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Bond chaos in spin glasses revealed through thermal boundary conditions
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Spin glasses have competing interactions that lead to a rough energy landscape which is highly susceptible to
small perturbations. These chaotic effects strongly affect numerical simulations and, as such, gaining a deeper
understanding of chaos in spin glasses is of much importance. The use of thermal boundary conditions is an
effective approach to study chaotic phenomena. Here we generalize population annealing Monte Carlo, combined
with thermal boundary conditions, to study bond chaos due to small perturbations in the spin-spin couplings of
the three-dimensional Edwards-Anderson Ising spin glass. We show that bond and temperature-induced chaos
share the same scaling exponents and that bond chaos is stronger than temperature chaos.
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I. INTRODUCTION

Chaos is a common phenomenon in nonlinear dynamical
systems. Interestingly, complex systems with quenched disor-
der and frustration often display chaotic behavior in one form
or another. For example, in spin glasses, the thermodynamic
state in thermal equilibrium can change chaotically when an
external parameter, e.g., the temperature, is tuned. This is also
the case for small perturbations of the couplings between the
spins, as well as random time-dependent local biases (field
chaos). The corresponding chaotic phenomena are therefore
called temperature chaos [1–14], i.e., when the temperature
is changed, and bond chaos [10,11], when the interactions
between the spins are changed. Chaos is believed to be related
to hysteresis phenomena, memory and rejuvenation effects
in spin glasses [15–18], as well as the generic computational
hardness of disordered systems [13,19,20]. Therefore, chaos is
related to both the equilibrium and nonequilibrium properties
of dynamical systems. Chaos is also of paramount importance
in analog optimization machines, such as the D-Wave Systems
Inc. D-Wave 2X quantum annealer. Given the intrinsic analog
implementation of the device, small problem misspecifications
might lead to the solution of a different Hamiltonian altogether.
While temperature is well controlled in these analog machines,
precisely encoding the spin-spin interactions (or qubit-qubit
couplers) has proven to be difficult due to the limited
precision of the device. Given the importance of bond chaos
to these novel computing paradigms [20,21], in this work
we investigate bond chaos of spin glasses as a prototypical
example of the effects of changing the quenched disorder—a
problem far less studied than temperature chaos.

One intriguing numerical result [10,11] is that temperature
chaos and bond chaos [22] appear to follow the same scaling
properties, and that bond chaos is considerably stronger
than temperature chaos. However, these observations were
left unexplained in Refs. [10,11]. Here we provide sim-
ple explanations of both results within the framework of
the droplet/scaling picture [4,23–26] by assuming that
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temperature chaos is mainly entropy driven, whereas bond
chaos is mainly energy driven. Previous work have studied
chaotic effects using correlation and overlap functions between
different parameters. Here we use an alternate approach: we
study bond chaos using thermal boundary conditions [19,27],
in which all 2d combinations of periodic and antiperiodic
boundary conditions in the d directions (space dimensions)
appear in the simulation with their appropriate Boltzmann
weights. In this setting, the weights of boundary condition
crossings mimic the exchange of dominance of the more
abstract pure states. Furthermore, we generalize the population
annealing (PA) Monte Carlo [28–31] algorithm to simulate
bond chaos in glassy systems. One advantage of this approach
is that many disorder realizations up to a small perturbation
can be studied in a single simulation run, yet have enough
dynamical range in the perturbations to study the scaling
properties of chaotic effects.

The paper is organized as follows. We first discuss the
model, simulation methods, and scaling properties of bond
chaos in Sec. II, followed by numerical results on bond chaos
compared to previous results on temperature chaos in Sec. III.
Concluding remarks are stated in Sec. IV.

II. MODELS AND METHODS

In this section we review technical details of our study,
such as the model, numerical, and analysis methods, as well
as simulation details.

A. Model

We simulate the three-dimensional Edwards-Anderson
(EA) Ising spin glass represented by the Hamiltonian

H = −
∑
〈ij〉

JijSiSj , (1)

where Si ∈ {±1} are Ising spins. The sum 〈ij 〉 is over the
nearest neighbor sites in a cubic lattice with N = L3 sites.
The coupling Jij between spins Si and Sj is chosen from a
Gaussian distribution with mean 0 and variance 1. We refer to
each disorder realization J = {Jij } as a “sample.”
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B. Generalized population annealing Monte Carlo

We use population annealing to obtain equilibrium states
at a low temperature T = 1/β for a fixed disorder realization
J and then obtain equilibrium states as the couplings are
continuously transformed from J to J ′ while T is kept fixed.
Reference [31] provides a detailed description of population
annealing Monte Carlo (hereafter referred to as PA). First,
we briefly review the “standard” population annealing Monte
Carlo method for maintaining thermal equilibrium as the
temperature is lowered following a given annealing schedule.

Suppose we have an ensemble or population of R indepen-
dent replicas of the system chosen from the Gibbs distribution
for sample J at inverse temperature β = 1/T . We would like
to create a population chosen from the Gibbs distribution for
sample J at inverse temperature β ′, with β ′ > β. To achieve
this goal, we resample the population, making copies of
low-energy replicas and removing high-energy replicas from
the population. If replica i has energy Ei , then the expected
number of copies τi to make of replica i is

τi = 1

Q
e−(β ′−β)Ei with Q = 1

R0

∑
i

e−(β ′−β)Ei . (2)

Here R0 is the expected population size. Note that τi is
proportional to the ratio of the Boltzmann factors at the two
temperatures for a system with energy Ei , normalized such
that the sum of the τ ’s is equal to the target population size R0.

Now suppose we have a population in equilibrium at inverse
temperature β with interactions J and we would like to
transform to a new population at the same temperature β

but with different couplings J ′. For such a procedure, the
resampling now requires that

τi = 1

Q
e−β(E′

i−Ei ) with Q = 1

R0

∑
i

e−β(E′
i−Ei ). (3)

In Eq. (3), E′
i and Ei are the energy of replica i with bonds J ′

and J , respectively, with the spins in each replica held fixed.
One can summarize Eqs. (2) and (3) using reduced Hamil-

tonians H = βH . For two sets of close (similar) distributions
on the same state space with Boltzmann factors of exp[−Hi]
and exp[−H′

i] for replica i, when transforming a population
of replicas from H to H′,

τi = 1

Q
e−(H′

i−Hi ) with Q = 1

R0

∑
i

e−(H′
i−Hi ). (4)

Within this framework one can perturb the system either by a
change in temperature, by a change in the spin-spin interac-
tions, or both using PA. Finally, we note that the free-energy
difference can be generalized, too, using the free-energy per-
turbation method as −β ′F ′ = −βF + 〈exp[−(H′ − H)]〉H,
although the free energy is not needed in this work.

One advantage of PA over other methods such as parallel
tempering Monte Carlo [32] is the ease of simulating thermal
boundary conditions. In thermal boundary conditions, each of
the 2d choices of periodic or antiperiodic boundary conditions
in each of the d Cartesian directions appears in the ensemble
with its correct statistical weight, given by exp(−βFi), where
Fi is the free energy of the system in boundary condition
i. As described in Ref. [31], thermal boundary conditions

can be simulated in PA by initiating the population at β = 0
with an equal fraction 1/2d of the population is in each of
the 2d boundary conditions. Thereafter, as the temperature or
the bond configuration is modified, resampling changes the
relative fraction of each boundary condition. At each value
of β and J in the annealing schedule, let pi be the fraction
of boundary condition i in the population. The free energy of
each boundary condition is then proportional to − log pi . The
evolution of pi with bond configuration is our main tool to
study bond chaos.

C. Scaling analysis and observables

We present the scaling analysis of temperature and bond
chaos within the droplet theory of the low-temperature phase
of the the Edwards-Anderson Ising spin glass. In this theory,
the low-lying excitations of the spin glass are flipped compact
droplets. The free-energy cost to flip a droplet of size � at
temperature β scales as �θ with disorder J , and the free-
energy cost to perturb the bonds with δJ for the droplet and
the flipped droplet is �F1 and �F2, respectively. Then the
free-energy cost to flip the droplet at J ′ = J + δJ is �θ +
�F2 − �F1, with θ the stiffness exponent. One can see that
the effect of changes in the spin-spin interactions for the last
two terms is nonzero only at the surface of the droplet due
to spin-reversal symmetry. Because �F = �E − T �S, and
assuming the energy difference dominates when we change the
couplings and therefore, the last two terms scale as δJ �ds/2,
where ds/2 is the fractal dimension of the boundary of the
droplet. Putting everything together, the free-energy cost to
flip the droplet at J ′ scales as �θ − δJ �ds/2, and therefore the
strength δJ needed for bond chaos scales as

δJ ∼ 1

�ζ
, (5)

where

ζ = ds/2 − θ. (6)

This simple derivation using droplet arguments suggests that
bond chaos effects should be described by the same scaling
exponents (θ , ds/2 and ζ ) as temperature chaos [11,19].

Following Refs. [19,27], θ can be calculated using sample
stiffness scaling, ds/2 can be calculated using the scaling of
energy differences at boundary condition crossings, and ζ is
related to the scaling of the number of dominant crossings. We
briefly summarize these quantities and their scaling.

For a sample J at inverse temperature β, let fJ ,β =
maxi [pi] be the fraction of the population in the dominant
boundary condition, i.e., the boundary condition with the
largest fraction in the population. The sample stiffness λJ ,β is
defined as

λJ ,β = log
fJ ,β

1 − fJ ,β

, (7)

and is an estimator of the free-energy difference (times −β)
between the dominant boundary conditions and all other
boundary conditions in sample J at inverse temperature β.
(Henceforth, we leave J and β implicit.) Let GL(λ) be the
cumulative distribution function for λ, then it was shown
in Ref. [27] that the function 1 − GL(λ) is approximately
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exponential, which then allows for a scaling analysis. Define
a characteristic λchar(L) such that 1 − G(λ) = e−λ/λchar and
1 − G(λchar log b) = 1/b for any b. The value b should be
chosen such that λchar is obtained from the tail of the
distribution but not so far into the tail where the statistics are
poor. For T = 0.5 (dimensionless units), we choose b = 10.
We have verified that the distribution functions for different
linear system sizes L collapse well onto the same curve after
being scaled by λchar(L). Standard spin stiffness scaling then
gives

λchar ∼ Lθ . (8)

A key element of the analysis of both bond chaos and tem-
perature chaos is the identification and analysis of boundary
condition crossings, which occur at values of J and β where
there are two boundary conditions i and j having the same
fraction in the population, pi = pj . Let |�E| be the absolute
value of the energy difference at a boundary condition crossing.
Then the scaling of |�E| with the system size L yields the
exponent controlling the domain-wall fractal dimension (ds/2)
according to

〈|�E|〉 ∼ Lds/2. (9)

Here the average is over all crossing in a given range of
temperature or bond configuration and above a threshold pc,
such that at the crossing pi = pj > pc. We have also used the
median of |�E| rather than the mean.

Boundary condition crossings are manifestations of chaos.
The scaling of their number with the system size gives access
to the chaos exponent ζ . Let NC be the number of dominant
crossings in some range of either β or J . At a dominant
crossing, the two boundary conditions exchange dominance
and on either side of the crossing, one of the two boundary
conditions is dominant. Dominant crossings, rather than all
crossings above an arbitrary threshold, are used to reduce
finite-size effects. From NC within some range of β or J ,
we compute ζ from

NC ∼ Lζ . (10)

The relationship between the exponents presented in Eq. (6),
as well as the relative strength of bond and temperature chaos
(which corresponds to the ratio of the scaled density of the
number of dominant boundary condition crossings NC), are
examined and discussed in Sec. III.

D. Simulation details

We start by discussing how to simulate bond chaos for
a single disorder realization. In the reduced Hamiltonian
representation, we can either change the inverse temperature β

or perturb the spin-spin interactions J . We use the following
procedure to change the interactions: For each disorder
realization J0, we choose an independent perturbation J ′ and
change the original bonds as

J = J0 + cJ ′
√

1 + c2
, (11)

where c ∈ [0,0.1] is a small number. In this manner, for
each value of the perturbation strength c, a Gaussian disorder
distribution is preserved [11,22,33,34].
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FIG. 1. Schematic simulation paths. In all cases, a quench from
β = 0 to β = 2 is first performed. For the bond chaos case, an
additional set of simulations for β = 2 along the c axis from c = 0.1
to c = 0 is performed. Path I (red) represents a simulation to probe
temperature chaos. Path II represents a bond chaos simulation. If the
sample is computationally difficult, then path II is split into paths II.A
(green) and II.B (blue) that are each run independently.

From now on, within the reduced Hamiltonian represen-
tation, we vary the parameters β and c in the (β,c) plane.
We start the simulation first with fixed c from β = 0 down
to β = 2. This takes the system from the paramagnetic to the
spin-glass phase. Following this anneal in temperature, we
fix β = 2 and change the bond perturbation strength c in the
interval [0,0.1] to induce chaotic effects. To double-check our
results, we have chosen the interactions of the unperturbed
system J0 from the study of temperature chaos in Ref. [19].
The perturbed interactions J ′ were chosen independently. We
first do a temperature anneal of the system from β = 0 to
β = 2 at c = 0.1 fixed, and then we change c from 0.1 to
0. In this way, the final interaction configuration is the same
as J0, which allows us to compare the results directly to the
ones from our temperature chaos study in Ref. [19]. It is of
paramount importance to verify after both simulation paths
that the weights of each boundary conditions {pi} agree. In
our simulations, we require the family entropy Sf � log(100)
(where Sf is a measure of equilibration discussed in Ref. [31])
for each path as well as max{|pi − p′

i |} � 0.05, where {pi}
and {p′

i} are the weights of each boundary conditions from the
two distinct paths, respectively, for each sample.

Computationally hard samples that do not fulfill the two
equilibration criteria were either rerun with a larger population
size, or by breaking the bond-chaos c path into two segments,
where each segment separately is considerably easier to
equilibrate. Figure 1 shows how the c path is split into two
pieces (path II.A and II.B). Measurements along path II.B
require an additional population annealing run starting at
β = 0 and c = 0.05. Whenever runs are combined, we test
the family entropy of each run, as well as the matching of
boundary conditions between the different runs.

We have carried out a large-scale simulation of bond chaos
for linear system sizes L = 4, 6, 8, and 10, with 2001 samples
for each system size. The details of the simulation parameters
are summarized in Table I.
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TABLE I. Parameters of bond-chaos simulations using general-
ized PA. L is the linear system size, R0 is the standard number of
replicas, T0 = 1/β0 is the lowest temperature simulated, NT is the
number of temperature steps (evenly spaced in β) in the annealing
schedule, Nb is the number of disorder steps (evenly spaced in c) in
the annealing schedule, and n is the number of disorder realizations
studied.

L R0 T0 NT Nb n

4 5 × 104 0.5 101 51 2001
6 2 × 105 0.5 101 51 2001
8 5 × 105 0.5 201 101 2001
10 2 × 106 0.5 301 101 2001

III. RESULTS

A. Scaling properties of bond chaos

The boundary condition probabilities of a sample of linear
size L = 8 is shown in Fig. 2, displaying chaotic behavior via
several boundary condition crossings. In this figure and in the
analysis of the energy differences, we have registered crossings
above a threshold of pc = 0.1 when two boundary conditions
cross as a function of c. Figure 3 shows a histogram of the
distribution (i.e., number density) of crossings as a function of
c, which is relatively flat, as expected. On the other hand, the
distribution of the crossings is approximately exponential as
a function of β when chaotic effects are induced by thermal
changes [19].

The system-size scaling of the number of dominant cross-
ings NC , sample stiffness λchar, mean and median of the energy
cost at boundary condition crossings 〈|�E|〉 and |�E|med,
respectively, are all shown in Fig. 4. We have used data at
both (β = 2,c = 0) and (β = 2,c = 0.1) after a temperature
anneal for the scaling of λchar to improve statistics for the
measurement of θ . The different exponents can be extracted
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FIG. 2. Evolution of the relative weights of each boundary
conditions {pi} for a chaotic sample of linear system size L = 8 and
β = 2. Different boundary conditions show crossings, i.e., chaotic
events. Three of the eight boundary conditions have probabilities too
small to be seen on the plot.
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FIG. 3. Distribution of all crossings above a cutoff of pc = 0.1
as a function of c. The distributions are relatively uniform compared
to the distributions of temperature chaos [19] which are exponential.
Note that the horizontal axis has been multiplied by 10 for better
viewing.

by linear fits to the data. Our estimates are

θ = 0.22(3), (12)

ds/2 = 1.22(3) (mean), (13)

ds/2 = 1.19(3) (median), (14)

ζ = 1.01(4). (15)
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FIG. 4. Scaling of the measured quantities as a function of system
size. The log-log plot clearly shows that the different quantities are
well fit with a power law. The slope of the number of dominant
crossings scales as NC ∼ Lζ , the energy difference at all registered
boundary condition crossings above pc = 0.1 scales as �E ∼ Lds/2,
and λchar ∼ Lθ . Note that for the energy difference at all registered
boundary condition crossings both the median �Emed and average
〈�E〉 have the same slope within error bars. Error bars are smaller
than the symbols.
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Note that ds/2 − θ = 1.00(4) (mean) and ds/2 − θ = 0.97(4)
(median) are in good agreement with ζ . These estimates of the
exponents are also in agreement with the results obtained from
temperature chaos [19], showing that temperature chaos and
bond chaos indeed share the same set of scaling exponents.

B. Comparison of temperature and bond chaos

Next we compare the relative strength of temperature chaos
and bond chaos. A natural quantity to compare is the number
of dominant crossings NC . However, due to the different types
of perturbations (temperature β vs interactions c), we need to
compare fairly the density of crossing with respect to β and
c. Let �β be the range of inverse temperatures in the analysis
of temperature chaos and �c (here �c = 0.1) the range of
modification of the bond configuration. The relative strength
of the perturbation of temperature chaos to bond chaos seen
from the reduced Hamiltonian is

�β

β�c
. (16)

The distribution of crossings of bond chaos is approximately
uniformly distributed, therefore, the density of crossings for
bond chaos (BC) is simply given by

ρBC = NC
TC

β�c
. (17)

The distribution of crossing for temperature chaos is more
complicated and is approximately exponential in the range β ∈
[βmin,βmax] = [1.5,3] for all system sizes studied in Ref. [19].
An exponential fit of the form

N (β) = ae−aβ

e−βmina − e−βmaxa
, (18)

with β ∈ [1.5,3] yields a ≈ 1.12. This suggests that the
density of crossing distributions at β = 2 is approximately
1.18 times larger than that of the averaged density in the whole
temperature range [1.5,3]. We note that the ratio depends only
very weakly on a. The corresponding density of crossings for
temperature chaos (TC) is therefore given by

ρTC = 1.18NC
TC

�β
. (19)

Using �c = 0.1, β = 2, �β = 1.5, and NC for the whole
perturbation range of both types of chaos in Eqs. (17) and (19),
we can define a quantity κ that quantifies the relative strength
of bond chaos and temperature chaos as

κ = ρBC

ρTC

≈ 6.34
NC

BC

NC
TC , (20)

where NC
BC and NC

TC are the total number of dominant
boundary condition crossings of bond chaos and temperature
chaos, respectively. A plot of κ as a function of the linear
system size L is shown in Fig. 5 (red circles). Note that κ is
almost a constant function of L, as expected from the scaling
properties of NC . Averaging over the studied system sizes L,
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FIG. 5. Relative strength between bond and temperature chaos κ

as a function of system size L computed from Eq. (20) (red circles)
and Eq. (22) (blue squares). Using droplet scaling arguments one can
show that κ does not depend on the system size.

we find that

κ ≈ 16(1). (21)

Therefore, bond chaos is more than one order of magnitude
stronger than temperature chaos at low temperatures (β = 2).
It is interesting that our result is very close to the value of 17.5
quoted in Ref. [10] even though the two values are computed
using fundamentally different methods and models. Note that
the difference of the threshold to register crossings does not
affect the number of dominate boundary condition crossings
and therefore also κ , as in both cases, a dominant boundary
condition crossing cannot occur below the chosen threshold
pc = 0.1 for bond chaos and pc = 0.05 for temperature chaos.

We propose a simple physical interpretation for κ . At first
sight, one might expect that the scale of �E and �(T S) might
be relevant to explain κ . However, while we find this is indeed a
factor—especially at low temperatures—this is not sufficient.
We find that the strength of responses of the quantities with
respect to c and β are more relevant, as chaos is a dynamical
process. To this effect, we use an alternate definition of the
relative strength κ , namely

κ =
〈
∂|�E|
β∂c

〉/〈
∂|�(T S)|

∂β

〉
, (22)

where the derivative is evaluated using finite element methods
at the same temperature β = 2. This theoretical prediction of
κ is also shown in Fig. 5 (blue squares). Note that Eq. (22) also
explains why κ does not depend on the system size from the
same scaling properties of �E and �(T S). The predictions are
reasonably close, showing that bond chaos is indeed energy
driven, while temperature chaos is entropy driven.

We know that the number of dominant crossings NC is a
growing function of system size L. It is a natural scenario that
the fraction of instances with dominant crossings also grows
with L, along with the mean number. The fraction of samples
with dominant crossings for both temperature chaos and bond
chaos are shown in Table II.
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TABLE II. Fraction of instances with dominant crossings as
a function linear system size L for temperature chaos (TC) and
bond chaos (BC). Note that the fraction of instances with dominant
crossings grows with L, along with the mean number.

L 4 6 8 10

TC 0.11(1) 0.16(1) 0.21(1) 0.26(1)
BC 0.27(1) 0.39(1) 0.48(1) 0.56(1)

It has been argued that temperature chaos in spin glasses is
dominated by rare events [13]. By looking at the distribution of
the number of dominant crossing for each disorder realization
one can study this hypothesis in the context of both bond and
temperature chaos. Figure 6 shows the probability with respect
to disorder realizations of having NC dominant crossings as
a function of NC for the case of bond chaos with L = 10.
The Poisson distribution with the same mean is also shown in
Fig. 6. The inset shows the ratio of both distributions. There
are systematic deviations between the data and the Poisson
distribution, specifically there are fewer NC = 0 samples than
the Poisson distribution and more NC = 1 samples. More
importantly, the probability of getting large values of NC is
less than the Poisson prediction. We find qualitatively similar
results for both temperature and bond chaos and for all sizes
studied. Therefore, in contrast to the results of Ref. [13], our
measure of chaos based on boundary condition crossings is
not described by an extreme value distribution and is not
dominated by rare events.

It has recently been established that temperature chaos is
associated with computational hardness [13,19–21]. We note
that the same can be stated for bond chaos. In Sec. II D
we divided disorder realizations into two groups: hard to
simulate and easy to simulate. We take a closer look at the
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FIG. 6. Representative distribution of the number of dominant
crossings NC for L = 10 of bond chaos, along with a Poisson fit.
The ratio of the weights of the distribution to the Poisson fit is shown
in the inset. One can see that the number of dominant crossings
is still dominant by samples with small number of crossings of the
majority of instances. Qualitatively similar results have been obtained
for temperature chaos, as well as all system sizes studied.

average number of dominant crossings in each class. For
L = 8, approximately 13% of the instances are typically
hard, and the mean number of dominant crossings are 0.92(4)
and 0.53(2) for computationally “hard” and “easy” instances,
respectively. For L = 10, approximately 47% of the instances
are hard, and the mean number of dominant crossings are
1.02(3) and 0.49(2) for hard and easy instances, respectively.

This suggests that the difficulty of transforming an equi-
librium state for one set of bonds to another set of bonds is
strongly correlated with bond chaos along the path connecting
the two bond configurations. This is not unexpected because
a crossing indicates that configurations (including both spin
and boundary condition) that were important for one set of
bonds are no longer as important when the bonds are modified.
The fact that both temperature and bond chaos introduce
computational hardness, suggests the possibility of optimizing
population annealing Monte Carlo for simulating a fixed bond
configuration by choosing curved paths in the temperature-
disorder space that minimizes chaos. A simulation of disorder
realization J might begin with disorder realization J ′ and
involve annealing in both temperature and bond strength.
This idea remains to be explored and might also provide an
avenue to overcome gaps in the energy spectrum for quantum
annealing simulations.

IV. CONCLUSIONS

In this work we have studied bond chaos using thermal
boundary conditions via a generalization of population anneal-
ing Monte Carlo. We provided a simple explanation as to why
temperature chaos and bond chaos share the same set of scaling
exponents within the framework of the droplet/scaling picture.
We also show quantitatively that bond chaos is approximately
one order of magnitude stronger than temperature chaos. A
simple physical picture is proposed that explains the relative
strength, identifying that bond chaos is energy driven, whereas
temperature chaos is entropy driven. As such, the surface of
excitations plays a key role in these phenomena. Our work
on temperature and bond chaos also establishes the validity
of the use of thermal boundary conditions to study chaotic
phenomena in disordered systems.

We use this opportunity to emphasize that the fact that
bond chaos is so much stronger than temperature chaos should
be a source of concern in analog computing machines, such
as the D-Wave Systems Inc. DW2X. While slight temperature
variations of the device might only affect the encoded problem
slightly, small perturbations of the couplers might change the
encoded Hamiltonian and yield erroneous results.

We intend to apply the method used here to other
paradigmatic spin-glass systems, such as the four-dimensional
Edwards-Anderson Ising spin glass. A more challenging
and intriguing problem is to investigate field chaos in the
mean-field Sherrington-Kirkpatrick model [35]—which also
has a spin-glass phase in an external magnetic field—using a
generalized definition of boundary conditions.
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