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Transformation of spin current by antiferromagnetic insulators
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It is demonstrated theoretically that a thin layer of an anisotropic antiferromagnetic (AFM) insulator can
effectively conduct spin current through the excitation of a pair of evanescent AFM spin wave modes. The spin
current flowing through the AFM is not conserved due to the interaction between the excited AFM modes and
the AFM lattice and, depending on the excitation conditions, can be either attenuated or enhanced. When the
phase difference between the excited evanescent modes is close to π/2, there is an optimum AFM thickness for
which the output spin current reaches a maximum, which can significantly exceed the magnitude of the input
spin current. The spin current transfer through the AFM depends on the ambient temperature and increases
substantially when temperature approaches the Néel temperature of the AFM layer.
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I. INTRODUCTION

Progress in modern spintronics critically depends on finding
novel media that can serve as effective conduits of spin angular
momentum over large distances with minimum losses [1–3].
The mechanism of spin transfer is reasonably well understood
in ferromagnetic (FM) metals [4,5] and insulators [3,4,6–9],
but there are very few theoretical papers describing spin current
in antiferromagnets (AFMs) (see, e.g., [10]).

Recent experiments [11–13] have demonstrated that a thin
layer of a dielectric AFM (NiO, CoO) could effectively
conduct spin current. The transfer of spin current was studied
in the FM/AFM/Pt trilayer structure (see Fig. 1). The FM layer
driven in ferromagnetic resonance (FMR) excited spin current
in a thin layer of AFM, which was detected in the adjacent
Pt film using the inverse spin Hall effect (ISHE). It was also
found in [13] that the spin current through the AFM depends
on the ambient temperature and goes through a maximum near
the Néel temperature TN . The most intriguing feature of the
experiments was the fact that for a certain optimum thickness
of the AFM layer (∼5 nm) the detected spin current had a
maximum [11,12], which could be even higher than in the
absence of the AFM spacer [12]. The spin current transfer in
the reversed geometry, when the spin current flows from the
Pt layer driven by dc current through the AFM spacer into
a microwave-driven FM material, has been reported recently
in [14].

The experiments [11–14] posed a fundamental question of
the mechanism of the apparently rather effective spin current
transfer through an AFM dielectric. A possible mechanism of
the spin transfer through an easy-axis AFM has been recently
proposed in [10]. However, this uniaxial model cannot explain
the nonmonotonic dependence of the transmitted spin current
on the AFM layer thickness and the apparent “amplification”
of the spin current seen in the experiments [11,12] performed
with the biaxial NiO AFM layer [15].
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In our current work, we propose a possible mechanism
of spin current transfer through anisotropic AFM dielectrics,
which may explain all the peculiarities of the experiments
[11,12,14]. Namely, we show that the spin current can
be effectively carried by the driven evanescent spin wave
excitations, having frequencies that are much lower than the
frequency of the AFM resonance. We demonstrate that the
angular momentum exchange between the spin subsystem and
the AFM lattice plays a crucial role in the process of spin
current transfer, and may lead to the enhancement of the spin
current by the angular momentum influx from the crystal lattice
of the AFM.

II. SPIN DYNAMICS IN THE AFM DIELECTRICS

We consider a model of a simple AFM having two magnetic
sublattices with the partial saturation magnetization Ms . The
distribution of the magnetizations of each sublattice can be
described by the vectors M1 and M2, |M1| = |M2| = Ms .
We use a conventional approach for describing the AFM
dynamics by introducing the vectors of antiferromagnetism
(l) and magnetism (m) [16–19]:

l = (M1 − M2)/(2Ms), m = (M1 + M2)/(2Ms). (1)

Assuming that all the magnetic fields are smaller then the
exchange field Hex and neglecting the bias magnetic field,
which is used to saturate the FM layer, the effective AFM
Lagrangian can be written as [16,18,19]

L = μ[(∂l/∂t)2 − c2(∂l/∂y)2] − Wa − Wsδ(y). (2)

Here μ = Ms/(γ 2Hex), γ is the gyromagnetic ratio, c is the
speed of the AFM spin waves (c � 33 km/s in NiO), and Wa =
Ms l · (Ĥa · l) is the energy of the anisotropy, defined by the
matrix of the anisotropy fields Ĥa = diag(Ha

1 ,Ha
2 ,0) with the

diagonal (j,j ) components Ha
j = 2Msβj (βj is the anisotropy

constant along the j th axis). The equilibrium direction of the
AFM vector l0 = e3 lies along the e3 axis.

The exchange coupling between the FM and AFM lay-
ers is modeled in Eq. (2) by the surface energy term
Ws = Es[(mFM·m) + α(mFM · l)], where Es is the surface
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FIG. 1. Sketch of the model of spin current transfer through an
AFM insulator based on the experiment [11]. The FM layer excites
spin wave excitations in the AFM layer. The output spin current (at
the AFM/Pt interface) is detected by the Pt layer through the inverse
spin Hall effect (ISHE).

energy density and mFM is the unit vector of FM layer
magnetization. We assumed that the net magnetization of
the AFM at the FM/AFM interface layer could be partially
noncompensated, and this “noncompensation” is characterized
by a dimensionless parameter α (0 < α < 1); see also the
Appendix.

The dynamical equation for the AFM vector l follows from
the Lagrangian Eq. (2) and can be written as

∂2l/∂t2 + �ω ∂l/∂t − c2 ∂2l/∂y2 + 
̂ · l = f(t)δ(y), (3)

where �ω is the phenomenological damping parameter equal
to the AFM resonance linewidth (�ω/2π ≈ 69 GHz for NiO
[20]). Note that the damping-related decay length λG =
2c/�ω ≈ 150 nm is much larger than the typical AFM
thickness. Therefore, below we shall neglect damping except
in Fig. 4, where the comparison of AFM spin currents in
conservative and damped cases is presented. The matrix

̂ = diag(ω2

1,ω
2
2,0), and ωj = γ

√
HexH

a
j , j = 1,2, are the

frequencies of the AFM resonance. In the case of NiO the
two AFM resonance frequencies are substantially different:
ω1/2π � 240 GHz and ω2/2π � 1.1 THz [15]. We shall
show below that the difference between the AFM resonance
frequencies is crucially important for the spin current transfer
through the AFM.

The driving force in Eq. (3) f(t) = −(δWs/δl)/(2μ), local-
ized at the FM/AFM interface, describes AFM excitation by
the precessing FM magnetization. In the absence of this term
Eq. (3) describes two branches of the eigenexcitations of the
AFM with dispersion relations ωj (k) =

√
ω2

j + c2k2 . These
propagating AFM spin waves have minimum frequencies
ωj which are much higher than the excitation frequency
(9.65 GHz in Ref. [11]) and, therefore, cannot be responsible
for the spin current transfer.

The presence of the FM layer, however, qualitatively
changes the situation, as the driving force f(t) excites evanes-
cent AFM spin wave modes at the frequency of the FM layer
resonance (FMR), which is well below any of the AFMR
frequencies ωj . The profiles of the evanescent AFM modes
can be easily found from Eq. (3):

lj (t,y) = ej [Aj e
−y/λj + Bj e

y/λj ]e−iωt + c.c., j = 1,2,

(4)

where ω is the excitation frequency,

λj = c
/√

ω2
j − ω2 (5)

is the penetration depth for the j th evanescent mode, and
complex coefficients Aj , Bj are determined by the boundary
conditions at the FM/AFM and AFM/Pt interfaces. The
interfacial driving force f(t)δ(y) excites the AFM vector
l(t,y = 0) at the FM/AFM interface:

l(t,y = 0) = e3 + [(a1e1 + a2e2)e−iωt + c.c.]. (6)

The complex amplitudes a1 and a2 depend on the vector
structure of the magnetization precession in the FM layer (see
Appendix for details), which opens a way to experimentally
control the input spin current in the AFM, and to directly
verify our theoretical predictions. Thus, if the FM layer is
magnetized along one of the AFM anisotropy axes e1,2, the
microwave magnetization component along that axis will be
zero and the corresponding complex amplitude a1,2 in Eq. (6)
will vanish. On the other hand, if the FM layer is magnetized
along the AFM equilibrium axis e3, both amplitudes a1 and
a2 will be nonzero with the phase shift φ = arg(a1/a2) ≈ π/2
between them.

III. SPIN CURRENT THROUGH THE AFM LAYER

At the AFM/Pt interface (y = d) we adopt a simple form
of the boundary conditions that were used previously for the
description of spin current at the AFM/Pt [21] and FM/Pt [22]
interfaces:

P (y = d) = β c L(y = d), (7)

where P is the current of the e3 component of the spin angular
momentum and L is the corresponding angular momentum
density inside the AFM:

P = 2μc2e3 · [∂l/∂y × l], L = −2Msγ
−1 e3 · m, (8)

and β is a dimensionless constant having magnitude in the
range from 0 to 1 and being physically determined by the
spin mixing conductance at the AFM/Pt interface [22]. The
case β = 0 corresponds to the conservative situation of a
complete absence of the angular momentum flux, while the
case β = 1 describes a “transparent” boundary, when the
angular momentum freely moves across the AFM/Pt boundary
without any reflection.

Using Eqs. (8), the boundary conditions Eq. (7) can be
rewritten as explicit conditions on the vector of antiferromag-
netism l as β ∂l/∂t = −c ∂l/∂y. This equation and Eq. (6)
allow one to find all four coefficients Aj , Bj in Eq. (4), and
one can find the explicit expression for the spin current P (y)
inside the AFM layer:

P (y) = 4μc2|a1a2|Re[Q(y)e−iφ], (9)

where

Q(y) = (e−y/λ1 + q1e
y/λ1 )(e−y/λ2 − q∗

2 ey/λ2 )

(1 + q1)(1 + q∗
2 )λ2

− (e−y/λ1 − q1e
y/λ1 )(e−y/λ2 + q∗

2 ey/λ2 )

(1 + q1)(1 + q∗
2 )λ1

. (10)
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Here qj = e2iψj −2d/λj and ψj = arctan(βωλj/c) ≈ βω/ωj .
Equation (9) is the central result of this paper that allows one
to find the spin current carried by the evanescent spin wave
modes in an AFM layer.

Now we shall analyze the main features of the spin current
transfer through an AFM dielectric that are described by
Eq. (9). First, one can see that the spin current P is proportional
to the product |a1a2| of the amplitudes of both excited
evanescent spin wave modes, and this current is completely
absent if only one of the modes is excited. This is explained
by the fact that each of the modes Eq. (4) is linearly polarized,
and, therefore, cannot alone carry any angular momentum.

Second, the spin current in the AFM layer depends on the
position y inside the AFM layer; i.e., it is not conserved. This
is a direct consequence of the assumed biaxial anisotropy of
the AFM material, which allows for the transfer of the angular
momentum between the spin subsystem and the crystal lattice
of the AFM layer. This effect is a magnetic analog of the optical
effect of birefringence [23], where the spin angular momentum
of light is dynamically changed during its propagation in a
birefringent medium.

In the case of a uniaxial anisotropy [10] (λ1 = λ2 = λ)
Eq. (9) can be simplified to

P = 16μc2

λ

Im(q)

|1 + q|2 |a1a2| sin φ, (11)

and the spin current is conserved across the whole AFM layer.
Equation (9) can also be simplified in the case of a semi-

infinite AFM layer, in which case Bj = 0 and q1 = q2 = 0:

P = 4μc2(λ1 − λ2)

λ1λ2
|a1a2| cos φ e−y/λeff . (12)

In such a case the spin current decays monotonically inside
the AFM layer with the effective penetration depth λeff =
λ1λ2/(λ1 + λ2) � 5 nm for NiO.

Another peculiarity of Eq. (9) and Eq. (11) is that the spin
current P depends on the phase shift φ between the two excited
evanescent AFM spin wave modes l1 and l2:

P ∝ cos[φ − �(y)], (13)

where �(y) = arg[Q(y)]. The maximum spin current at a
given position y inside the AFM layer is achieved at φ = �(y).
Since the AFM phase shift �(y), in general, depends on the
position y inside the AFM layer, for any particular thickness d

of the AFM layer it is possible to choose the excitation phase
shift φ that would maximize the output spin current P (y = d),
while the input spin current P (y → 0) could be quite low. In
such a case the additional angular momentum is taken from
the crystal lattice of the AFM. This shows that, in principle,
the AFM dielectrics can serve as “amplifiers” of a spin current.

Figure 2 shows the spatial profiles of the spin current density
in a relatively thick AFM layer (thickness d = 20 nm). This
dependence is drastically different for different phase shifts
φ between the excited evanescent spin wave modes. While
for φ < π/2 the spin current exponentially and monotonically
decays inside the AFM layer (dashed blue line in Fig. 2), for
φ > π/2 (solid black line in Fig. 2) it initially increases at
relatively small y due to the angular momentum flow from the
AFM crystal lattice to its spin subsystem. At larger values of

FIG. 2. Spatial distribution of the spin current P (y) inside the
AFM layer for different phase shifts φ between the two evanescent
AFM spin wave modes calculated from Eq. (9).

y, the spin current decays exponentially due to the decay of
the excited evanescent spin wave modes.

Figure 3 demonstrates the dependencies of the spin current
on the phase shift φ at both interfaces FM/AFM (input spin
current) and AFM/Pt (output spin current). It is clear from
Fig. 3 that the output spin current is shifted by ∼π/2 relative
to the input spin current, and, for the phase shift φ ≈ π/2, the
output spin current could have a maximum magnitude when the
input spin current is almost completely absent. This means that
at such a value of the phase shift between the evanescent spin
wave modes practically all the output spin current is generated
as a result of interaction between the magnetic subsystem of
the AFM layer and its crystal lattice. Thus, the AFM layer acts
as a source of the spin current. On the other hand, at the phase
shift of φ ≈ 0 or φ ≈ π , the situation is opposite, as the input
spin current is practically lost inside the AFM, and the AFM
layer acts as a spin current sink.

Thus, we showed that a thin layer of AFM, driven by a
constant flow of microwave energy from the FM layer, is able
to transform the angular momentum of a crystal lattice into
the spin current and vice versa. The described transfer of the
angular momentum from the lattice to the spin system has a
simple analog not only as a birefringence in optics, but also in
mechanics: a mechanical oscillator which consists of a mass

FIG. 3. Dependence of the input (dashed blue line) and output
(solid red line) spin currents through the AFM layer on the phase
shift φ between the modes.
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FIG. 4. Spin current transfer factor of the AFM layer as a function
of the AFM layer thickness for different values of the spin mixing
conductance parameter β. The lines show the case of zero damping
(�ω = 0), while the circles correspond to the AFMR linewidth of
�ω/2π = 69 GHz [20].

suspended on two perpendicular springs with different stiffness
attached to a fixed rectangular frame. The displacement of the
mass from its equilibrium position in the frame center along the
direction of one of the orthogonal springs results in the linearly
polarized oscillations along this direction, without any transfer
of the angular momentum from the frame to the oscillating
mass. In contrast, the linear displacement of the mass in a
diagonal direction results in the rotation of the mass around
its equilibrium position, and the angular momentum necessary
for this rotation is taken from the frame (see animations in
Supplemental Material [27]).

The ratio of the output spin current to the input one (the spin
current transfer factor) is shown in Fig. 4 for different values of
the constant β, i.e., for the different values of the spin mixing
conductance at the AFM/Pt interface. This dependence has a
sharp maximum at the thickness of a few nanometers, where
the input current is rather low, and the AFM layer acts as a
source of a spin current. With the further increase of the AFM
layer thickness the transfer ratio is exponentially decreasing,
while the position of the maximum shifts to the right with
the increase of the spin mixing conductance at the AFM/Pt
interface. As one can see from Fig. 4, the presence of the
damping has little influence on the spin current, because the
spatial decay of the amplitudes due to the evanescent character
of the modes l1,2 is dominant.

IV. ENERGY EFFICIENCY OF THE SPIN TRANSFER

It is obvious that, besides the spin transfer through the
AFM dielectric, there is also a flux of energy through the AFM
layer. This flux of energy � can be found from the Lagrangian
Eq. (2) by applying the Noether theorem, and has the following
form:

� = 8
μc3ω2

β

∑
i=1,2

a2
i(

c2/β2 − ω2λ2
i

)
(1 + cosh 2d/λi)

. (14)

As one can see from Eq. (14), the flux of energy does not
depend on either the spatial coordinate y inside the AFM and
the phase shift φ between the excited evanescent AFM modes.

Therefore, the FM layer is a source and the Pt layer is a receiver
of the energy coming from the FM layer, and this flux of energy
is not transformed inside the AFM layer (besides negligible
Gilbert damping; see Fig. 4).

At the same time, the situation with the spin current is quite
different. Due to the anisotropy of the AFM layer the angular
momentum is not conserved inside the magnetic subsystem of
the AFM layer, and, therefore, there appears a flux of angular
momentum between the spin subsystem and the lattice of
the AFM.

Therefore, as was discussed above, at certain parameters of
the spin dynamics in the AFM it is possible to create a flux of
angular momentum from the lattice into the spin subsystem.
In this case it is possible to get the output spin current that is
larger than the input one, but, obviously, the flux of energy at
the output will never be larger than at the input.

The efficiency of the spin transfer through the AFM layer
can be characterized by the ratio of the spin current at the
output of the AFM layer to the energy losses of the FM layer.
Thus, we can introduce the value Seff = ωP |y=d/�, which is
defined as the ratio of the transferred angular momentum to
the energy flux, and, therefore, can be interpreted as “effective
spin” of the spin transfer.

As one can see, the energy flux is the sum of the energies
of both evanescent AFM modes, and has the form � =
A1a

2
1 + A2a

2
2 , while the spin current depends on the product

of the modes’ amplitudes P = C|a1a2|. Thus, the effective
spin has a maximum, and the value of this maximum is
Seff = C/2

√
A1A2. Maximizing this value with respect to the

phase shift φ between the excited evanescent AFM modes
one can obtain the maximum efficiency of the spin transfer
Smax

eff = 1, which is the same as for propagating spin waves in
ferromagnetic materials.

Physically, the difference in the behavior of the energy and
the spin flux originates from the symmetries of the Lagrangian
(2). The flux of energy is defined by the infinitesimal shifts of
the Lagrangian in time, which are symmetric in the absence of
damping, resulting in the energy conservation. In contrast,
the flux of the angular momentum is determined by the
infinitesimal rotations of the Lagrangian (2). Obviously, the
operation of rotation does not transform the system to itself
in the case of a biaxial anisotropy, and, therefore, the angular
momentum in the spin system of an anisotropic AFM is not
conserved.

V. ISHE VOLTAGE IN PT LAYER

Using Eq. (9), we estimated the ISHE voltage for an
FM/AFM/Pt structure (and, in particular, for the NiFe/ NiO/Pt
structure) with the AFM layer having thickness d, which is
smaller than the penetration depths λj of both evanescent AFM
modes. To find the amplitudes a1 and a2 of the evanescent
modes, we adopt a simple model, where we assume that the
precession of the magnetization in the FM layer excites spin
dynamics of the AFM; see the Appendix. Following [24], the
ISHE voltage can be written as

VISHE = ρ�SH w

(
2e

�

)
λP t

dP t

tanh

(
dP t

2λP t

)
Pd, (15)
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where ρ is the resistivity of the Pt, w = 5 mm is the distance
between the probe electrodes attached to the Pt layer, dP t =
10 nm is the thickness of the Pt layer, �SH = 0.05 is the spin
Hall angle in Pt, λP t = 7.7 nm is the spin diffusion length in
Pt, e is the electron charge, and � is the Planck constant.

It is important to note that the value of the interface
exchange integral Js and, correspondingly, the value of the
surface energy density Es strongly depend on the method of
fabrication of the sample, and, therefore, can be measured only
in an experiment performed for a particular sample. To give
a reasonable numerical example, below we take the value of
Es to be Es = 3.3 × 10−3 J/m2, which was measured for the
NiFe/NiO interface in [25].

For the given parameters, taking the angle of magnetization
precession in the FM layer, sin θ = 0.01 [see Eq. (A5)], we
obtain VISHE = 40 mV for the uncompensated AFM boundary
(α = 1) and VISHE = 4 nV for the compensated one (α = 0).
The first value is close to the ISHE voltage measured in
Ref. [11]. A partial interfacial magnetization of the antifer-
romagnetic NiO in that case was confirmed by the XRD
scan performed in [11]. The calculated ISHE voltage for the
compensated AFM is closer to the experimental value obtained
in Ref. [12].

The reason for such a small magnitude of the ISHE voltage
in the case of a compensated AFM interface is obvious. Since
the dynamic magnetization m in the “compensated” case is
γHex/ω times smaller than the magnitude of the AFM vector
l, the energy of the exchange coupling Ws at the FM/AFM
interface in Eq. (2) is rather small.

VI. DISCUSSION

The above presented results were obtained for the parame-
ters of a bulk NiO sample at low temperature. However, it is
well known that such important parameters of AFM substances
as the anisotropy constants and Néel temperature in thin AFM
films could be substantially smaller than in bulk crystals (see,
e.g., [26]). Thus, the penetration depths of the evanescent spin
wave modes Eq. (5), determined at a given driving frequency
ω by the AFM anisotropy constants, would significantly
depend on the thickness and the temperature of the AFM
layer. Particularly, with the increase of temperature the AFMR
frequencies ωj would decrease, and would approach zero at
the Néel temperature [20]. In accordance with Eq. (5), this
means that the penetration depth of the evanescent AFM spin
wave modes will increase substantially when the temperature
approaches the Néel temperature of the AFM layer. This
increase of the spin current transferred through the AFM layer
is clearly seen in the experiments [13].

In conclusion, we demonstrated that the spin current can
be effectively transmitted through thin dielectric AFM layers
by a pair of externally excited evanescent AFM spin wave
modes. In the case of AFM materials with biaxial anisotropy
the transfer of angular momentum between the spin subsystem
and the crystal lattice of the AFM can lead to the enhancement
or decrease of the transmitted spin current, depending on
the phase relation between the excited evanescent spin wave
modes. Our results explain all the qualitative features of the
recent experiments [11–14], in particular, the existence of an
optimum thickness of the AFM layer, for which the output

current could reach a maximum value which is higher than the
spin current magnitude in the absence of the AFM spacer, and
the increase of the transmitted spin current at the temperatures
close to the Néel temperature of the AFM layer.
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APPENDIX: AFM DYNAMICS DRIVEN BY THE
MAGNETIZATION PRECESSION IN AND ADJACENT

TO THE FM LAYER

Let us consider the excitation of dynamics in an AFM
layer by the processes happening at the FM/AFM interface.
Let us assume that the magnetic coupling between the FM
and AFM is of the exchange origin and, therefore, is strongly
localized at the AFM/FM interface. The spins existing at the
AFM boundary can belong either to two different sublattices of
the AFM, as shown in Fig. 5(a), or to the same sublattice [see
Fig. 5(b)]. In the first case the AFM has no static magnetization
at the interface and will be called below a compensated
AFM, while in the second case, the boundary of the AFM
is magnetized, and such AFM will be called uncompensated.

The exchange coupling between the FM and AFM layers
creates an additional term in the energy of the AFM. In
the case of a compensated AFM the additional energy is
expressed as �E = ∑

Js(S̃ · S1 + S̃ · S2), where Js is the
interface exchange integral, S̃ is the FM spin at the interface,
and the summation is taken over the whole FM/AFM interface.

After the transition to a continuum limit and taking into
account the relation Eq. (1) in the main text of the paper, one
can write the additional term in the Lagrangian Eq. (2) as
Es(mFM · m)δ(y), where mFM is the unit vector defining the
magnetization direction in the FM layer, Es is the density of
the surface exchange energy describing FM/AFM coupling,
and Es is proportional to the exchange integral Js : Es ∝ Js .

FIG. 5. Two types of FM/AFM interface: (a) totally compensated
AFM boundary with zero magnetization, (b) totally uncompensated
AFM boundary.
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Considering the case of an uncompensated boundary of the
AFM, one can find the additional coupling energy as �E =∑

2Js S̃ · S1, which leads to the term Es[mFM·(m + l)]δ(y).
Usually, the AFM boundary is partially uncompensated, and
we introduce the phenomenological parameter α ∈ [0 . . . 1],
which describes the degree of the AFM noncompensation at
the FM/AFM interface.

Using the well-known expression for the AFM magnetiza-
tion [16,18,19],

m = 1

γHex

[
l × ∂l

∂t

]
, (A1)

it is easy to obtain the Lagrange equations describing the spin
dynamics inside the AFM:

2μ

{[
l × ∂2l

∂t2

]
− c2

[
l × ∂2l

∂x2

]}
−

[
l × ∂Wa

∂l

]

= Esδ(y)

{
α[l × mFM] +

[
l × 1

γHex

(
2

[
∂l
∂t

× mFM

]
+

[
l × ∂mFM

∂t

])]}
. (A2)

Since vector l in the ground state is directed along the vector e3, we can, in the case of a negligibly small dissipation, write the
dynamic equations for only two components l1 and l2 of the vector l. These equations have the form analogous to the form of the
dynamic equation (3) in the main text of the paper:

∂2l1

∂t2
− c2 ∂2l1

∂y2
+ ω2

1l1 = Esδ(y)

2μ

{
α(mFM · e1) + 1

γHex

[
2
∂l2

∂t
(mFM · l) + l2

(
∂mFM

∂t
· l

)]
−

(
∂mFM

∂t
· e2

)}
, (A3)

∂2l2

∂t2
− c2 ∂2l2

∂y2
+ ω2

2l2 = Esδ(y)

2μ

{
α(mFM · e2) − 1

γHex

[
2
∂l1

∂t
(mFM · l) + l1

(
∂mFM

∂t
· l

)]
−

(
∂mFM

∂t
· e1

)}
. (A4)

The above equations are the equations describing dynamics of an oscillatory system driven by an external force f(t)δ(y), where
f(t) are the right-hand-side parts of the above equations.

We consider the harmonic driving force and, therefore, mFM ∝ e−iωt . In this case, when ω < ω1,ω2 the solutions of these
equations are the evanescent modes that exponentially decay with the increase of the coordinate y inside the AFM. These
solutions are given explicitly by Eq. (4) in the main paper.

To obtain the values of the amplitudes a1 and a2 in Eq. (6) we consider a generic case, when the magnetization in the FM layer
is parallel to the AFM vector mFM = e3. Then, the precessing magnetization in the FM layer can be expressed as

mFM · e1 = sin θ sin ωt,

mFM · e2 = sin θ cos ωt,
(A5)

where θ is the magnetization precession angle in the FM. In this case, the amplitudes a1 and a2 of the two evanescent modes l1,
l2 have the form

|a1| = γ
Es

2Ms

|ω + αγHex |
c

√
ω2

1 − ω2
sin θ, (A6)

|a2| = γ
Es

2Ms

| − ω + αγHex |
c

√
ω2

2 − ω2
sin θ, (A7)

and the phase shift is φ = π/2.
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