZO G(r)2. (68)

Using the dimensional method developed in Ref. [63] we can
convert the logarithm in Eq. (66) into a pole as ln r� → |r|ε

ε
.

Taking into account that to the lowest order u0 = 2mεv/Kd =
4πmεu and v0 = 2mδv/Kd = 4πmδv we obtain

ZO = 1 + u

ε
+ v

δ
+ O(u2,v2). (69)

The β functions and the FP coordinates can be taken from the
results obtained for the Dirac fermions [Eqs. (41), (42) and

(50)]. The resulting scaling function reads

η2 = 1

2
− βu

∂ ln ZO
∂u

− βv

∂ ln ZO
∂v

(70)

and to one-loop order is given by

η2 = 1
2 − u − v + O(u2,v2). (71)

Using that to the one-loop order u∗ = 0 and v∗ = δ/4 [see
Eq. (50)] we obtain the critical exponent

η2 = 1

2
− δ

4
, (72)

which describes algebraic decay of the square of the spin-spin
correlation function averaged over disorder:

G(r)2 = r−η2 . (73)

Since G2 � G
2

and η < ηpure the exponent η should satisfy
the inequality

η2

2
≈ 1

4
− δ

8
� η � 1

4
. (74)

To go beyond the one-loop approximation is a nontrivial task
which is left for a forthcoming study.

VI. CONCLUSIONS

We have studied the 2D Ising model with LR correlated
disorder using the mapping of the model to the 2D Dirac
fermions in the presence of LR correlated random mass disor-
der. Using dimensional regularization with double expansion
in ε = 2 − d and δ = 2 − a we renormalize the corresponding
field theory up to the two-loop order. In two dimensions
we have found two FPs: Gaussian FP (u∗ = 0, v∗ = 0) and
LR FP [u∗ = O(δ2), v∗ = O(δ)]. The Gaussian FP describes
the 2D Ising model with SR disorder. The SR disorder is
marginally irrelevant in 2D and leads to logarithmic correction
to scaling. The SR FP is stable for δ < 0 in accordance with
the generalized Harris criterion aνpure − d > 0 since νpure = 1
in two dimensions.

We have shown that the LR FP is stable for 0 < δ <

δmax with δmax ≈ 1.005 to two-loop order. The LR FP is
characterized by the critical exponent ν = 2/a + O(δ3) in
accordance with the prediction ν = 2/a. Using mapping to
the sine-Gordon model we have also studied behavior of the
averaged square of the spin-spin correlation function at the LR
FP which has been found algebraically decaying with the
distance as G2(r) ∼ r−η2 . To the lowest order in disorder we
have η2 = 1

2 − δ
4 + O(δ2) that gives the bounds for the usual

exponent η describing the algebraic decay of the averaged
correlation function: 1

2η2 � η � 1
4 .

We have not found a stable FP for δ > δmax. This runaway
can be a sign of either a smeared phase transition or a critical
behavior controlled by an infinite randomness FP with different
critical exponents. In the last case one can expect difference
between the typical and averaged correlation length exponents.
The latter is supposed to be due to rare regions with strong
correlations so that one can expect νavr > νtyp. In order to
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study the nonperturbative effects for δ > δmax one can try to
allow replica symmetry breaking following Refs. [64,65].

Let us compare our finding with the known numerical
results. In Ref. [51] it was found that η = 0.2588(14) and
ν = 2.005(5) for a = 1 (δ = 1). The exponent η satisfies the
inequality (74) while the exponent ν is very close to the predic-
tion ν = 2/a. In Ref. [66] it was found that η = 0.204(14) and
ν = 7.14 for a = 2/3 (δ = 4/3). It seems that the exponent η

also satisfies the inequality but the exponent ν is much higher
than the prediction corresponding to the perturbative LR FP.
That was ascribed to hyperscaling violation in the Griffiths
phase due to large disorder fluctuations. In the light of our
work this is not surprising. Indeed, the runaway of the RG flow
for δ > δmax suggests that either the system flows towards an
inaccessible within a weak disorder RG infinite randomness
FP which controls the transition or the transition is smeared
out. The numerical simulations of Ref. [66] are in favor of the
first scenario but this still remains an open question.

Another reason for such discrepancy may be due to
peculiarities of the spatial distribution of disorder in the
model analyzed in [66]. There, the spin configurations of the
Ashkin-Teller model at the critical point were used to construct
correlated distribution of random couplings. In turn, these
displayed large self-similar clusters of strong/weak bonds
[67]. Although, by construction, the disorder correlations in
Ref. [66] were governed by the power-law decay (4), formal
description of their impact might call for the model that
differs from the one analyzed in our paper since the bare
disorder distribution is strongly non-Gaussian. Note that all
above values of the exponent ν satisfy the Chayes-Chayes-
Fisher-Spencer inequality for the correlation length exponent
of disordered systems, ν � 2/d [68]. This indicates absence
of difference between the intrinsic correlation length and the
finite-size correlation lengths in this problem.
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APPENDIX A: VERTEX FUNCTIONS

Here we present the expressions for vertex functions using
diagrammatic presentation (see Fig. 1 and Fig. 2). Taking into
account the combinatorial factors for the diagrams, the two-

point function is

�(2)(p) = σp
{
1+A1

2v0 − C
0,0
3 u2

0−
(
C

1,0
3 +C

0,1
3

)
u0v0−C

1,1
3 v2

0

}
− im0

{
1 − A0

1u0 − A1
1v0 + (

C
0,0
1 + C

0,0
2

)
u2

0

+ (
C

1,0
1 + C

0,1
1 + C

1,0
2 + C

0,1
2

)
u0v0

+ (
C

1,1
1 + C

1,1
2

)
v2

0

}
. (A1)

The SR part of the full four-point vertex functions reads

�(4)
u (0) = u − 2B

0,0
1 u2 − 2B

0,1
1 uv + u2v

(
D̃

1,0,0
12 + 2D̃

1,0,0
14

+ 2D
1,0,0
1 + 2D

1,0,0
2 + 4D

1,0,0
3 + 4D

1,0,0
4 + D

1,0,0
5

+ 4D̃
1,0,0
6 + D̃

0,1,0
12 + 2D̃

0,1,0
14 + 2D

0,1,0
1 + 2D

0,1,0
2

+4D
0,1,0
3 + 4D

0,1,0
4 + D

0,1,0
5 + 4D̃

0,1,0
8 + D̃

0,0,1
12

+ 2D̃
0,0,1
14 + 4D̃

0,0,1
6

) + uv2
(
D̃

1,1,0
12 + 2D̃

1,1,0
14

+ 2D
1,1,0
1 + 2D

1,1,0
2 + 4D

1,1,0
3 + 4D

1,1,0
4 + D

1,1,0
5

+ 4D̃
1,1,0
6 + D̃

1,0,1
12 + 2D̃

1,0,1
14 + 4D̃

1,0,1
6

+ D̃
0,1,1
12 + 2D̃

0,1,1
14 + 4D̃

0,1,1
6

) + v3
(
D̃

1,1,1
12

+ 2D̃
1,1,1
14 + 4D̃

1,1,1
6

) + u3
(
D̃

0,0,0
12 + 2D̃

0,0,0
14

+ 2D
0,0,0
1 + 2D

0,0,0
2 + 4D

0,0,0
3

+ 4D
0,0,0
4 + D

0,0,0
5 + 4D̃

0,0,0
6

)
, (A2)

where D̃
a,b,c
i = D

a,b,c
i + D

a,b,c
i+1 . The LR part of the four-point

vertex is given by

�(4)
v (0) = v − 2B

1,1
1 v2 − 2B

1,0
1 uv + v3

(
2D

1,1,1
1 + 2D

1,1,1
2

+ 4D
1,1,1
3 + 4D

1,1,1
4 + D

1,1,1
5

) + uv2(2D
1,0,1
1

+ 2D
1,0,1
2 + 4D

1,0,1
3 + 4D

1,0,1
4 + D

1,0,1
5 + 2D

0,1,1
1

+ 2D
0,1,1
2 + 4D

0,1,1
3 + 4D

0,1,1
4 + D

0,1,1
5

)
+u2v

(
2D

0,0,1
1 + 2D

0,0,1
2 + 4D

0,0,1
3 + 4D

0,0,1
4

+D
0,0,1
5

)
. (A3)

The poles and finite parts of the one-loop diagrams [Aa
i in

(A1) and B
a,b
i in (A2) and (A3) shown in Fig. 1] are given in

Table I together with their combinatorial factors. The poles of

TABLE I. Poles and finite parts of one-loop diagrams in the units
of Kd

2 . C.F. is the combinatorial factor. The angular brackets denote
contribution resulting from the mass in the numerator of the bare
propagator (10).

Diag. Value C.F.

A0
1 〈 2

ε
〉 1

A1
1 〈 2

δ
〉 1

A0
2 0 1

A1
2 1 − ε

δ
1

B
0,0
1 = B

1,0
1

2
ε

− 1 − 〈1〉 2

B
0,1
1 = B

1,1
1

2
δ

− 1 − 〈1〉 2

B
a,b
2 + B

a,b
3 −〈1〉 2
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TABLE II. Poles of two-loop diagrams in the units of K̂ . C.F. is the combinatorial factor. The angular brackets denote contribution resulting
from the mass in the numerator of the bare propagator (10).

Different vertices
Diagram {a,b,c} Poles C.F.

C
a,b
1 {0,0} 4

ε2 (1 − ε) 1

{1,0} 4
δε

(1 − δ) 1

{0,1} 8
δ(ε+δ) − 8ε

δ(ε+δ) 1

{1,1} 2(3δ−ε)
δ2(2δ−ε)

− 2(δ+ε)
δ2 1

C
a,b
2 {0,0} 2

ε2 1

{1,0}, {0,1} 4
ε(δ+ε) 1

{1,1} 2(3δ−2ε)
δ2(2δ−ε)

1

C
a,b
3 {0,0} 1

ε
1

{1,0}, {0,1} 2
ε

− 2
ε+δ

1

{1,1} (3δ−2ε)
δ2 1

D
a,b,c
1 {0,0,0}, {0,0,1} 4

ε2 (1 − ε) − 〈 4
ε
〉 2

{1,0,0}, {1,0,1} 4
εδ

(1 − ε+δ

2 ) − 〈 2
ε
〉 − 〈 2

δ
〉 2

{0,1,0}, {0,1,1} 8
δ(ε+δ) (1 − ε+δ

2 ) − 〈 4
δ
〉 2

{1,1,0}, {1,1,1} 2(3δ−ε)
δ2(2δ−ε)

− 2(3δ−ε)
δ(2δ−ε) − 〈 2(3δ−ε)

δ(2δ−ε) 〉 2

D
a,b,c
2 {0,0,0}, {0,0,1} − 2

ε2 + 2
ε

+ 〈 2
ε
〉 2

{1,0,0}, {0,1,0}, {1,0,1}, {0,1,1} − 4
δ(ε+δ) + 2

δ
+ 〈 2

δ
〉 2

{1,1,0}, {1,1,1} − 2
δ(2δ−ε) + 2

2δ−ε
+ 〈 2

2δ−ε
〉 2

D
a,b,c
3 {0,0,0}, {0,0,1} 2

ε2 − 2
ε

− 〈 2
ε
〉 4

{1,0,0}, {1,0,1} 4
ε(ε+δ) − 2

ε
− 〈 2

ε
〉 4

{0,1,0}, {0,1,1} 4
δ(ε+δ) − 2

δ
− 〈 2

δ
〉 4

{1,1,0}, {1,1,1} 2
δ2 − 2

δ
− 〈 2

δ
〉 4

D
a,b,c
4 {0,0,0}, {0,0,1}, {1,0,0}, {1,0,1} −〈 2

ε
〉 4

{0,1,0}, {0,1,1} −〈 2
δ
〉 + 2(δ−ε)

δ(ε+δ) 4

{1,1,0}, {1,1,1} −〈 2
δ
〉 + (δ−ε)

δ2 4

D
a,b,c

5 {0,0,0}, {0,0,1} 4
ε2 − 4

ε
− 〈 4

ε
〉 1

{1,0,0}, {0,1,0}, {1,0,1}, {0,1,1} 4
εδ

− 2
ε

− 2
δ

− 〈( 2
ε

+ 2
δ
)〉 1

{1,1,0}, {1,1,1} 4
δ2 − 4

δ
− 〈 4

δ
〉 1

D
a,b,c
6 + D

a,b,c
7 {0,0,0}, {0,1,0}, {0,0,1}, {0,1,1} −〈 4

ε
〉 4

{1,0,0}, {1,1,0}, {1,0,1}, {1,1,1} −〈 4
δ
〉 4

D
a,b,c
8 + D

a,b,c
9 {a,b,c} 0 2

D
a,b,c
10 + D

a,b,c
11 {a,b,c} 0 2

D
a,b,c
12 + D

a,b,c
13 {0,0,0} 4

ε2 − 2
ε

1

{1,0,0}, {0,0,1} 4
δε

− 2
ε

1

{0,1,0} 8
δ(δ+ε) − 4

δ+ε
1

{1,1,0}, {0,1,1} 2(3δ−ε)
δ2(2δ−ε)

− 3δ−ε

δ2 1

{1,0,1} 4
δ2 − 2(2δ−ε)

δ2 1

{1,1,1} 8
(2δ−ε)(3δ−ε) − 4(3δ−2ε)

(2δ−ε)(3δ−ε) 1

D
a,b,c
14 + D

a,b,c

15 {0,0,0} − 2
ε2 + 2

ε
2

{1,0,0} 4
δ(δ+ε) − 4

εδ
+ 2

ε
2

{0,1,0}, {0,0,1} − 4
δ(δ+ε) + 4

δ+ε
2

{1,1,0}, {1,0,1} − 2
δ2 + 3

δ
− ε

δ2 2

{0,1,1} − 2
δ(2δ−ε) + 2

δ
2

{1,1,1} − 4
(2δ−ε)(3δ−ε) − 2

2δ−ε
+ 8

3δ−ε
2
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the two-loop diagrams [Ca,b
i in (A1) and D

a,b,c
i in (A2) and

(A3) shown in Fig. 2] are summarized in Table II. Some of the
two-loop integrals appearing in the calculations of poles are
summarized in Appendix B. The angular brackets in Tables
I and II denote contributions resulting from the mass in the
numerator of the bare propagator (10). These contributions
cancel each other in the Z factors (37)–(40) at least to two-loop
order as happens in the case of uncorrelated disorder [60].

APPENDIX B: TABLE OF TWO-LOOP INTEGRALS

Here we provide the list of the two-loop integrals, which
are helpful in calculation of the two-loop diagrams. To
calculate these integrals we used the methods based on the
hypergeometric function representation which were developed
in Ref. [69] for the ϕ4 model with correlated disorder.
We introduce the shortcut notations [1] := q2

1 + m2, [2] :=
q2

2 + m2, [3] := (q1 + q2)2 + m2, K̂ = K2
d

4 as well as shortcut
notation for the integration

∫ = ∫
�q1

∫
�q2

. Only the poles are
shown so that the omitted terms are of order O(1) unless
something else is explicitly stated.

1. a = b = c = 0

∫
1

[1][2]
=

∫
1

[1][3]
=K̂m−2ε

[
4

ε2

]
, (B1)∫

1

[1][3]2
=

∫
1

[1][2]2
=K̂m−2ε−2

[
2

ε
+ O(ε)

]
. (B2)

2. a �= 0

∫
qa−d

1

[1][2]
=

∫
qa−d

1

[1][3]
=K̂m−ε−δ

[
4

εδ

]
, (B3)∫

qa−d
1

[2][3]
= K̂m−ε−δ

[
8

δ(δ + ε)

]
, (B4)∫

qa−d
1

[1][2]2
=

∫
qa−d

1

[1][3]2
= K̂m−ε−δ−2

[
2

δ

]
, (B5)∫

qa−d
1

[2]2[3]
=

∫
qa−d

1

[2][3]2
= K̂m−ε−δ−2

[
2

δ

]
, (B6)∫

q2
1qa−d

1

[2]2[3]2
= K̂m−ε−δ−2

[
4

δ

]
, (B7)∫

qa−d
1

[1]2[2]
= K̂m−ε−δ−2

[
2

ε

]
, (B8)∫

q2
1qa−d

1

[2]3[3]
= K̂m−ε−δ−2[−1 + O(δ,ε)], (B9)∫

qa−d
1

[2]3[3]
= K̂m−ε−δ−4

[
1

δ

]
. (B10)

3. a �= 0,b �= 0

∫
qa−d

1 qa−d
2

[1][2]
= K̂m−2δ

[
4

δ2

]
, (B11)

∫
qa−d

1 qa−d
2

[1][3]
=

∫
qa−d

1 qa−d
2

[2][3]
=K̂m−2δ

[
2(3δ−ε)

δ2(2δ−ε)

]
,

(B12)∫
qa−d

1 qa−d
2

[1][3]2
=

∫
qa−d

1 qa−d
2

[2][3]2
=K̂m−2δ−2

[
2

2δ−ε

]
, (B13)∫

qa−d
1 qa−d

2

[2]2[3]
=

∫
qa−d

1 qa−d
2

[1][2]2
=K̂m−2δ−2

[
2

δ

]
, (B14)∫

q2
2qa−d

1 qa−d
2

[1]2[3]
= K̂m−2δ

[
2(3δ − ε)

δ2(2δ − ε)
− 2(3δ − ε)

δ2

]
,

(B15)∫
[2]qa−d

1 qa−d
2

[1]2[3]2
=K̂m−2δ−2

[
2(3δ − ε)

δ(2δ − ε)

]
, (B16)∫

[2]qa−d
1 qa−d

2

[1][3]2
=K̂m−2δ

[
2(3δ − ε)

δ2(2δ − ε)
− 2

δ

]
, (B17)∫

[2]qa−d
1 qa−d

2

[1]2[3]
= K̂m−2δ

[
2(3δ − ε)

δ2(2δ−ε)
−2(2δ−ε)

δ2

]
, (B18)∫

q4
2qa−d

1 qa−d
2

[1]2[3]2
= K̂m−2δ

[
8(3δ−ε)

δ2(2δ−ε)
−2(8δ−3ε)(3δ−ε)

δ2(2δ−ε)

]
.

(B19)

4. b �= 0,c �= 0

∫
q

2(a−d)
2

[1][2]
=

∫
q

2(a−d)
2

[2][3]
= K̂m−2δ

[
4

ε(2δ−ε)

]
, (B20)

∫
q

2(a−d)
2

[1][3]
= K̂m−2δ

[
4

δ(2δ − ε)

]
, (B21)

∫
q

2(a−d)
2

[1][2]2
=

∫
q

2(a−d)
2

[2]2[3]
= K̂m−2δ−2

[
2

ε

]
. (B22)

5. a �= 0,b �= 0,c �= 0

∫
qa−d

1 q
2(a−d)
2

[1][2]
= K̂m−3δ+ε

[
4

δ(2δ − ε)

]
, (B23)

∫
qa−d

1 q
2(a−d)
2

[1][3]
= K̂m−3δ+ε

[
4(5δ−3ε)

(3δ−2ε)(2δ−ε)(3δ−ε)

]
, (B24)

∫
qa−d

1 q
2(a−d)
2

[2][3]
= K̂m−3δ+ε

[
8(2δ−ε)

δ(3δ−2ε)(3δ−ε)

]
, (B25)

∫
qa−d

1 q
2(a−d)
2

[2]2[3]
= K̂m−3δ+ε−2

[
2

δ

]
, (B26)∫

qa−d
1 qa−d

2 |q1+q2|a−d

[1][2]
= K̂m−3δ+ε

[
8

(2δ−ε)(3δ−ε)

]
.

(B27)

APPENDIX C: LOGARITHMIC CORRECTIONS FOR SR
DISORDER

In order to calculate the subdominant logarithmic correc-
tions to scaling behavior in two dimensions due to SR disorder

224422-10



CRITICAL BEHAVIOR OF THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 93, 224422 (2016)

we have to find the asymptotic flow to the Gaussian FP. Here
we do this to two-loop order. The flow equations read

du

dl
= βu(u,v = 0) = −4u2 + 8u3 + O(u4), (C1)

dln τ

dl
= −[1 + γ (u,0)] = −1 + 2u − 2u2 + O(u3), (C2)

d ln F

dl
= γ (u,0) = −2u + 2u2 + O(u3), (C3)

where l = ln ξ and F is the vertex function with insertion
of the composite operator ψ̄(0)ψ(0) defined in Refs. [70,71].
The asymptotic behavior of the solution of Eq. (C1) in the
limit l → ∞ is

u(l) = 1

4l
+ ln l

8l2
+ O

(
1

l2

)
. (C4)

Substituting the flow (C4) to Eq. (C2) we obtain

τ−1 ∼ ξ (ln ξ )−1/2

[
1 + ln ln ξ

4 ln ξ

]
. (C5)

Inverting this equality with logarithmic accuracy we arrive at
Eq. (47). The singular part of the specific heat in the asymptotic
regime is given by Csing = ∫

dlF 2(l) [70]. Solving Eq. (C3)
we obtain

Csing(l) = ln l

[
1 − 1

2 ln l

]
. (C6)

Using l = ln ξ where ξ is given by Eq. (47) we derive Eq. (48).

APPENDIX D: CORRELATION FUNCTION

We now calculate the two-point function (66) for the replica
α = 1 to the lowest order in disorder. The first-order correction
in disorder can be split into the SR and LR parts as follows:

〈O1(r)O1(0)〉S = 〈O1(r)O1(0)〉0 + δ
(1)
SR〈O1(r)O1(0)〉

+ δ
(1)
LR〈O1(r)O1(0)〉. (D1)

The leading term in Eq. (D1) gives the two-point function of
the pure system:

〈O1(r)O1(0)〉0 = 〈sin
√

πφ1(r) sin
√

πφ1(0)〉0

= 1

(2i)2
〈(ei

√
πφ1(r) − e−i

√
πφ1(r))

×(ei
√

πφ1(0) − e−i
√

πφ1(0))〉0

= 1

2
〈ei

√
π (φ1(r)−φ1(0))〉0 = 1

2
(�r)−1/2, (D2)

where we used Eqs. (62) and (63). The first-order correction
in the SR correlated disorder has been calculated in Ref. [34]
using bosonization of the 2D massive Thirring model [55]. The
latter allows one to eliminate the terms in action (65) which
are diagonal in replicas and local in space by means of the

identity [
�

π
cos

√
4πϕ(r)

]2

= − 1

2π
(∇ϕ)2. (D3)

As a result, the kinetic term is rescaled by the factor
of 1 + u0/(2π ). The nondiagonal in replicas terms do not
contribute to the one-loop order. Using the rescaling ϕ =
[1 + u0/(2π )]−1/2ϕ′ we obtain for the SR disorder

〈O1(r)O1(0)〉0 + δ
(1)
SR〈O1(r)O1(0)〉

= 1

2
(�r)−1/{2[1+u0/(2π)]} ≈ 1

2
(�r)−1/2

[
1 + u0 ln r�

4π

]
.

(D4)

For the LR disorder we calculate the correction explicitly:

δ
(1)
LR〈O1(r)O1(0)〉

= �2

2π2

∫
d2r1d

2r2g(r1 − r2)〈sin
√

πφ1(r)

× sin
√

πφ1(0) cos
√

4πϕ1(r1) cos
√

4πϕ1(r2)〉

= − �2

2π2

22

22(2i)2

∫
d2r1d

2r2g(r1 − r2)

×〈ei
√

πφ1(r)e−i
√

πφ1(0)ei
√

4πφ1(r1)e−i
√

4πφ1(r2)〉

= �2

8π2
(�r)−1/2

∫
d2r1d

2r2g(r1 − r2)(�|r1 − r2|)−2

×|r − r1||r2|
|r − r2||r1| . (D5)

Taking g(r1 − r2) as the inverse Fourier transform of (9) at
d = 2,

g(r1 − r2) = u0δ
(2)(r1 − r2) + v0δ

2π
|r1 − r2|−a, (D6)

where δ(2) is the two-dimensional δ function, and setting u0 =
0, we find

δ
(1)
LR〈O1(r)O1(0)〉 = (�r)−1/2

8π2

v0δ

2π
|r|δJ

(
1

2
,
δ

4

)
, (D7)

where we have introduced the integral

J (p,τ ) = FP
∫

d2r1d
2r2|r1 − r2|4(τ−1)

[ |e − r1||r2|
|e − r2||r1|

]2p

.

(D8)

Here e is an arbitrary unit vector, and FP means “finite
part” in the sense of dimensional regularization. The method
of computing integrals of type (D8) has been developed in
Refs. [63,72,73]. It reads

J (p,τ )

4π2
= p2

8τ 2
+ O(τ−1). (D9)

Collecting all factors we arrive at Eq. (66).
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