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Phase locking of spin-torque nano-oscillator pairs with magnetic dipolar coupling
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A spin-torque nanopillar oscillator (STNO) that combines a perpendicular-to-plane polarizer (PERP) with
an in-plane magnetized free layer is a good candidate for phase locking, which opens a potential approach to
enhancement of the output power of STNOs. In this paper, the magnetic dipolar coupling effect is used as the
driving force to synchronize two STNOs. We develop an approximation theory for synchronizing two identical
and nonidentical pairs of PERP STNOs, by which the critical current of synchronization, dipolar coupling
strength, phase-locking transient time, and frequency can be analytically predicted. These predictions are further
confirmed by macrospin and micromagnetic simulations. Finally, we show the phase diagrams of the phase
locking as a function of applied current and separation between two STNOs.
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I. INTRODUCTION

A spin-polarized current can be used to excite persistent
magnetization oscillations in a nanomagnet through the spin-
transfer torque (STT) effect [1,2]. Such STT-driven magnetic
precession has attracted considerable attention because of
both the fundamental interest for studying nanoscale magnetic
dynamics and the applications in the frequency tunable
microwave oscillators [3], which can be used in telecom-
munications, microwave signal processors, and microwave
field detectors [4–9]. The frequency of STT oscillators can be
tuned by the strength of magnetic fields or current. However,
the present output power of a single spin-valve spin-torque
nanopillar oscillator (STNO) is typically in the range of
picowatts to nanowatts [10,11], which is still too weak for
any practical applications.

Increasing output power of a STNO is essential for suc-
cessful adaptation of the STT excitation scheme for advanced
microwave oscillators. Several ways to enhance the output
signals have been reported. For example, using a magnetic
tunnel junction (MTJ) to replace the spin valve element can
increase the output power to microwatt level [12–14]; using the
perpendicular-to-plane magnetized layer as the spin polarizer
of STNOs can excite large angle out-of-pane (OP) precession
for enhancement of the power output [15–21]. Up to now, a
single STT device has been significantly optimized, but the
output power still cannot reach the required milliwatts.

Another promising approach to increasing the emitted
power has been suggested by using the phase-locking mode
of an array of STNOs through the synchronization technique.
This is a very challenging issue due to the strongly nonlinear
property of STNOs [22,23]. A phase-locking experiment has
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been reported in spin-torque devices with multiple nanocon-
tacts [24–31], in which the magnetization in all the nanocontact
regions can be locked in the same phase via propagating
spin-waves [32–34]. Alternatively, the phase locking by using
the coupled electrical circuits has also been proposed in an
array of STNO nanopillars electrically connected in series or in
parallel [35–37]. Recently, a third scheme using the magnetic
dipolar coupling effect as the driving source of synchronization
has been demonstrated in nanopillars that combines the out-
of-plane magnetized polarizer and the in-plane magnetized
free layer namely, perpendicular-to-plane polarizer (PERP)
STNO [19,38,39]. Additionally, another kind of oscillator
based on the spin Hall effect (SHE), i.e. spin Hall oscillators
(SHOs), have been also reported recently [40–45]. Moreover,
the synchronization of vortex-based nonuniformly magnetized
STNOs in a horizontal array has also been reported [46–49].
Among these synchronization schemes, the scheme using the
magnetic dipolar effect displays special features [38,47,48]:
First, the dipolar coupling among STNOs with nanopillar
structure is an intrinsic property, so that it does not need any
other external sources such as external microwave field or a
special design of resistor-inductor-capacitor (RLC) circuit to
assist synchronization. Second, unlike the scheme employing
a propagating spin wave [31], in which the phase-locking
mode can be either in phase or antiphase, depending on the
intercontact distance and current strength, the magnetization
phase-locking state induced by the dipolar interaction is very
stable, and the antiphase mode is independent of the current
and separation between neighboring STNOs [38].

In this paper, we present a phase-locking scheme to
synchronize two horizontally arranged PERP STNOs through
the dipolar coupling effect of the free layers. The paper is
organized as follows: In Sec. II, we develop a theory for
synchronizing two identical and nonidentical pairs of PERP
STNOs. The pairs are horizontally arranged. The sufficient and
necessary parametric conditions for the synchronization are
addressed, based on the assumption of strong demagnetization
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energy and the dipolar coupling approximation with a single
domain model. We analytically predict the critical current,
critical dipolar coupling strength, as well as the phase-locking
frequency and phase-locking transient time. In Sec. III, we
perform both macrospin and micromagnetic simulations. The
simulation results are consistent with our analytical predic-
tions, by showing the time evolution of the phase difference,
spectrum analysis of the synchronization oscillations, the
current range, and the separation distance between the two
synchronized STNOs. We also show parameter diagrams
of phase locking. Finally, a brief summary and discussions
are given in Sec. IV. Appendix A provides details of the
calculation of magnetic dipolar interaction between two
circular, uniformly magnetized discs, and Appendix B presents
an approximation theory using a low-energy orbit to derive the
Newton-like Eq. (5).

II. MODEL AND THEORETICAL FRAMEWORK

As a model system, we consider here a pair of STNOs
shown in Fig. 1. The bottom layer is the spin polarizer layer (P)
whose magnetization is fixed along the perpendicular-to-plane
direction. The top layer is supposed to be etched down to
the nonmagnetic metal layer. The free layers (F1 and F2) of
the two nanopillars are separated by an edge-to-edge distance
dee. We assume that the free layer has a quasiuniform in-
plane magnetization due to its small size. A dc electric current
separately flows from the bottom layer to the two free layers
F1 and F2. We assume that the two pillars have the same
amount of injected current (each one has −I). When the current
strength is larger than a critical value, the current-induced
STT effect will drive the two free-layer magnetizations into
a precessional state [15,21]. Owing to the magnetic dipolar
interaction between the two free layers, the two STNOs can
oscillate synchronously under certain conditions.

The magnetization dynamics of the two free layers can
be described by the Landau-Lifshitz-Gilbert (LLG) equation
including the STT term [19,50–52]

dmi

dτ
= −(∇mi

G
) × mi + α

(
mi × dmi

dτ

)
− aJ (mi)[mi × (mi × p)], (1)

FIG. 1. (a) Sketch of a horizontal array containing two PERP
STNOs. P denotes the spin polarizer layer (i.e. the fixed layer),
and F denotes the free layer. (b) The unit vector m of free layer
magnetization is illustrated in the polar coordinate representation
(θ,φ).

where the subscript i(=1, 2) is used to distinguish the
two nanopillars. Here, m = M/Ms is the unit vector of
the free-layer magnetization, Ms is the saturation magne-
tization, and τ = (4πMsγ )t is the scaled time, with γ =
1.76×107 Oe−1 · s−1 being the gyromagnetic ratio. Also,
G(m) is the total energy density of the free layer which
has been normalized by 4πM2

s . Further, α is the Gilbert
damping constant. The third term on the right side of
Eq. (1) is the STT term, in which p is a unit vector
of the polarizer magnetization along the z direction, and
aJ (mi) = AJ (mi)(4πMsγ )−1 = aJ0ε(θi,Pi,	i) is the scaled-
down STT strength in which AJ (mi) = AJ0ε(θi,Pi,	i) =
(γ �J/2eMsd)ε(θi,Pi,	i). Here, J is the injected current
density, P is the spin polarization, d is the free-layer thickness,
and θ is the angle between the magnetization vectors of
the free layer and the polarizer layer. Also, ε(θi,Pi,	i) =
Pi	i

2/[(	i
2 + 1) + (	i

2 − 1) cos θi](i = 1,2) is the angular
dependence factor of the Slonczewski STT [1], in which
P and 	 are dimensionless quantities which determine the
spin-polarization efficiency.

In the spherical coordinates (θ ,φ) [see Fig. 1(b)], the total
energy density G(m) is given by the sum of the demagnetiza-
tion energy, uniaxial anisotropic energy, and magnetic dipolar
interaction energy

Gdem(θ1,θ2) = 1

2

2∑
i=1

m2
zi = 1

2

2∑
i=1

cos2θi, (2)

Gu(θ1,φ1,θ2,φ2) = k

2

2∑
i=1

m2
xi=

k

2

2∑
i=1

sin2θisin2φi, (3)

Gdip(θ1,φ1,θ2,φ2) = Adisc(dee)[3(m1 · r)(m2 · r) − m1 · m2]

= Adisc(dee)[sin θ1 sin θ2(sin φ1 sin φ2

− 2 cos φ1 cos φ2)

+ cos θ1 cos θ2], (4)

where k is the uniaxial anisotropy constant, either a magnetic
anisotropy or a shape anisotropy. The easy-axis of the
anisotropy is along the x-axis direction. Here, Adisc(dee) is
the strength coefficient of the dipolar field that describes the
magnetostatic interaction effect between the two nanopillars,
and dee is the edge-to-edge separation distance. The vector
r is a unit vector of the displacement between two magnetic
dipoles. In order to improve the accuracy of our approximation,
the dipolar interaction in Eq. (4) is treated as the interaction
between two circular uniformly magnetized discs (for details
see Appendix A). The strength Adisc(dee) is more realistic than
the point dipoles strength Apoint(dee) due to the finite size
effect [53]. We find that, when the distance dee is smaller than
30 nm, then Adisc(dee) is significantly larger than Apoint(dee),
see Appendix A.

In order to get proper parameters and gain insight into
the phase-locking behavior, an approximation theory is intro-
duced here. We assume that the free-layer magnetization is
approximately suppressed in the easy plane with θi ∼ π/2
due to the strong demagnetizing field. In this case, the
system executes low-energy orbits, and the total magnetic
energy density of the system can be approximately written
as |G| ∼ k > |Gdip| ∼ Adisc(dee). These low-energy orbits
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FIG. 2. Effective potential energy Geff (φ+,φ−) for the (a) and (b) identical STNO pair and (c) and (d) nonidentical STNO pair at different
uniaxial anisotropy k and different current I. Three cross-sections taken at φ+ = 0,π/2,π are shown in the corresponding bottom panels of
each figure. Here, dee = 20 nm, and Adisc(dee) = 0.002. All parameters are marked in the figures.

satisfy [θi(τ ),φi(τ )] = [π/2 + δθi(τ ),φi(τ )](i = 1,2), where
|δθi | ∼ √

k. If the damping constant and the STT strength
satisfy Eq. (B13), then Eq. (1) can be rewritten as a pair of
Newton-like equations (see Appendix B for details)

φ̈1 + αφ̇1 = Adisc(dee)[− sin(φ1 + φ2) − sin φ1 cos φ2]

− k

2
sin 2φ1 + aJ1

(
θ1 = π

2

)
, (5a)

φ̈2 + αφ̇2 = Adisc(dee)[− sin(φ1 + φ2) − cos φ1 sin φ2]

− k

2
sin 2φ2 + a21

(
θ2 = π

2

)
, (5b)

where the effective force is dominated by the dipolar interac-
tion term (the first term of the right-hand side), the uniaxial
anisotropy (the second term), and the STT term (the third
term). For simplicity, by using a new set of variables formed
by the phase sum φ+ = φ1 + φ2 and the phase difference
φ− = φ1 − φ2, we rewrite Eqs. (5a) and (5b) as

d2φ+
dτ 2

+ α
dφ+
dτ

= −∂Geff(φ+,φ−)

∂φ+
, (6a)

d2φ−
dτ 2

+ α
dφ−
dτ

= −∂Geff(φ+,φ−)

∂φ−
, (6b)

where the effective potential energy is now given by

Geff(φ+,φ−) = Adisc(dee)(−3 cos φ+ − cos φ−)

− k cos φ− cos φ+ + aJ+φ+ + aJ−φ−. (7)

Here, aJ+ ≡ aJ1 + aJ2 and aJ− = aJ1 − aJ2.

A. An identical STNO pair

According to the design shown in Fig. 1, the STT
strength is the same for two identical PERP STNOs, that
is, aJ− = 0 and aJ+ = 2aJ . From Eq. (6a) with Eq. (7), by
setting |∂Geff/∂φ+| > 0, we obtain |aJ+| > 3Adisc(dee) + k,
and under this condition, all equilibria of Geff along the φ+-axis
direction are eliminated (Fig. 2). This condition indicates that
there exists a critical STT strength (or critical current) to drive
the two STNOs into a steady OP precessional state

|aJ1,c| = |aJ2,c| = (1/2)|aJ+,c| = (1/2)[3Adisc(dee) + k].

(8a)

At dee = 20 nm, we have Adisc(dee) = 0.002 (Fig. 10 in
Appendix A). In the absence of uniaxial anisotropy (i.e.
k = 0), we further get the critical STT strength aJ+,c = 0.006
and the current Ic = 0.29 mA. Similarly, in the presence of
uniaxial anisotropy (k = 0.008), we have aJ+,c = 0.014 and
Ic = 0.68 mA.

Note that, when the current is larger than the critical value
given by Eq. (8a), the two STNOs can be driven into a
precessional state, but the precession may not be synchronous.
Therefore, the synchronization or phase-locking state requires
additional conditions. From Eqs. (6b) and (7), by setting
∂Geff/∂(φ−) = 0 and ∂2Geff/∂(φ−)2 > 0, the condition for
φ− = 0 as the only stable equilibrium point in the range of
φ+ ∈ [0,2π ] can be derived

Adisc(dee) > k. (8b)

We would like to emphasize that Eq. (8b) guarantees that
the two free layers of the coupled system always evolve into
a final state with a stable phase difference beginning with an
arbitrary initial state. If Eqs. (8a) and (8b) are simultaneously
satisfied, Eqs. (6a) and (6b) can be reduced to a single equation

224410-3



CHEN, LEE, ZHANG, LIU, WU, HORNG, AND CHANG PHYSICAL REVIEW B 93, 224410 (2016)

of motion

φ̈ + αφ̇ = −(1/2)[3Adisc(dee) + k] sin 2φ − aJ , (9)

where φ ≡ (1/2)φ+ = φ1 = φ2 and aJ ≡ (1/2)aJ+ = aJ1 =
aJ2. It should be noticed that Eq. (9) has the same form as
Eq. (5) for a single oscillator, but the anisotropy energy is
enhanced by including the dipolar coupling term 3Adisc(dee).
Therefore, we conclude that Eqs. (8a) and (8b) are the
necessary and sufficient conditions for the phase locking of
magnetization precession of two nano-oscillators. On the other
hand, note from Eqs. (8) and (8b) that the anisotropy k can raise
the threshold values of the dipolar strength Adisc, and of the
critical spin-transfer strength aJ c as well. This analytical result
suggests that the reduction of anisotropy is a possible way to
reduce the critical current as well as to enhance the stability of
a phase-locked array of STNOs.

In order to obtain a qualitative insight into Eq. (8), we regard
the dipolar coupled STNOs pair as an effective Newton-like
particle moving on the energy surface Geff . As shown in
Fig. 2(a), in the absence of uniaxial anisotropy when the
current I = 0.34 mA (larger than Ic = 0.29 mA at k = 0),
the energy surface will be tilted along −φ+ direction by the
sum of the STT strengths aJ+. Because there are no stable
equilibrium points along the φ+ axis, the particle will move
downward along the −φ+ direction with an average terminal
velocity |〈φ̇〉|τ = |aJ+|/α. Furthermore, the dipolar coupling
creates stable equilibrium points at φ−= 0 on the energy
surface. The barrier height between the local equilibria along
the φ− axis is Adisc(dee), as is shown in the lower panel of
Fig. 2(a). Due to energy dissipation, the particle will eventually
move downward along the ditch from any initial state with
the average terminal velocity |aJ+|/α, indicating that the
two STNOs precess in phase. In the presence of uniaxial
anisotropy, as shown in Fig. 2(b), besides the elevation of
the critical current, also the cross-section shape of the ditch
on the energy surface is changed with φ+ [see the lower panel
of Fig. 2(b)], meaning that uniaxial anisotropy is certainly
detrimental to phase locking.

B. A nonidentical STNO pair

Now we consider two nonidentical PERP STNOs. The non-
identical property may be caused by asymmetric STT strengths
(that is, aJ− 	= 0) or by other parameters (for example, shape
difference). Similar to the identical case, by analytically setting
|∂Geff/∂φ+| > 0, ∂Geff/∂(φ−) = 0, and ∂2Geff/∂(φ−)2 > 0,
one can obtain the phase-locking conditions as the following
form:

|aJ+| > 3Adisc(dee) + k, (10a)

Adisc(dee) > k, (10b)

and |aJ−| < Adisc(dee) − k. (10c)

Here, Eq. (10c) guarantees the difference of STT strengths
is not so strong as to destroy the phase-locking state.
Additionally, from the Eq. (10a), we can estimate that the
critical currents Ic in the absence and presence of the energy
k are 0.26 and 0.62 mA, respectively.

Assuming that the edge-to-edge distance dee is approxi-
mately 30 nm or less, the corresponding dipolar interaction

strength Adisc(dee) does not easily satisfy the condition of
Adisc(dee) > k. This circumstance is due to the fact that, for
the given value k = 0.008, the value of Adisc(dee) is, according
to Fig. 10, smaller than k unless the separation dee is decreased
down to 5 nm. By inserting Eq. (7) into Eq. (6b), we now obtain

d2φ−
dτ 2

+ α
dφ−
dτ

= − sin(φ−)[Adisc(dee) + k cos(φ+)] − aJ−,

(11)

The first term on the right-hand side of Eq. (11) is the
restoring force, in which the uniaxial anisotropy k actually
contains a prefactor rapidly varying in time cos(φ+). This is
because the φ+ varies faster than the growth of the phase
difference φ− when |aJ−| is smaller than the dipolar interaction
strength Adisc(dee). Thus, the terminal velocity of the phase
difference |φ̇−| < Adisc(dee)/α must be smaller than that of the
phase sum |φ̇+| > (3Adisc(dee) + k)/α. Here, the perturbation
of anisotropy k oscillates very fast compared to the phase
difference change, so that the perturbation can be omitted by
the approach presented below [54].

Taking a time average of φ− in Eq. (6b) over a period of
�T = 2π/|φ̇−|= 2πAdisc(dee)/α, one can easily find that the
contribution of the time-varying part in φ− becomes close
to zero, i.e. 〈cos(φ+)〉�T ≈ 0. Therefore, the right-hand side
of Eq. (6b) takes on the form −Adisc(dee) sin(φ−) − aJ−.
As a consequence, a soft phase-locking condition for the
nonidentical pair of PERP STNOs is obtained

|aJ+| > 3Adisc(dee) + k, (12a)

|aJ−| < Adisc(dee). (12b)

These two Eqs. (12a) and (12b) are supported by numerical
solutions of Eqs. (6a) and (6b). When the above conditions are
satisfied, Eq. (6a) for phase sum φ+ is rewritten as

d2φ+
dτ 2

+ α
dφ+
dτ

= −[3Adisc(dee) + k cos φ+0] sin φ+−aJ+,

(13)

in which φ−0 is the stable, nonzero phase difference. Accord-
ingly, the phase-locked angular velocity is given by

|φ̇1|=|φ̇2|=1

2

∣∣∣∣d(φ+)

dτ

∣∣∣∣ = 1

2α
|aJ+|.

From the viewpoint of the Newton-like particle, in the
absence of uniaxial anisotropy k = 0, when the current I =
0.69 mA is larger than the critical value 0.26 mA, the energy
surface will not only be tilted along the −φ+ direction by the
sum of the STT strengths aJ+, but will also be tilted along the
+φ− direction by the STT strength difference aJ−, as shown
in Fig. 2(c). Thus, the position of the ditch created by dipolar
coupling is shifted by aJ− slightly away from φ− = 0, and
the barrier height between the local equilibriums along the φ−
axis is smaller than Adisc(dee), implying that the phase-locking
ability of dipolar coupling is weakened by negative aJ− values
[lower panel of Fig. 2(c)]. Due to the energy dissipation, the
particle will eventually move downward along the new ditch
from any initial state, meaning that the two STNOs precess
with a small phase difference. However, similar to the identical
components case, the uniaxial anisotropy still changes the
stability of the local equilibrium points.
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III. NUMERICAL SIMULATIONS:
RESULTS AND DISCUSSION

In order to verify the analytical model, both macrospin and
full micromagnetic (FMM) simulations have been performed
for a coupled PERP STNO pair with dipolar magnetic
interaction. In this section, we will show the time dependence
of the phase difference φ− and the inclination angle θ , the x

and z components of the precessional magnetization, and the
spectrum analysis of magnetization oscillation. Furthermore,
the critical conditions for triggering phase locking of magneti-
zation with a minimum current I and a maximum edge-to-edge
distance dee will be discussed. The simulated parameter ranges
for phase locking will be compared with the results from the
approximate theory.

In this paper, both macrospin and FMM simulations are
conducted. The macrosopin code is developed in our group
independently, and the micromagnetic simulations are carried
out by using two open micromagnetic codes, the finite
element package magpar [55] and the finite difference package
MuMax3 [56]. In these simulations, we assume that the STNOs
have an elliptical shape with size 70×60 nm, and that the
free-layer thickness d = 3 nm. For simplicity, we only focus
on the magnetization dynamics of the free layers. The initial
magnetization state is aligned along the x axis (long axis of
the sample) direction. The thickness of the free layer is 3 nm.
Typical material parameters are used for the Co free layer
[16]: 4πMs = 1.09×104 Oe (saturation magnetization), k =
0.008 (in-plane uniaxial anisotropy), A = 2.5×10−11 J m−1

(exchange stiffness constant), α = 0.02 (Gilbert damping
constant). The discretization cell size for MuMax3 is set at
1×1 nm×3 nm, while the magpar average size of tetrahedron
mesh is 2 nm. The spin polarization of the left STNO is set
to be P1 = 0.38 and 	1 = 1.8. The right STNO is given
by P2 = 0.44,	2 = 2. Without dipolar interaction, the two
STNOs have different oscillation frequencies (we will show
this later) due to different spin polarizations.

In this paper, the current-induced Oersted field [57] is
ignored. Our calculations indicate that the maximum value
of the Oersted field created by a current of 0.7 mA is ∼40 Oe
located in the perimeter zone of an isolated nanopillar (not
shown). This is a reasonable estimation for considering the
Oersted fields created by current as an infinite wire. The
Oersted field is therefore much smaller than other fields
such as the in-plane uniaxial anisotropy field (∼170 Oe)
and the demagnetizing field (∼1.09×104 Oe). For a pair
of nanopillars horizontally arranged with an edge-to-edge
separation changing from 5 to 20 nm, the calculated Oersted
field is further reduced down to ∼25 Oe due to the cancellation
between the two STNOs. For this reason, the Oersted field is
ignored in this paper.

A. Synchronization of an STNO pair: Phase-locking state

First, a phase-locking state is obtained both from the
analytical theory and simulations: The injected current is set
to be I = 0.8 mA. Using the above parameter values and
θ1 = θ2 = π/2, we analytically obtained the STT difference
|aJ−| = |aJ1 − aJ2| = 0.0017, which is smaller than the value
of A(dee) = 0.002, meaning that the analytical condition for

phase locking shown in Eq. (12b) is satisfied. Numerically,
both the macrospin and micromagnetic simulations with these
parameters indicate that the phase-locking magnetization state
can be achieved within several nanoseconds, as shown in the
upper panels of Figs. 3(a) and 3(c). In this paper, the total
simulation time is 50 ns. In order to show clearly the transient
behavior, the time scales in Fig. 3 are confined to the initial
several nanoseconds. The phase-locking state has a small phase
difference φ− = 0.23 rad/π in the macrospin simulation and
0.34 rad/π in the micromagnetic simulation. This nonzero φ−
corresponds to the position shift of equilibrium points [see
Fig. 2(b)], caused by aJ−. In addition, the phase-locking state
of the inclination angle θ of the two STNOs has also been
achieved in both simulations, as shown in the lower panel of
Fig. 3(a). This phase locking of θ can also be inferred from the
locking of φ̇, according to the conjugacy between the variables
of φ and θ [see Appendix B, Eq. (B5)]. In other words, when
the locking of φ occurs (that is φ̇1 = φ̇2), θ1 must be equal to
θ2. Similarly, the phase locking can also be clearly seen from
the magnetization plot in Cartesian coordinates, as shown in
Fig. 3(b).

From Figs. 3(a)–3(c), one can see that there exists a transient
state before the STNO pair synchronizes into a stable phase-
locked state. The typical time order of the transient state can be
theoretically estimated from the Newton-like motion equation
of Eq. (6b). As mentioned before, the uniaxial anisotropy k in
Eq. (6b) contains a fast time-varying prefactor cos(φ+) which
makes it possible to neglect k. Therefore, Eq. (6b) can be
linearized close to the equilibrium point φ− ∼ 0. For a small
angle δ(φ−), we have

d2δ(φ−)

dτ 2
+ α

dδ(φ−)

dτ
= −{

√
[Adisc(dee)]2 − (aJ−)2}δ(φ−).

The general solution δ(φ−)(τ ) of this equation has a decay
factor e−(α/2)τ , in which τ can be defined as the time order of
the transient state. For example, if τ = 460 for α = 0.02 then
e−(α/2)τ ∼ 1%. Furthermore, the real physical time t can be
easily derived from the relation of τ = (4πMsγ )t . This yields
the transient time t = 2.4 ns which is in good agreement with
our simulation results shown in Fig. 3.

Figure 3(d) shows the phase difference of the final state
φ− = φ1 − φ2 as a function of the injected current I, including
both the prediction curve of the approximate theory (black
line) and the simulation curves from macrospin (blue solid
squares) and micromagnetic (red open squares) calculations.
From the approximate theory, the stable phase difference
for the softer (without k) phase-locking condition satis-
fies −Adisc(dee) sin(φ−) − aJ− = 0 and |aJ−/Adisc(dee)| < 1.
Therefore, the relationship between φ− and I, and the max-
imum injected current for phase locking can be analytically
obtained

φ− = sin−1

[
−

(
�

8πeM2
SV

)
�ε

Adisc(dee)
I

]
,

|I | <

(
8πeM2

SV

�

)
Adisc(dee)

|�ε| . (14)

Here, �ε = ε1 − ε2 with P1 = 0.38, P2 = 0.44,	1 =
1.8,	2 = 2, and θ1 = θ2 = π/2. Inserting all the pa-
rameters into Eq. (14), we obtain φ− = sin−1[1.087×I ],
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FIG. 3. The phase difference φ− = φ1 − φ2 and of the inclination angles θi for two nonidentical PERP STNOs. Macrospin simulations for
(a) the time evolution of θi and the phase difference φ− and (b) time evolution of the x and z components of the free-layer magnetization.
The currents flowing through the STNO-1 and STNO-2 are 0.8 mA. The dipolar interaction strength is Adisc(dee) = 0.002. (c) Micromagnetic
simulation for time evolution of φ−ave. Here, φ−ave is the spatial averaged phase difference between the two free layers. (d) The current
dependence of the phase difference φ− calculated from different models: The black curve for the approximate theory, the blue solid squares for
the macrospin simulation, and the red open squares for the micromagnetic simulations. Ic = 0.618 mA denotes the threshold current predicted
by the approximation and (Ic)M = 0.5 mA by the macrospin simulation.

|I | < 0.92 mA. It should be noted that the theoretical curve
predicted by Eq. (14) is quite close to the macrospin and
micromagnetic simulation results for the low-current case. In
the high-current case, the I dependence of φ− predicted by the
approximate theory is still quite close to the micromagnetic
result, but a little different from the macrospin result. Inter-
estingly, these results confirm that the angular profile of the
disc dipolar coupling used in the approximation theory (see
Appendix A) is quite reasonable. We would like to point out
that the approximation theory is in principle valid only for
precessions close to the thin film plane, i.e. for θi = π/2 + δθi

and |δθi | ∼ √
k � 1, which corresponds to the case where

the STT reaches its maximum magnitude when the free-layer
magnetization lies in the plane of the film [19], but our
calculations indicate that the dipolar coupling coefficient Adisc

can still be used if θ = 0.34π = 61.54◦ for I = 0.8 mA.
Another interesting point is that the dependence of the

phase difference φ− = φ1 − φ2 on current in Fig. 3(d) shows
that the analytical curve is much closer to the micromagnetic
simulation curve. We assume that unexpected behavior is
caused by the fact that the analytical theory is in principle

only valid for the case of magnetization precession close to
the film plane. At large currents, the phase difference can be
enhanced in the analytical approximation by the fact that the
high order terms of δθ in the expansion of the STT torque
in Eqs. (B7) and (B8) have been eliminated. By contrast, in
the micromagnetic simulation, due to the nonuniformity of
the local magnetization configuration, the calculated dipolar
coupling is actually smaller than that of the macrospin model
in the high-current region. As a result, the phase difference in
the micromagnetic simulation is enhanced at a large current
when compared with the macrospin simulation.

The critical current to excite magnetization oscillation can
be derived from Eq. (12a)

Ic =
(

8πeM2
SV

�

)[
3Adisc(dee) + k

ε1 + ε2

]
. (15)

Note that, in Fig. 3(d), the theoretical critical current is Ic =
0.618 mA, which is slightly larger than that of the macrospin
(0.5 mA) and micromagnetic results (0.4 mA).
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FIG. 4. Frequency spectra of the two nonidentical STNOs calcu-
lated by the FFT technique from the time evolution of x components
of the free-layer magnetization. The current is fixed to I = 0.8 mA
for each STNO. (a) Macrospin simulations: The blue curves show the
respective frequency of the two STNOs in the case without dipolar
coupling; the red curve shows the frequency of the phase-locking state
in the case with dipolar coupling. (b) Micromagnetic simulations:
The blue curves show the respective frequency of the two STNOs
without dipolar coupling, and the red curve shows the phase-locking
frequency by the dipolar coupling.

B. Frequency spectra of magnetization oscillations

The oscillation frequency can be calculated from the time
evaluation of magnetization. Figures 4(a) and 4(b) show
the oscillation frequency spectra for the STNO pair with
(red curves) and without (blue curves) dipolar interaction
effect simulated by the macrospin and the micromagnetic
model, respectively. Here, the frequency spectra are calculated
from the x components through the fast Fourier transform
(FFT) technique. The applied current for each STNO is
0.8 mA. Note that both the macrospin and micromagnetic
simulations display two separate oscillation frequencies (blue
curves) for the case without dipolar interaction between
the two STNOs. This corresponds to the case where the
separation dee = ∞ or Adisc(dee) = 0. The left STNO has a
low frequency (10.58 GHz in macrospin and 9.34 GHz in
micromagnetics) due to its relatively small spin-polarization
efficiency (P1 = 0.38,	1 = 1.8), while the right STNO has
a higher frequency (12.2 and 9.76 GHz for macrospin and
micromagnetic simulations, respectively).

When the separation is decreased to 20 nm [i.e. Adisc(dee) =
0.002], the frequency of the STNO pair is locked at a medium

FIG. 5. Precession frequency of two nonidentical STNOs as a
function of the current I calculated from (a) approximation theory,
(b) macrospin simulation, and (c) micromagnetic simulation. The red
curves show the frequency for the STNO-1, the blue curves show
the frequency for the STNO-2, and the black curves show the phase-
locking frequency of the two STNOs through the dipolar coupling.
The yellow background color regions show the current tunable range
to achieve the phase-locking state. The threshold currents to excite
precession states of STNO-1 and STNO-2 are indicated by Ic1 and
Ic2, respectively. The threshold current for the phase-locking state of
the two STNOs is marked by Ic.

value, 11.39 GHz in the macrospin simulation and 9.7 GHz
in the micromagnetic simulations. This is shown by the red
curves in Figs. 4(a) and 4(b). The synchronized frequency in
the macrospin simulation is exactly located at the center of
the two separated blue peaks, while in the micromagnetic
simulation, there is a little shift to that of STNO-2. This
result clearly confirms that, for a synchronized STNO pair, the
magnetization of the two free layers precesses with the same
angular velocity φ̇ as described by Eq. (13). The phase-locking
angular velocity φ̇ is an average of the two original angular
velocities φ̇1,2.

Figure 5 shows the current tunable range of the phase-
locking frequency in two nonidentical PERP STNOs. The
macrospin simulations for the two STNOs with P1 =
0.38,	1 = 1.8 and P2 = 0.44,	2 = 2 are shown by the red
and blue branches in Fig. 5(b). The critical driving current Ic

is around 0.3 ∼ 0.4 mA. This critical value Ic can be estimated
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from Eq. (5). From |aJ1,2 | � k/2, one obtains

aJ01ε1(θ1 = π/2,P1 = 0.38,	1 = 1.8) � 0.008/2

aJ02ε2(θ2 = π/2,P2 = 0.44,	2 = 2) � 0.008/2.

The calculated critical current for the left STNO is thus
I1c = 0.39 mA, and for the right one I2c = 0.323 mA. We
attribute the lower critical current in the right STNO to
its relatively larger P. The right STNO therefore requires a
relatively smaller current which can generate a strong enough
STT to overcome the system barrier and then lead to a
magnetization precession state. Note that, for current ranging
from 0.4 to 1.2 mA, the macrospin simulation shows that the
current dependence of the precessional frequency is linear
[Fig. 5(b)], which is consistent with the prediction of the
approximate theory [Fig. 5(a)]. Theoretically, an approximate
relationship between current and frequency can be derived
from Eq. (5) for a steady precession angular velocity |φ̇1,2| =
|aJ1,2|/α,

f1,2(GHz) = |aJ1|
2πα

(4πMsγ )

= �(4πMsγ )

8πeM2
s V (2πα)

ε1,2(θ,P,	)I1,2

=
{

15.6 × I1(mA)
18.9 × I2(mA) . (16)

As we have mentioned before, the synchronization fre-
quency of the two STNOs is an average value between their
individual natural frequencies. From Eq. (14), the phase-
locking frequency as a function of current is given by the
black curve shown in Fig. 5(a). This result has been confirmed
by both macrospin and micromagnetic simulations, as shown
in Figs. 5(b) and 5(c). On the other hand, compared with
individual STNO, it should be noticed that the critical current
for the phase locking of the STNO pair increases due to the
dipolar effect [Figs. 5(a) and 5(b)], as indicated in Eq. (12a).
Note that, not only no synchronization is observed at a small
current, but that the dipolar coupling effect will also fail
to achieve the phase-locking state for a very large current.
This is caused by the enhanced frequency difference between
the two STNOs at an increased current [see Eq. (16)]. Our
simulations indicate that the effective current of phase locking
is 0.5–1.1 mA for the macrospin model and 0.4–0.8 mA for
the micromagnetic model.

The phase-locking state of the two nonidentical STNOs
precession strongly depends on the edge-to-edge distance dee

between the two nanopillars. This is due to the fact that the
dipolar coupling decreases with increasing distance. Figure 6
shows the onset of phase locking as a function of the
separation distance dee for a given current I = 0.8 mA flowing
through each nanopillar. Clearly, both the macrospin and the
micromagnetic simulations show almost the same parameter
range of the phase-locking state. The maximum edge-to-edge
distance (dee)M is ∼20 nm. Below this critical value, the two
STNOs have the same precessional frequency, implying that
the dipolar coupling is strong enough to drive them into a
phase-locked state. On the contrary, when the distance dee is
larger than this value, the two nonidentical STNOs lose phase,

FIG. 6. Precession frequencies of two nonidentical STNOs as a
function of the edge-to-edge distance dee. The injected current for
each STNO is I = 0.8 mA. The yellow background color shows the
parameter region of the phase-locking synchronization state. (dee)M

denotes the maximum edge-to-edge distance of the phase-locking
state. (a) Macrospin simulation results. The dipolar coupling strength
as a function of the edge-to-edge distance is taken from Fig. 10 in
Appendix A. (b) Micromagnetic simulation results, in which the red
and blue curves are results from the MuMax3 and magpar simulation
codes, respectively.

and the frequency difference between them increases gradually
with increasing distance dee, showing the decreased frequency
in the left STNO, and the increased frequency in the right one.

Compared with the macrospin model, the locked frequency
in the micromagnetic simulations increases gradually with
the decrease of the separation dee. This interesting result can
be attributed to the following: For a small separation (e.g.
dee = 4 nm), the stray fields generated by the neighboring
STNO slightly reduce the nonuniformity of the magnetization
configuration. The increase of the uniform magnetization will
in turn enhance the demagnetization fields. Therefore, the
enhanced demagnetization field will increase the oscillation
frequency.

C. Phase-locking diagram

Finally, the phase diagrams of the two nonidentical STNO
pairs as a function of distance and current are summarized
in Fig. 7. The phase diagram is divided into three regions,
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FIG. 7. Phase diagrams as a function of the edge-to-edge distance dee and of the injected current I. (a) Prediction of the approximate theory.
(b) Macrospin simulation. (c) Micromagnetic simulation. The central blue region represents the phase-locking (PL) mode. The yellow region is
the steady (S) state without magnetization precession. The yellow region denotes the asynchronous (AS) precession mode. The border between
the PL and AS states is separated by (dee)M.

including the steady state without magnetization precession
(S state), the phase-locking precession state (PL state), and
asynchronous state (AS state). The boundary between S and
PL is the threshold current Ic, defined in Fig. 5. The boundary
between the PL and AS states is the maximum edge-to-edge
distance (dee)M, defined in Fig. 6. In the S state region, the
current is too small to trigger the free-layer magnetization
oscillation. In contrast, in the AS state region, the dipolar
coupling between the two STNOs is not strong enough to drive
a phase-locking state. From Fig. 7, one can see that the phase
region of the approximation theory gives a good qualitative
prediction with the numerical simulations, indicating that
the dipolar coupling strength Adisc(dee) estimated from the
assumption of uniformly magnetized thin film disc is quite
reasonable for study of the phase-locking precession.

IV. SUMMARY

We show that the magnetic dipolar coupling between PERP
STNOs can be used as a driving force to synchronize a series
of horizontally aligned nanopillar oscillators. In this paper, we
have developed an approximate theory for two identical or
nonidentical STNOs to predict their stable phase-locking state
and the requisite parametric conditions. The theoretical pre-
dictions have been well confirmed qualitatively by macrospin
and micromagnetic simulations. We calculated the relationship
between the critical current of synchronization, the critical
dipolar coupling strength, the phase-locking frequency, and
the transient time as well. These results may open a starting
point for the design of a reliable horizontal array of PERP
STNOs phase locked through the dipolar coupling effect. This
would represent an effective way to raise the output power of
STNOs.
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APPENDIX A: APPROXIMATION THEORY
FOR CALCULATION OF MAGNETIC DIPOLAR

INTERACTION BETWEEN TWO CIRCULAR UNIFORMLY
MAGNETIZED DISCS

As shown in Fig. 8, for two uniformly magnetized circular
thin-film discs separated by an edge-to-edge distance dee, the
magnetic dipolar interaction can be calculated via integrating
the magnetostatic energy due to magnetic surface charges

Adisc

(
π

2
,φ1,

π

2
,φ2

)
= 1(

4πM2
s

)
V

∮
S1

∮
S2

(σ1dS1)(σ2dS2)

η
,

(A1)

Here, we assume that the magnetizations of the two discs
are aligned in the film plane, i.e. θ1 = θ2 = π/2. The surface
charge densities accumulated on the edges of two discs are
written as σ1 = Ms cos(φ1 − φ′) and σ2 = Ms cos(φ2 − φ′′),
where φ1 and φ2 are the φ coordinates of magnetizations,
and φ′ and φ′′ are the surface charge densities. The area
elements dS1 = (Rd)dφ′dz′ and dS2 = (Rd)dφ′′dz′′, where
R is the radius of the discs. The distance between any
pair of surface charges on the two discs is written as η =√

[2R+dee+R(cos φ′′− cos φ′)]2+[R(sin φ′′ − sin φ′)]2+(z′′−z′)2.
In fact, when the edge-to-edge distance dee is much larger than

FIG. 8. A top view of two uniformly magnetized circular discs.
The plus and minus signs represent the magnetic surface charge
distributions σ1(φ′) and σ2(φ′′). φ′ and φ′′ are the coordinates used to
designate the locations of σ1 and σ2. η is the distance between any
pair of magnetic surface charges between the two discs. φ1 and φ2

are the magnetization directions, R is the common radius of the two
discs, and dee is the edge-to-edge distance between them.
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the disc thickness d, Eq. (A1) can be well approximated by calculating the magnetic interaction between two uniformly magnetized
circle discs modeled by the inscribed regular n polygons

Adisc

(
π

2
,φ1,

π

2
,φ2

)
≈ 1(

4πM2
s

)
V

lim
s,l→∞

s−1∑
n=0

l−1∑
m=0

q1nq2m

η12
. (A2)

Here, the magnetic surface charges accumulated on the nth and mth edges of the two discs are given by q1n = Ms cos(φ1 −
φn)×2R sin( π

l
)×d and q2m = Ms cos(φ2 − φm)×2R sin( π

s
)×d. In these expressions, l and s denote the edge numbers of two

regular n polygons. The distance between the two charges has the form

η12 =
√[

2R + dee + R cos

(
π

s

)
cos(φm) − R cos

(
π

l

)
cos(φn)

]2

+
[
R cos

(
π

s

)
sin(φm) − R cos

(
π

l

)
sin(φn)

]2

.

In order to analyze the phase-locking behavior from the
point of view of dipolar interactions, a new set of variables
(φ+,φ−) are introduced to replace (φ1,φ2). Note that, the
form of the angular profile of Adisc (φ+,φ−) is very similar
to that of point dipolar interaction Apoint (φ+,φ−), especially
in the locations of local energy maxima and minima, as
shown in Fig. 9. However, when the distance dee is smaller
than 30 nm, the energy difference between local maxima
and local minima of Adisc (φ+,φ−) along φ− direction is
obviously larger than that of Apoint (φ+,φ−). This means that
the dipolar coupling strength of two uniformly magnetization
discs Adisc(dee) is larger than that of two point magnetic dipoles
Apoint(dee). This is because, when the magnetizations of two
discs are placed in head-to-head or tail-to-tail configuration,
they correspond to the local maximum of Adisc (φ+,φ−),
i.e. |φ−| = π . The magnetic energy comes mainly from the
surface charges with the same sign, which are accumulated on
the face-to-face edges of the two discs. The actual distance
between any pair of magnetic charges is much smaller than
the center-to-center distance 2R + dee. Hence, for a smaller
dee, the maximum dipolar interaction significantly grows
with decreasing dee. Conversely, for configurations with local
minimum of Adisc (φ+,φ−), corresponding to the head-to-tail
or tail-to-head configuration, the minimum dipolar interaction
becomes significantly lower.

The energy difference between the local maxima and
minima of Apoint (φ+,φ−) along φ− is Apoint(dee) =
V/4π (2R + dee)3. Since Adisc (φ+,φ−) is similar to Apoint

(φ+,φ−), the disc dipolar field strength Adisc(dee) can be
approximately estimated as the energy difference along φ−
between the local maxima and minima of Adisc (φ+,φ−).
Figure 10 shows the comparison of Adisc(dee) and Apoint(dee).
Obviously, the growth rate of Adisc(dee) is faster than that of
Apoint(dee) when dee decreases.

APPENDIX B: NEWTON-LIKE EQUATIONS

For the low-energy orbits with the total magnetic
energy density |G| ∼ k > |Gdip| ∼ Adisc(dee), the orbits
can be written as [θi(τ ),φi(τ )] = [π/2 + δθi(τ ),φi(τ )](i =
1,2), where |δθi | � 1. In the absence of damping and
the STT effect, these orbits obey the energy con-
servation law G0(π/2,π/2,φ01,φ02) = G1(π/2 + δθ1,π/2 +
δθ2,φ11,φ12), where G0 and G1 denote the energies of the
initial and final states. By substituting Eqs. (3) and (4) into
the energy conservation equation and expanding (δθi)2 on the

right-hand side, one can easily obtain

1

2

2∑
i=1

(δθi)
2 ≈ k

2

2∑
i=1

(sin2φ0i − sin2φ1i) + Adisc(dee)

× [(sin φ01 sin φ02 − 2 cos φ01 cos φ02)

− (sin φ11 sin φ12 − 2 cos φ11 cos φ12)]. (B1)

Thus, the order of magnitude of |δθi | ∼ √
k.

In the absence of Gilbert damping and the STT effect, by
substituting θi = π/2 + δθi into Eq. (2) and expanding it to
the first order of δθi , we obtain{

δθ̇i = − ∂G
∂φi

φ̇i = ∂G
∂δθi

, (i = 1,2). (B2)

Here, the total energy density G is

G(δθ1,δθ2,φ1,φ2) = 1

2

2∑
i=1

δθi
2 + k

2

2∑
i=1

sin2φi + Adisc(dee)

× (sin φ1 sin φ2 − 2 cos φ1 cos φ2). (B3)

Note that δθi and φi in Eq. (B2) form a set of conjugate
variables in the Hamiltonian formulation. Accordingly, an
effective Hamiltonian can be defined as

H (δθ1,δθ2,φ1,φ2) = 1

2

2∑
i=1

δθi
2 + k

2

2∑
i=1

sin2φi + Adisc(dee)

× (sin φ1 sin φ2 − 2 cos φ1 cos φ2), (B4)

and Eq. (B2) becomes{
δθ̇i = − ∂H

∂φi

φ̇i = ∂H
∂δθi

, (i = 1,2). (B5)

We can obtain an effective Lagrangian by introducing
the Legendre transformation L(φ1,φ2,φ̇1,φ̇2) = ∑2

i=1 φ̇iδθi −
H (δθ1,δθ2,φ1,φ2).

Thus, the effective Lagrangian is given by

L(φ1,φ2,φ̇1,φ̇2) = 1

2

2∑
i=1

φ̇2
i − k

2

2∑
i=1

sin2φi − Adisc(dee)

× (sin φ1 sin φ2 − 2 cos φ1 cos φ2).

(B6)

The STT and the Gilbert damping torques are nonconser-
vative effects, and we therefore need to construct it from the
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FIG. 9. Magnetic dipolar coupling as a function of the phase sum
and the phase difference (φ+,φ−). The edge-to-edge distance dee is
20 nm. The dipolar coupling profile is produced by two magnetic
dipoles which are arranged (a) horizontally and (b) by two uniformly
magnetized circular discs.

exact energy balance equation

dG

dτ
=

2∑
i=1

−
[
α

∣∣∣∣dmi

dτ

∣∣∣∣
2

+ aJ i(mi)(mi × p) · dmi

dτ

]
. (B7)

Under the low-energy approximation, θi = π/2 + δθi ,
|δθi | ∼ √

k � 1, the energy Eq. (B7) can be approximated
as

dG

dτ
∼= −α

2∑
i=1

(
δθ̇2

i + φ̇2
i

) −
2∑

i=1

aJ i

(
θi = π

2

)
φ̇i . (B8)

For a low-energy orbit, the order of magnitudes of |φ̇i | and
|δθ̇i | in Eq. (B2) can be estimated as{

δθ̇i ∼ −k

φ̇ ∼ √
k
, (i = 1,2) (B9)

FIG. 10. The dependence of the dipolar coupling strength on
the edge-to-edge distance dee. The red circles represent the strength
produced by two magnetic dipoles in a horizontal array. The black
circles represent the strength produced by two uniformly magnetized
circular discs in a horizontal array.

Here, |φ̇i | � |δθ̇i |. Therefore, the energy balance equation
can be further approximated in the form

dG

dτ
∼= −α

2∑
i=1

φ̇2
i −

2∑
i=1

aJ i

(
θi = π

2

)
φ̇i . (B10)

Besides the damping effect, the contribution from the STT
is also taken rigorously into account. We then can easily define
an effective dissipation function in the Lagrangian dynamics

Fdis ≡ 1

2
α

2∑
i=1

φ̇2
i +

2∑
i=1

aJ i

(
θi = π

2

)
φ̇i . (B11)

From the Euler-Lagrangian equations with dissipation,
Eq. (5) is obtained.

Equation (5) is formally equivalent to

{
δθ̇i + αφ̇i + aJ i

(
θi = π

2

) = − ∂G
∂φi

φ̇i = ∂G
∂δθi

, (i = 1,2)
, (B12)

and if the magnitudes of |δθ̇i |, |φ̇i |, |∂G/∂φi |, and |∂G/∂δθi |
are on the same order as those in Eq. (B2), then the necessary
conditions for the validity of Eq. (5) are

{
α �

√
k,∣∣aJ i

(
θi = π

2

)∣∣ ∼ k, (i = 1,2)
. (B13)

Finally, we would like to point out that a closely related
analytical work by using Lagrangian approach was presented
in Ref. [58], in which spin-wave normal modes have been
studied in a single STT nanopillar device.
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