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Theory of entropy production in quantum many-body systems
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We define the entropy operator as the negative of the logarithm of the density matrix, give a prescription for
extracting its thermodynamically measurable part, and discuss its dynamics. For an isolated system we derive
the first, second, and third laws of thermodynamics. For weakly coupled subsystems of an isolated system,
an expression for the long-time limit of the expectation value of the rate of change of the thermodynamically
measurable part of the entropy operator is derived and interpreted in terms of entropy production and entropy
transport terms. The interpretation is justified by comparison to the known expression for the entropy production
in an aged classical Markovian system with Gaussian fluctuations and by a calculation of the current-induced
entropy production in a conductor with electron-phonon scattering.
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I. INTRODUCTION

Attempts to show how nonequilibrium thermodynamic
behavior emerges from the underlying quantum mechanics
of individual particles is now being dubbed quantum ther-
modynamics [1–4]. Several approaches have arisen, revealing
important aspects in this endeavor, such as how thermal fluc-
tuations and external driving mechanisms affect the stochastic
course of nonequilibrium processes of small systems [5],
which has led to fluctuation theorems [6–8] going beyond
the results from the Kubo linear response theory, as well
as generalized fluctuation-dissipation relations as studied in
isolated quantum systems after a quench [9–11]. Other aspects,
more in the spirit of traditional nonequilibrium statistical
mechanics [12], include thermalization in isolated quantum
systems [13–17] and the establishment of steady states in open
quantum systems [18–24]. A unified treatment along the lines
of the classical theory of nonequilibrium thermodynamics
is of crucial importance for a clear identification of the
quantum-to-classical correspondence and the new features
brought about by fully quantum-mechanical nonequilibrium
behavior.

The remarkable success of the classical theory [25–28] in
the description of macroscopic phenomena in fluids motivates
us to ask what the basic ingredients of this formalism are that
such a unified treatment of quantum thermodynamics must
also contain. We recall that the building blocks of the classical
theory are (i) macroscopic observables, explicitly defined as
a set of thermodynamically measurable or slowly varying
quantities, (ii) conservation laws for these variables, and, as a
foundational pillar, (iii) an entropy balance equation, splitting
the rate of change of entropy as a part which is irreversibly
produced, in accordance with the second law of thermody-
namics, and a part which is transported. The validity of this
theory relies on the local equilibrium assumption, whereby
the nonequilibrium thermodynamic entropy is considered
locally as a function of the same extensive variables as in
equilibrium.

Although significant attempts to give meaning to entropy
out of equilibrium [29] have long been known in quantum
statistics [30–34], a complete theory of quantum entropy
production has not been provided yet. The main problem is how
to conceive an adequate quantum entropy balance equation
without assuming local equilibrium.

For an isolated system, there is no entropy to be transported
outside the system, and hence, the entropy balance equation
reduces to finding the right quantum expression for entropy
whose rate of change is non-negative, according to the second
law of thermodynamics, this rate then being the entropy
production. Important efforts have been devoted to obtain such
an expression from the density matrix [12,35,36], but the third
law of thermodynamics, involving the vanishing entropy of
pure states, has not been satisfactorily established.

On the other hand, for a subsystem of an isolated system
the establishment of a quantum entropy balance equation has
been partially addressed [37–43] by assuming that the rate
of change of an adopted expression for the nonequilibrium
entropy of the subsystem, obtained from the reduced density
matrix, is directly connected, as in the classical theory, to the
rate of change of its energy. This involves the identification
of a microscopic expression for heat which is not unique
[44] and therefore quite problematic but, most importantly,
does not constitute a full deviation from the local equilibrium
assumption, as we show later.

The purpose of this paper is to provide a more general
treatment of quantum entropy production and then lay the
foundation of a unified theory of quantum thermodynamics
in close correspondence to the classical theory. We introduce
a thermodynamic entropy operator Ŝt for isolated quantum
many-body systems and show that the rate of change of its
expectation value is non-negative, according to the second law
of thermodynamics. Unlike previous approaches, we establish
the third law of thermodynamics as a well-defined vanishing
of the thermodynamic entropy for pure states.

The quantum entropy balance equation for a given subsys-
tem of an isolated system is obtained by first studying the
time evolution of 〈∂t Ŝt 〉 for the isolated system from first
principles, i.e., from the Liouville–von Neumann equation
for the density matrix, using the standard generalized master
equation approach of nonequilibrium statistical mechanics
[45–49], and by subsequently making reasonable assumptions
regarding the factorization properties of the nonequilibrium
probability distribution of microscopic states over the degrees
of freedom of the different subsystems.

We restrict ourselves here to weakly coupled subsystems
to show how our theory is consistent with the classical
theory, to elucidate the manner in which the local equilibrium
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approximation can be fully abandoned, and to pave the way to
study cases of strong coupling between subsystems for which
the aforementioned factorization properties of the probability
distribution of microscopic states become the main subject of
study, marking a deep connection with quantum information
theory. A detailed investigation of a methodology to approach
these cases will be considered elsewhere.

The pursuit of the so-outlined research program is essential
both for a more fundamental understanding of nonequilibrium
behavior [50] and because entropy production is inherent
to dissipation so that a good atomic-scale description may
have technological impact, e.g., by enabling better control of
waste heat and thermoelectric effects in single-molecule elec-
tronics [51–53] and guiding the efficient design of quantum
refrigerators [54] and quantum heat machines [55], nanosized
photoelectric devices [56], nanothermoelectric engines [57,58]
based on quantum dots, etc., which are envisioned as practical
applications of quantum thermodynamics.

It turns out, as we show here with a particular example
of electronic conduction in the presence of phonon modes
playing the role of a reservoir, that our theory gives an
explicit expression for the Joule heating from a calculation
of the steady-state electronic entropy production alone. This
represents an important progress since this is done without
calculating the rate of change of the energy of the electron
subsystem.

This paper is organized as follows: in Sec. II we give
a brief review of entropy production and the second law
of thermodynamics as they manifest in phenomenological
thermodynamics. In Sec. III we discuss the local equilibrium
assumption from a quantum perspective, with a derivation
of the first law of thermodynamics from the expression for
〈∂t Ŝt 〉 in this case, which is shown to hold for quasistatic
transformations or slow processes. This section, which mainly
discusses how the foundations of the classical theory are to
be understood quantum mechanically, serves as a motivation
to introduce the operator ∂t Ŝt for general isolated quantum
systems that include possible reservoirs.

A transition is made in Sec. IV to the generalized ther-
modynamic description of quantum systems. The second and
third laws of thermodynamics are established here for any
isolated system, and an entropy balance equation is derived,
splitting 〈∂t Ŝ〉 into entropy production and entropy transport
terms. In Sec. V, we show how the theory is consistent
with Onsager’s classical stochastic entropy production in an
aged system. Finally, in Sec. VI we calculate the electronic
entropy production in a simple metal consisting of independent
electrons weakly coupled to phonons in the presence of an
external electric field, deriving the Joule heating, and we
conclude with Sec. VII.

II. ENTROPY PRODUCTION IN PHENOMENOLOGICAL
THERMODYNAMICS

The thermodynamic definition of entropy changes for any
kind of process in a closed system (not interchanging particles
with the reservoirs) was given by Clausius at the very end
of his monumental 1865 paper [59,60]. If the system, which
is considered to be in contact with a set of heat sources at
different temperatures T , follows a path γ in the space of

thermodynamic states, joining the initial and final arbitrary
states A and B, respectively, then the thermodynamic entropy
change in the process is

SB − SA = NC[γ ] +
∫ B

A

(d-Q/T )γ , (1)

where d-Q is an infinitesimal amount of heat absorbed from
(or surrendered to) the heat source at temperature T and the
quantity NC[γ ], representing what came to be known as the
“uncompensated heat of Clausius” [61], is a functional of
the process. Clausius defined it in such a way that

NC[γ ] ≡−
∮

γ

d-Q/T = −
∫ B

A

(d-Q/T )γ −
∫ A

B

(d-Q/T )γR
,

(2)

where γR is an arbitrary reversible path which is “imagined”
to bring the system back to its initial state A. He proved that

NC[γ ] � 0, (Clausius inequality), (3)

for any γ , which was a generalization of Carnot’s results
for cyclic processes; the equality holds if and only if γ is a
reversible path. This is the starting point of all the discussions
found in textbooks of the second law of thermodynamics [62]
and is therefore regarded here as the fundamental expression
for this law.

A classical formulation of nonequilibrium thermodynamics
has been founded [25,26] by taking as a starting point (1)
written in differential form and generalized to apply locally in
small-volume elements δv of a system,

dS = diS + deS, (4)

where diS ≡ dNC is the entropy produced during an infinites-
imal time interval due to irreversible processes taking place
inside the volume element and deS is the entropy supplied
by its surroundings (≡d-Q/T for a closed element). The
second law of thermodynamics requires only that the entropy
produced satisfies

diS � 0, (Clausius inequality). (5)

The theory so obtained for the phenomenological entropy pro-
duction, �δv = diS/dt , successfully describes slow processes
or phenomena where the decay time of local perturbations
is very short compared to the global relaxation time, as
in chemical reactions, diffusion processes, heat conduction,
and their cross effects in gases and liquids. However, it
requires fundamental modifications for fast processes [27,28],
and in the following, we argue from a quantum-mechanical
perspective why this happens to be the case, setting the stage
and motivating the method for the subsequent development of
our theory.

III. LOCAL EQUILIBRIUM AND QUASISTATIC
QUANTUM TRANSFORMATIONS

Consider an isolated macroscopic system, possibly contain-
ing a set of particle and heat reservoirs which is divided into
macroscopic subsystems. Microscopically, the total system is
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defined by the Hamiltonian

Ĥ =
∑

l

Ĥl +
∑
l<m

Ĥlm, (6)

where Ĥl is the Hamiltonian of subsystem l, involving the
kinetic energies of the particles comprising the subsystem as
well as the energy of interaction among all these particles, and
Ĥlm is the Hamiltonian representing the interactions among the
particles of subsystem l with those of subsystem m, possibly
including hopping terms allowing particle transfer.

The fundamental assumption of statistical mechanics [63]
is that, since the interaction energy among the parts scales
with their common surface areas, while the energy of the parts
scales with their respective volumes, we can then remove all
Ĥlm in Eq. (6) from a macroscopic description of the dynamics
and introduce instead a set of time-dependent parameters {xl

λ}
embodying macroscopic constraints for the subsystem l that
evolve in time due to changes in the other subsystems. The
operator representing macroscopic energy measurements in
this approximation is

Ĥ =
∑

l

Ĥl , Ĥl = Ĥl

({
xl

λ

})
, (7)

where the notation in Eq. (7) indicates that Ĥl is to be taken
as Ĥl plus an external potential due to the other subsystems
and represented parametrically. For instance, a quantum
subsystem acted upon by an external electric field is seen in
the description of (6) as having a Coulomb potential energy
(operator) coupling all the charges of the subsystem with all
the charges outside of it which are sources of this field, while in
the approximate description of (7), it is seen as being coupled
to an external parameter E representing the strength of the
field. We shall call the latter the thermodynamic description.

The local equilibrium assumption in the thermodynamic
description is the statement that the macroscopic state of each
part of our system, with a number of particles operator N̂l , a
temperature Tl , and a chemical potential μl , is an equilibrium
state. The local equilibrium density matrix of the total system
is the factorized Gibbs state (subsystems macroscopically
uncorrelated)

�̂r =
⊗

l

�̂r
l =

⊗
l

exp[−(Ĥl − μlN̂l − �l)/Tl], (8)

with �l = �l(Tl,μl,{xl
λ}) being the thermodynamic potential

of subsystem l, introduced so as to normalize the density
matrix, that is, Tr exp[−(Ĥl − μlN̂l)/Tl] = exp(−�l/Tl).
Note that, since the degrees of freedom of different subsystems
are uncoupled in the thermodynamic description, all operators
Ĥl and N̂m form a mutually commuting set and then define a
natural basis of common eigenstates that we represent as {|α〉}.

The appearance of this natural set defines a family of
observables acting on the system Hilbert space that, like Ĥl and
N̂m, we call thermodynamic; these observables are diagonal
in the basis {|α〉}. According to this, Ĥ is a thermodynamic
observable, and we denote the set of all these operators as

T = {Ĝ : [Ĝ,Ĥ] = 0}. (9)

Clearly, all constant operators as well as all time-averaged
observables [32,64] belong to this family. With D denoting

the projection operator to the subspace spanned by {|α〉〈α|},
we can then split an arbitrary observable Ĝ in the convenient
form

Ĝ = DĜ + N Ĝ = Ĝ + Ĝ∼, (10)

where Ĝ = DĜ is the thermodynamically measurable part (or
thermodynamic part) of Ĝ, with the complementary part being
Ĝ∼ = N Ĝ = Ĝ − Ĝ.

The thermodynamic observables must have the charac-
teristic of being slowly varying quantities [65–68]. This is
quantified in our theory by introducing a geometric measure
	 of how approximate the thermodynamic description is.
For this, let us introduce for an arbitrary observable B̂ the
Hermitian operator

ĈAB = −i[Â,B̂], Â ∈ T , (11)

and consider the simple geometry induced by the Hilbert-
Schmidt norm ‖ĈAB‖ = (Tr Ĉ

†
ABĈAB)1/2. It is trivially seen

that

‖ĈH0‖ = ‖ĈG0‖ = 0, (12)

and by using the Jacobi identity for commutators, together
with [Ĝ,Ĥ] = 0, coming from (9), we can write

‖ĈHĠ‖ = ∥∥ĈGCHH

∥∥, (13)

where we identify ˙̂G = ĈGH when the parameters representing
external constraints are fixed in time. Therefore, if ĈHH tend
to the null operator in the norm, i.e., if we have 	 → 0 with

	2 = ε−4
0 ‖ĈHH ‖2 = ε−4

0

∑
αα′

(εα − εα′)2|〈α|Ĥ |α′〉|2, (14)

where Ĥ|α〉 = εα|α〉 and ε0 is the smallest characteristic
energy in the system (making 	 dimensionless), then we
conclude, by using (12) and (13) as well as the continuity of
the norm, that the quality of slow variation can be expressed
as

‖ ˙̂G‖ = ‖[Ĝ,Ĥ ]‖ = O(	). (15)

The condition 	 → 0 is physically realized when the ther-
modynamic limit is taken for all the subsystems comprising
the total system since in this limit 〈Ĥ 〉 and 〈Ĥ〉 tend to be
indistinguishable for arbitrary states.

We now give the steps that constitute our general method
in the next section. Given the density matrix ρ̂t of the total
system, we define the entropy operator as the negative of its
logarithm, Ŝt = − ln ρ̂t , and, from this and the aforementioned
discussion, the thermodynamic entropy operator as Ŝt = DŜt .
Since in the local equilibrium approximation the density matrix
ρ̂t = ρ̂r is already diagonal in the basis {|α〉}, we have in this
case

Ŝ r = − ln �̂r = 1

Tl

∑
l

(Ĥl − μlN̂l − �l), (16)

where we have used the commutativity of all Ĥl and N̂m

to express ln �̂r = ∑
l ln �̂r

l . We are interested in thermo-
dynamic entropy changes as the main observable, so the
next step is an expression for 〈∂t Ŝt 〉, which we get by first
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differentiating (16),

dŜ r =
∑

l

1

Tl

[
dĤl − dμlN̂l − μldN̂l − d�l

−dTl

Tl

(Ĥl − μlN̂l − �l)

]
. (17)

Since �l is a function of μl , Tl and of the external parameters xl
λ

implicit in Ĥl , we can differentiate the normalization relation
Tr exp[−(Ĥl − μlN̂l)/Tl] = exp(−�l/Tl) after variations in
these arguments to get, after noting that 〈Ĝl〉 = Tr �̂rĜl =
Tr �̂r

l Ĝl for a local operator Ĝl acting on the lth subsystem,

d�l = −
∑

λ

F l
λdxl

λ − 〈N̂l〉dμl

−dTl

Tl

(〈Ĥl〉 − μl〈N̂l〉 − �l), (18)

with F l
λ = −〈∂Ĥl/∂xl

λ〉 being the average force exerted by
subsystem l on its surroundings to get the displacements dxl

λ.
Taking the expectation value of (17) and substituting (18),
we conclude that the average rate of change of the total
thermodynamic entropy is, in this case, additive, 〈dŜ r〉 =∑

l〈dŜ r
l 〉, with

Tl

〈
dŜ r

l

〉 = 〈dĤl〉 − μl〈dN̂l〉 +
∑

λ

F l
λdxl

λ. (19)

We have arrived in this way at the first law of thermodynamics,
through a line of reasoning originally due to Gibbs [69],
generalized here to the quantum case.

Note that for an arbitrary observable Ĝ, the identity
〈dĜ/dt〉 = ∂〈Ĝ〉/∂t holds whenever the density matrix used
to calculate the expectation value satisfies the Liouville–von
Neumann equation, as is easily proved by changing to the
Heisenberg picture within the expectation value operation,
where dĜ/dt = ∂Ĝ/∂t − i[Ĝ,Ĥ ], with Ĝ depending explic-
itly on time in the Schrödinger picture via the external param-
eters, and using the known identity Tr Â[B̂,Ĉ] = Tr Ĉ[Â,B̂].
Therefore, as long as the local equilibrium density matrix
ρ̂r satisfies the Liouville–von Neumann equation, we can
commute the operation 〈dĜ〉 = ∂〈Ĝ〉 and write (19) as the
usual form of the first law of thermodynamics.

The equivalence of (19) to the usual form of the first law of
thermodynamics

Tl ∂t

〈
Ŝ r

l

〉 = ∂t 〈Ĥl〉 − μl ∂t 〈N̂l〉 +
∑

λ

F l
λ ∂tx

l
λ (20)

then requires that ρ̂r satisfies the Liouville–von Neumann
equation i ∂t �̂

r = [Ĥ ,�̂r], where we use the symbol ∂t as a
shorthand notation for ∂/∂t . For this to be the case, it is
necessary from (15) that

‖∂t ρ̂
r‖ = O(	) (21)

since ρ̂r is expressed in terms of thermodynamic observables.
When the thermodynamic limit is taken for each subsystem, we
have 	 → 0, and then the parameters xl

λ should vary with time
so slowly that the state �̂r can be interpreted as “moving” in
a locus of equilibrium states, so that ‖∂t �̂

r‖ → 0 in Eq. (21).
These are precisely the quasistatic (or reversible) transfor-
mations for which the first law involving thermodynamic

entropy changes applies, hence the superscript r standing for
reversible and the systematic omission of the time subindex
in the variables. Note that in this case, the quantity NC[γ ] in
Eq. (1) vanishes for any γ = {xl

λ(t),∀ λ,l and t ∈ [tA,tB]}.
A nonzero entropy production appears instead when the

subsystems are macroscopic at the atomic scale, but compared
to the size of the total system, they are small-volume elements
δvl . In this case, an entropy balance equation may be obtained
from (20) by using the relations

∂t 〈Ĥl〉 = −
∑
m

J lm
H +

∑
λ

∂〈Ĥl〉
∂xl

λ

∂tx
l
λ, (22)

∂t 〈N̂l〉 = −
∑
m

J lm
N +

∑
λ

∂〈N̂l〉
∂xl

λ

∂tx
l
λ, (23)

which state that the average macroscopic energy and number
of particles of a given subsystem can only change by transport
to other subsystems, defining the corresponding currents J lm

H
and J lm

N in terms of quantities proportional to the particle
velocities, with an appropriate microscopic account for the
heat currents, plus terms allowing the technical possibility of
the creation or destruction of particles induced by the variation
of the external constraints. Substituting these in Eq. (20), we
get

∂t

〈
Ŝ r

l

〉 = 1

Tl

∑
λ

[
∂

∂xl
λ

(〈Ĥl〉 − μl〈N̂l〉) + F l
λ

]
∂tx

l
λ

− 1

Tl

∑
m

(
J lm
H − μlJ

lm
N

) = �δvl
− �δvl

, (24)

with the first term in the first equality being the entropy
production term �δvl

and the second one being the entropy
transport term �δvl

. Results consistent with the classical theory
are obtained when particle creation or destruction is not
observed macroscopically, in which case (22) and (23) are
just the usual conservation laws (continuity equations) and the
entropy production in the subsystem reduces to the well-known
sum of products of thermodynamic forces times the rate of
change of their conjugate external parameters

�δvl
= 1

Tl

∑
λ

F l
λ ∂tx

l
λ, (classical). (25)

The presentation given here can be straightforwardly general-
ized by considering local equilibrium Gibbs ensembles more
general than (8), that is, by augmenting the thermodynamic en-
tropy operator (16) with terms proportional to the components
of the macroscopic linear and angular momentum operators of
each subsystem [63], with (22) and (23) expanded to include
the conservation laws of their respective expectation values.

Note that we have kept the superscript r (although not
strictly with its original connotation) in Eq. (24) because,
even though the thermodynamic limit is not taken for each
subsystem, which would make 	 → 0 and the processes
necessarily quasistatic, the fact that the volume elements δvl

are macroscopic at the atomic scale still implies that 	 is very
small and hence, from (21), that the variations ∂t ρ̂

r should
correspondingly be very small in the norm. As mentioned in
Sec. II, we then see why the classical theory works well for
slow processes, i.e., those for which the time to get relaxation
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to equilibrium within each volume element is much shorter
than the time to get equilibrium among them.

The discussion in this section elucidates the problems with
the local equilibrium assumption and previous theories of
entropy production, which rely on expressions of the type (20)
together with conservation laws, like (22) and (23), as in the
classical theory. As we have made explicit, developing a theory
of entropy production from (20) inherently assumes that the
correlations among the subsystems of a large isolated system
are negligible for all times, and using (22) in this theory takes
for granted that an appropriate mechanical description of the
microscopics of heat currents has been univocally achieved.

We now propose a way to derive an entropy balance
equation for the subsystems of a general isolated system
from first principles, starting from the Liouville–von Neumann
equation for the density matrix of the isolated system, which
does not rely on the above assumptions.

IV. MASTER EQUATION FOR THE THERMODYNAMIC
ENTROPY OPERATOR

We generalize the thermodynamic description to include
subsystems which are not distinguished by spatial boundaries
and which are not necessarily macroscopic at the atomic scale.
The key point to borrow from thermodynamics is the existence
of the thermodynamic basis {|α〉} and the interpretation of
thermodynamic observables as those which are diagonal in
this basis. That is, we consider an isolated quantum system
(containing possible reservoirs) which has a Hamiltonian Ĥ
representing the energy of uncoupled subsystems, as before,
and study the dynamics when the perturbation V̂ mixing the
degrees of freedom of the different subsystems or a set of them
is turned on.

The Hamiltonian of the total system is then given by
Ĥ = Ĥ + V̂ , and the situations of interest include phenomena
such as quantum quenches [13–17] or the response to applied
fields [42,43,64]. After preparation of the system in an initial
statistical state of the form

ρ̂0 = exp(−Ŝ0), (26)

with Ŝ0 being an arbitrary (in general unbounded) Hermi-
tian operator with [Ŝ0,V̂ ] �= 0, the nonequilibrium state is
described by the evolved density matrix ρ̂t , and we define
the entropy operator Ŝt by

ρ̂t = exp(−Ŝt ) or Ŝt = − ln ρ̂t , (27)

which can always be written since the density matrix is
positive definite. This exponential representation of the density
matrix is not new; it is a generalized form [43,70] of the
nonequilibrium statistical operator introduced by Zubarev
[32,33] and obtained for the case of steady states by Hershfield
[71].

As discussed in the previous section, our thermodynamic
entropy operator, Ŝt = −D ln ρ̂t , is obtained from Ŝt by
projecting to the space of operators diagonal in the basis
{|α〉} of eigenstates of Ĥ. We now establish the second law
of thermodynamics for nonequilibrium transformations of the
total system. For this, we consider for simplicity the specific
situation of initial states diagonal in the thermodynamic basis,
e.g., those of local equilibrium form as in Eq. (8), for which

Ŝ∼
0 = 0 or Ŝ0 = Ŝ0. These initial states are usually assumed in

practice [31,64,71], e.g., in transport problems.
Let us denote the diagonal (or thermodynamic) part of the

density matrix of the system as

�̂t = Dρ̂t . (28)

The occupation probability of the state |α〉 is obtained
by taking matrix elements Pα;t = 〈α|�̂t |α〉. The proof now
follows in steps by first using a corollary to Klein’s inequality
[72] which states that for any concave function f (x) we have

Tr f (�̂t ) � Tr f (ρ̂t ). (29)

By choosing the concave function f (x) = −x ln(x), we easily
get

− Tr �̂t ln(�̂t ) � −Tr ρ̂t ln ρ̂t or Sd;t � SvN ;t , (30)

where we have denoted Sd;t = −∑
α Pα;t ln Pα;t as the diag-

onal entropy [13,35,73,74] and SvN ;t is the well-known von
Neumann entropy. Using the time invariance of SvN ;t under
the unitary evolution of the isolated system together with the
fact that the initial state is diagonal, so that Sd;0 = SvN ;0, (30)
implies [13,35]

Sd;t � Sd;0. (31)

We use this result and the Husimi-Mori lemma [30,75], which
states that for any convex function g(x) and state |ψ〉 we have

〈ψ |g(ρ̂t )|ψ〉 � g(〈ψ |ρ̂t |ψ〉), (32)

to show that, if we choose the convex function g(x) = − ln(x)
so that −〈α| ln ρ̂t |α〉 � − ln Pα;t , the thermodynamic entropy
satisfies

St = 〈Ŝt 〉 = −
∑

α

Pα;t 〈α| ln ρ̂t |α〉 � Sd;t � S0, (33)

where S0 = Sd;0 = SvN ;0 by the assumption of the initial
diagonal state. For our isolated system for which there is no
entropy to be transported outside of its boundaries, this proves
that St satisfies the second law of thermodynamics.

Note that, by splitting ρ̂t = �̂t + ρ̂∼
t and using the conve-

nient resolvent representation of the logarithm of an operator
sum [70]

ln(Â + B̂) =
∫ ∞

0
dx

(
1

x + 1
− 1

x + Â + B̂

)
, (34)

we can expand the thermodynamic entropy as

St = Sd;t

+
∑

α, β(�=α)

[
1

(Pβ;t − Pα;t )
− Pα;t

(Pβ;t − Pα;t )2
ln

Pβ;t

Pα;t

]

× |〈α| ρ̂∼ |β〉|2 + O(〈|ρ̂∼|〉3), (35)

with St − Sd;t � 0 due to (33); therefore, the thermodynamic
entropy, unlike the diagonal entropy, is able to capture entropy-
increasing processes due to quantum correlations or entangle-
ment among the different subsystems that are encapsulated in
the off-diagonal elements of the density matrix. When these
quantum correlations are negligible, which, as discussed in
Sec. III, is the case when each subsystem is macroscopic,
the diagonal entropy becomes the thermodynamic entropy
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according to (35), and due to the quasistatic (or slow)
nature of the global transformations involved in this case,
the thermodynamic basis may be referred to as the adiabatic
basis. [13,76]

The thermodynamic entropy, unlike the diagonal and von
Neumann entropies, satisfies the third law of thermodynamics
in a transparent way. The third law states that the thermody-
namic entropy at zero temperature must be zero. The standard
argument is that at zero temperature any physical state is pure.
For an arbitrary pure state |ψ〉, there is always an orthonormal
basis of Hilbert space which has this state as one of its elements
(construct it via the Gram-Schmidt procedure starting from
|ψ〉). Denote this basis {|ψr〉}, and order its elements such that
|ψ〉 = |ψ1〉. We take this basis as the reference for “diagonal.”
With this we then have for the diagonal and von Neumann
entropies

Sd (ψ) = SvN (ψ) = −
∑

r

Pr ln Pr,

= −1 ln(1) −
∑
r �=1

0 ln(0), (36)

where Pr is the probability that the system is found in state
|ψr〉. Equation (36) is usually understood to be zero [72],
although it is clearly an undetermined quantity since, taken at
face value, −0 ln(0) = 0 ∞.

The thermodynamic entropy of pure states is well defined
and readily vanishes. In order to show this, we denote the
density matrices (projectors) ρ̂r = |ψr〉〈ψr |, with

∑
r ρ̂r = 1̂.

We can then write

ln ρ̂1 = ln

(
1̂ −

∑
r �=1

ρ̂r

)
= −

∞∑
u=1

(∑
r �=1

ρ̂r

)u

u−1. (37)

Using this, we can compute the thermodynamic entropy of the
state |ψ〉 as

S(ψ) = −
∑

r

〈ψr |ρ̂1D ln(ρ̂1)|ψr〉 = −〈ψ | ln(ρ̂1)|ψ〉. (38)

This clearly vanishes exactly since |ψ〉 = |ψ1〉 is orthogonal to
all |ψr �=1〉 involved in the last equality of (37). This establishes
the third law of thermodynamics.

We are after an entropy balance equation for the subsystems,
so we need an equation of motion for Ŝt and a procedure to get
from this one for each subsystem, as in the previous section.
This can be obtained by first noting that the usual unitary
evolution of the density matrix implies that Ŝt also satisfies
the Liouville–von Neumann equation [70] satisfied by ρ̂t . We
have

i∂t Ŝt = [Ĥ ,Ŝt ] ≡ L Ŝt . (39)

This allows us to follow exactly the same procedure originally
used with the density matrix [48,49] to derive an equation
of motion for its diagonal part �̂t , the so-called Nakajima-
Zwanzig generalized master equation. That is, we split the
entropy operator into diagonal and nondiagonal parts, with
respect to the eigenbasis of Ĥ, as Ŝt = Ŝt + Ŝ∼

t and obtain
an equation of motion for the diagonal part using Zwanzig’s

integral [49]

i∂t Ŝt = DLŜt + DLe−itNLŜ∼
0 − i

∫ t

0
dτKτ Ŝt−τ , (40)

where the memory kernel is defined as [77]

Kτ = DLe−iτNLNL. (41)

Now, it is easy to verify that DLD = 0 for any Hamiltonian
[77]; therefore, the first term in Eq. (40) vanishes, and with
our initial diagonal states implying Ŝ∼

0 = 0, we are left with
the integro-differential equation

∂t Ŝt = −
∫ t

0
dτKτ Ŝt−τ . (42)

Although an exact solution for (42), as well as for the similar
equation satisfied by �̂t , can easily be found by a Laplace
transformation followed by an inversion,

Ŝt = 1

2πi

∫ c+i∞

c−i∞
ds

est

s + Ks

Ŝ0, c > 0, (43)

where Ks is the Laplace transform of the memory kernel,
obtained from (41) as

Ks = DL
1

s + iNL
NL, (44)

we restrict ourselves here, for the sake of a clear presen-
tation and for comparison with the classical results, to the
Born-Markov approximation for weakly coupled subsystems,
leaving a more general discussion for another publication. This
approximation, which is justified in the limit of very weak
coupling potentials V̂ and very long times (Van Hove limit
[78,79]), amounts to neglecting memory effects in Eq (42).
In practice, this works for times after any transient effect or
prethermalization plateau [80–82] of the isolated system has
passed. We then have in this limit

∂t Ŝt = − lim
s→0+

Ks Ŝt , (45)

where Ks and Ŝt , after being expanded in powers of V̂ , are
truncated up to the lowest orders, for which the well-known
identity for the resolvent operator expansion

(A + B)−1 = A−1 − A−1B (A + B)−1 (46)

is very useful. Taking the expectation value of (45) and noting
that for a diagonal operator Ĝ we have 〈Ĝ〉t = Tr ρ̂t Ĝ = Tr �̂t Ĝ,
the average rate of change of the thermodynamic entropy in
the Born-Markov limit is then

〈∂t Ŝt 〉 =
∑
αα′

PαWαα′ ln
Pα

Pα′
, (47)

with the transition rates Wαα′ = 2πδ(εα − εα′)|Vαα′ |2, calcu-
lated in the lowest order in the coupling potential using Fermi’s
golden rule. Here, we have derived the transition rates from
(44) and (45) by using the representation of the δ function [83]

lim
s→0+

Re
1

s + iω
= πδ(ω). (48)

Moreover, Pα = 〈α|�̂(0)
t |α〉 is the occupation probability of

the state |α〉 in its lowest-order approximation [48], which

224305-6



THEORY OF ENTROPY PRODUCTION IN QUANTUM MANY- . . . PHYSICAL REVIEW B 93, 224305 (2016)

also satisfies the Born-Markov limit of the generalized master
equation, that is, the transport (or Pauli) equation

∂tPα =
∑
α′

(Pα′Wα′α − PαWαα′). (49)

The right-hand side of (47) can be rearranged to yield the
quantum version, in the Born-Markov limit, of the entropy
balance equation. We find

〈∂t Ŝt 〉 = � − �, (50)

where the average rate of entropy produced in the system is
interpreted as [84–88]

� = 1

2

∑
α,α′

(PαWαα′ − Pα′Wα′α) ln
PαWαα′

Pα′Wα′α
(51)

and the average entropy flux toward the surroundings is
interpreted as

� = 1

2

∑
α,α′

(PαWαα′ − Pα′Wα′α) ln
Wαα′

Wα′α
. (52)

Of course, the latter must be zero for an isolated system
since a global entropy current finds nowhere to go in this
case. The vanishing of this quantity is clearly seen from the
symmetry of the transition rates Wαα′ under the interchange of
indices, resulting from the Hermiticity of the perturbation V̂ .
A nonvanishing entropy current is obtained, however, when
we consider the local entropy production in a subsystem of
a larger system, as in the electrical conduction problem of
Sec. VI.

Note that � is a sum of terms of the form (x − y) ln(x/y),
so it is always non-negative. Furthermore, it vanishes for
reversible transformations (local equilibrium) or in equilib-
rium due to detailed balance, P r

α Wαα′ = P r
α′ Wα′α , which is

a statistical statement of the second law of thermodynamics
in the Clausius form. The outlined method is the one that we
shall follow in Sec. VI for the electrical conduction problem
to derive an entropy balance equation for the electronic
subsystem in the Born-Markov limit based on the transport
equation for the total electrons + phonons + field system,
without any need to invoke expressions like (20) together with
extra conservation laws.

One of the advantages of our approach, besides be-
ing grounded in fundamental facts regarding the nature of
thermodynamic observables, is that, as opposed to actively
studied relative-entropy formulations [37–39] of quantum
entropy production, it can be generalized to initial states
with correlations among the subsystems, i.e., not of the local
equilibrium form. This is very important since neglecting
correlations in the state of an isolated system is inconsistent
with the specification of its energy [89]. We have safely ignored
this fact in our present discussion because the consideration of
a nonvanishing second term in Eq. (40), due to Ŝ∼

0 �= 0, only
adds the term

1

2πi

∫ c+i∞

c−i∞
ds

est

s + Ks

DL
1

s + iNL
Ŝ∼

0 (53)

to the solution (43). However, it is easily seen that expressions
containing Ŝ∼

0 contribute higher-order terms in the weak-
coupling expansion embodied in the Born-Markov limit and

then are negligible; the same happens [48] for the contributions
coming from ρ̂∼

0 in the Born-Markov limit of the generalized
master equation for �̂t . Therefore, our formalism has room
to study memory effects and strong correlations in the initial
state by only straightforward modifications. These memory
effects are the ones responsible for heat transport depending
on the path of thermodynamic states in phenomenological
thermodynamics.

V. RELATION WITH CLASSICAL STOCHASTIC
THERMODYNAMICS

We now show that our result, (47), is consistent with the
result for the average rate of change of the thermodynamic
entropy obtained in Onsager’s classical theory. We consider
an isolated macroscopic system which has been left alone for
a very long time (aged system). The classical thermodynamic
state is described by a set of extensive variables, such as energy,
mass, electric charge, etc., which randomly fluctuate about
their equilibrium values and whose values define the classical
state of the system. This state is represented by the symbol at

(shifted to vanish in equilibrium), whose successive values in
time describe a stationary stochastic process.

It can be shown that, if the fluctuations follow a Gaussian
process, which can be argued to be the case if the extensive
variables are algebraic sums of very many independent
(weakly coupled) “microscopic” quantities so that the central
limit theorem can be invoked, and if in addition the process is
Markovian, then the joint probability distribution,

�(a′,	t,a′′) = Pa′Pa′a′′(	t), (54)

for observing the values at ′ = a′ and at ′′ = a′′ at the respective
times separated by an interval 	t = t ′′ − t ′, with Pa′a′′ (	t)
being the corresponding conditional probability to make a
transition between these states, is given by Onsager’s principle
[90–92], which we write as [93]

2 ln �(a′,	t,a′′) = Sa′ + Sa′′ +
( ∫ t ′′

t ′
dτ Ṡ

)
min

, (55)

where the path of integration is the trajectory aτ , which makes
the integral a minimum, subject to the conditions at ′ = a′ and
at ′′ = a′′. Clearly, if we take the limit 	t → 0, the integral
tends to Ṡa′	t , where Ṡa′ is the entropy production rate in the
state a′, whose entropy is related to the probability distribution
Pa′ by Boltzmann’s principle. Subtracting the time-reversed
expression of Onsager’s principle from (55), we get, in the
limit 	t → 0, the alternative form

ln
�(a′,	t,a′′)

�(a′′,−	t,a′)
= 1

2
(Ṡa′ + Ṡa′′)	t. (56)

We now average (56) over the joint distribution (54), which
is expanded up to linear order in 	t by writing the transition
probabilities to go from a′ to a′′ after a time 	t as

Pa′a′′(	t) = δa′a′′ + Wa′a′′	t = Pa′′a′(−	t), (57)

with the last equality being the statement of Onsager’s
microscopic reversibility [90,94] and leading to the symmetry
of the transition rates Wa′a′′ under the interchange of indices.
This symmetry allows us to write the averaged left-hand side of
(56) as 	t

∑
a′a′′ Pa′Wa′a′′ ln(Pa′/Pa′′ ) and the right-hand side
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as 	t
∑

a′ Pa′ Ṡa′ Therefore, by recognizing the latter sum as
〈Ṡ〉, we get the expression

〈Ṡ〉 =
∑
a′a′′

Pa′Wa′a′′ ln
Pa′

Pa′′
, (58)

which gives the desired link with our theory by making a
comparison with (47). We remark that (56) is of the same form
[5],

ln
P	t (σ )

P	t (−σ )
= σ	t, (59)

as Gallavotti and Cohen’s fluctuation theorem [95] if we
read (1/2)(Ṡa′ + Ṡa′′ ) as a realization of the random num-
ber σ = (1/2)(Ṡat ′ + Ṡat ′′ ), representing the average entropy
production in going from at ′ to at ′′ during a time interval
	t along the stochastic trajectory of states, and translate the
joint probability �(a′,±	t,a′′) to have the state realizations
at ′ = a′ and at ′′ = a′′ in a forward (+	t) or backward (−	t)
evolution to the corresponding probabilities P	t (±σ ) to have
the realization (1/2)(Ṡa′ + Ṡa′′ ) of σ or its time-reversed value.

VI. ENTROPY PRODUCTION IN ELECTRICAL
CONDUCTION

We next apply the formalism to a model of independent
electrons coupled to phonons in the presence of an electric
field. We are interested in the average rate of entropy produced
in the electronic system and transported to the phonons in
the steady state. The picture is then that of a large system
divided into three subsystems, the electrons, the phonons, and
the sources of the field. In the thermodynamic description we
parametrize, as usual, the coupling to the latter by introducing
Et and forgetting about the structure of this subsystem.

The Hamiltonian of the total system is then

Ĥ = Ĥel + Ĥph + Ĥel-ph + ĤF ;t , (60)

where Ĥel = ∑
k εk ĉ

†
kĉk is the kinetic-energy operator for

the electrons, which are assumed to be free except for their
interaction with the field and the phonons, the energy operator
of the phonon subsystem is Ĥph = ∑

q ωq â
†
q âq , and the

electron-phonon interaction is bilinear in electron operators
and linear in phonon operators,

Ĥel-ph =
∑
qkk′

M
q

k′k ĉ
†
k′ ĉk (âq + â

†
−q), (61)

with M
q

k′k representing the strength of the coupling. The
generalization to multiple electronic bands and multiple
phonon branches is straightforward and does not change the
results. Finally, ĤF ;t represents the effects of the applied
electric field Et and can be written in first-quantized notation
as ĤF ;t = −e Et · ∑

e x̂e, where x̂e is the displacement of
electron e from some arbitrarily chosen reference position.

Up to time t = 0 we have a collection of electrons in
local equilibrium with the lattice vibrations of a metal at a
temperature T and no applied electric field, i.e., E0 = 0. The
initial state is then of the form

ρ̂0 = Z−1 exp[−(Ĥ0 − μ N̂el)/T ], (62)

where Z = ZelZph is the grand-partition function, N̂el is the
operator for the total number of electrons, and Ĥ0 is the
Hamiltonian of the uncoupled subsystems,

Ĥ0 = Ĥel + Ĥph, (63)

whose eigenstates, constituting the thermodynamic basis, are

|α〉 = |n1n2 · · · nk · · · 〉|N1N2 · · · Nq · · · 〉 = |n; N〉, (64)

which represent the numbers of electrons, {nk}, and phonons,
{Nq}, in each single-particle state.

The electric field is turned on at time t = 0+ to a
constant value, i.e., Et = E for t > 0, and the subsystems
are subsequently coupled. In the notation of Sec. IV we then
have in the generalized thermodynamic description

Ĥ = Ĥ0 + ĤF , V̂ = Ĥel-ph. (65)

Note that V̂ is the coupling which fully mixes the degrees of
freedom of the different subsystems (like Ĥlm in Sec. III),
which need not be separated by spatial boundaries. We
now explain with some detail how the perturbation scheme
developed in Sec. IV applies to the present case. However,
we only need to concentrate on how the transport equation is
obtained in the Born-Markov limit since this suffices to get the
average rate of entropy production.

The idea is then to first derive the transport equation for
the total system from the Liouville–von Neumann equation;
we do it much in the same spirit as Kohn and Luttinger [96]
did for elastic electronic scattering, generalized by Argyres
[97] to inelastic scattering. Having this transport equation, the
average rate of change of the total thermodynamic entropy in
the Born-Markov limit is

〈∂t Ŝt 〉 = −
∑

α

(∂tPα) ln Pα, (66)

as can easily be verified by using (49) in Eq. (47). By
proceeding with the transport or quantum Boltzmann equation
for the electronic subsystem, we obtain a simple expression
for the electronic entropy production.

For the purpose of the present discussion, it suffices to work
with the Liouville–von Neumann equation to first order in the
electric field. That is, with ρ̂t = ρ̂0 + ρ̂1;t and ρ̂1;t linear in the
electric field, we write

i∂t ρ̂1;t = [Ĥ0 + V̂ ,ρ̂1;t ] + [ĤF ,ρ̂0], (67)

where ρ̂1;0 = 0. The Laplace transform of this equation, with
ρ̂1;s = ∫ ∞

0 e−st ρ̂1;t , reads

isρ̂1;s = (L0 + LV )ρ̂1;s + s−1LF ρ̂0. (68)

With �̂1;s = Dρ̂1;s and ρ̂∼
1;s = N ρ̂1;s , we separate this equation

into diagonal and nondiagonal parts, obtaining, respectively,
the coupled algebraic equations

is�̂1;s = DLV ρ̂∼
1;s + s−1DLF ρ̂0, (69)

[is + N (L0 + LV )]ρ̂∼
1;s = NLV �̂1;s + s−1NLF ρ̂0. (70)

Solving for ρ̂∼
1;s in Eq. (70) and substituting the result in

Eq. (69), we get a decoupled equation for �̂1;s , which in the
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lowest Born approximation for the electron-phonon scattering
reads

is�̂1;s = DLV

1

is + NL0
NLV �̂1;s + s−1DLF ρ̂0. (71)

From this, the transport equation for the total system easily
arises in the Born-Markov limit by taking the Laplace inverse
and neglecting memory terms. In terms of the occupation
probabilities Pα = 〈α|�̂t |α〉 we get

∂tPα = 1

i
(LF ρ̂0)α +

∑
α′

(Pα′Wα′α − PαWαα′) (72)

with the transition rates induced by the electron-phonon
coupling Wαα′ = 2πδ(εα − εα′)|〈α|Ĥel-ph|α′〉|2. We have then
derived the transport equation for the total system, in terms of
which the average rate of change of the total thermodynamic
entropy can be calculated, in the Born-Markov limit using (66).

To proceed with the calculation of the entropy production
of the electronic subsystem, we note that

Pα = P el
n P

ph
N χ

el-ph
nN , (73)

where P el
n is the probability that the electrons are in the Fock

state |n〉 regardless of the state of the phonons, P
ph
N is the

probability that the phonons are in the Fock state |N〉 regardless
of the state of the electrons, and χ

el-ph
nN is the conditional

probability that the total system is in the state |α〉 in Eq. (64),
given that the electron and phonon subsystems are in states |n〉
and |N〉, respectively, without “knowing” about each other.
Clearly, χ

el-ph
nN is a function of the electron-phonon coupling

strength and can then be expanded in a power series of it,

χ
el-ph
nN = 1 + χ

el-ph(1)
nN + χ

el-ph(2)
nN + · · · . (74)

In the lowest Born approximation for the electron-phonon
scattering, the electron and phonon subsystems are uncorre-
lated, i.e., χ

el-ph
nN = 1, which is the usual Born-Oppenheimer

approximation, and then by substituting (72) and (73) into
(66), the average rate of change of the thermodynamic entropy
of the total system turns out to be additive. For the electronic
subsystem we have

〈∂t Ŝt 〉el = −
∑

n

(
∂tP

el
n

)
ln P el

n , (75)

where the normalization condition
∑

N P
ph
N = 1 has been used.

Here, the transport equation for the electronic subsystem is
obtained from (72) by summing over N ,

∂tP
el
n = 1

i

∑
N

(LF ρ̂0)nN,nN +
∑
n′

(
P el

n′ �n′n − P el
n �nn′

)
, (76)

where we have defined the phonon-averaged reduced transition
rates �nn′ as

�nn′ =
∑
N

P
ph
N

∑
N ′

WnN,n′N ′ . (77)

We can still go further and use the assumed statistical
independence of the electrons to factorize their probability
distribution into the probabilities of the one-electron states

P el
n = pn1pn2 · · · pnk

· · · , (78)

where pnk
is the probability that the one-electron state with

quantum number k has occupation nk = 0,1. Substituting this
in Eq. (75), we obtain an additive contribution to the average
rate of change of the thermodynamic entropy of the electronic
subsystem

〈∂t Ŝt 〉el = −
∑
k,nk

(
∂tpnk

)
ln pnk

= −
∑

k

(∂tfk) ln
fk

1 − fk

,

(79)

where in the last equality we identify the nonequilibrium
one-electron distribution as fk = ∑

nk
nkpnk

= pnk=1 and use∑
nk′ pnk′ = 1 to express pnk=0 = 1 − fk . The transport equa-

tion for fk is obtained by multiplying (76) by nk and summing
over all n. To this end, note that

�nn′ =
∑

k,k′(k �=k′)

wkk′ nk(1 − nk′)

× |〈· · · nk′ − 1 · · · nk + 1 · · · |n′〉|2, (80)

which is obtained by using (61) explicitly, where the one-
electron transition rate from state k to state k′ is

wkk′ = 2π
∑

q

∣∣Mq

k′k

∣∣2
[N̄ (ωq)δ(εk′ − εk − ωq)

+[1 + N̄ (ωq)]δ(εk′ − εk + ωq)], (81)

with N̄ (ωq) = ∑
N P

ph
N 〈N |â†

q âq |N〉 being the average number
of phonons in the single-particle state with quantum number
q. We assume that the phonon subsystem can be kept in
equilibrium at temperature T (hence the dependence of N̄

on only ωq), regardless of the nonequilibrium state of the
electrons, as is the case for a good-enough heat reservoir.

That the phonons can be considered as a heat reservoir in
the Born-Oppenheimer approximation can be seen by looking
at the transport equation for the phonon subsystem, obtained
from (72) by summing over n,

∂tP
ph
N =

∑
N ′

(
P

ph
N ′ �N ′N − P

ph
N �NN ′

)
, (82)

where we have defined the electron-averaged reduced transi-
tion rates as

�NN ′ =
∑

n

P el
n

∑
n′

WnN,n′N ′ . (83)

Here, we observe the important fact that the contribution from
the first term of (72) vanishes due to the null value of the
trace of the commutator [ĤF ,ρ̂0] in the subspace of electrons.
This allows the existence of a steady-state solution of (82) for
which detailed balance holds, which is then an equilibrium
solution. In any case, the assumption that the phonons are in
equilibrium is not necessary for the following derivation of
the electronic entropy production, as N̄ (ωq) in Eq. (81) can be
replaced by the more complicated average obtained by using
the nonequilibrium solution of (82), not investigated here.

The transport equation for the one-electron distribution is
then found to be, from (76),

∂tfk = 1

i

∑
nN

nk(LF ρ̂0)nN,nN +
∑
nn′

nk

(
P el

n′ �n′n − P el
n �nn′

)
.

(84)
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This is just the quantum Boltzmann equation. To write it
in the familiar form we first note that, by writing Ĥel in
the first-quantized form and using the well-known formula
[x̂e,f ( p̂e)] = i∇ p̂e

f ( p̂e), we have LF ρ̂0 = i(e/T )E · v̂ρ̂0,

where v̂ = ∑
e( p̂e/m) = ∑

k vkĉ
†
kĉk is the velocity operator

of all electrons, with vk = ∇kεk being the band velocity.
Therefore, the first term in Eq. (84) is

(∂tfk)drift = 1

i

∑
nN

nk(LF ρ̂0)nN,nN = eE
T

Tr (n̂k v̂ρ̂0)

= eE · vkf
0
k

(
1 − f 0

k

)/
T = −eE · ∇kf

0
k , (85)

where f 0
k = Tr(n̂kρ̂0) is the equilibrium Fermi-Dirac one-

electron distribution. The second term in Eq. (84) can be
written, using (80), as

(∂tfk)coll =
∑
nn′

nk

(
P el

n′ �n′n − P el
n �nn′

)
,

=
∑

n

P el
n nk

∑
k′,k′′

wk′k′′(1 − nk′)nk′′

−
∑

n

P el
n nk

∑
k′,k′′

wk′k′′nk′(1 − nk′′ ). (86)

Therefore, by noting that nk(1 − nk) = 0 and using (78), we
see that the terms which do not cancel in the above sums are

(∂tfk)coll =
∑
k′

[fk′ wk′k(1 − fk) − fk wkk′(1 − fk′)]. (87)

We have thus arrived at the familiar form of the quantum
Boltzmann equation by substituting (85) and (87) into (84).
With this, we can rewrite the average rate of change of the
thermodynamic entropy of the electronic subsystem, from
(79), as

〈∂t Ŝt 〉el = �el − �el, (88)

which is the entropy balance equation for the electronic
subsystem, with the average electronic entropy production rate

�el = 1

2

∑
kk′

[fk′ wk′k(1 − fk) − fk wkk′(1 − f ′
k)]

× ln
fk′ wk′k(1 − fk)

fk wkk′(1 − f ′
k)

, (89)

which, similar to (51), is a sum of terms of the form
(x − y) ln(x/y) and then satisfies the second law of thermo-
dynamics; the entropy flux from the electrons to the phonons
is

�el = 1

2

∑
kk′

[fk′ wk′k(1 − fk) − fk wkk′(1 − f ′
k)] ln

wk′k

wkk′

+
∑

k

(∂tfk)drift ln
fk

1 − fk

. (90)

In the steady state the left-hand side of (88) is exactly zero,
and then all the entropy produced in the electronic system is
transported to the phonons. We now want to show that this
steady-state entropy flux toward the lattice vibrations gives
the expression of the well-known Joule heating.

We need a solution, fk = f 0
k + δfk , of the quantum Boltz-

mann equation which, to linear order in the electric field
strength, we write formally as

δfk =
∑
k′

W−1
kk′

[
eE · vk′

T
f 0

k′
(
1 − f 0

k′
)]

, (91)

where the linearized collision operator W has matrix elements

Wkk′ = f 0
k wkk′ + wk′k

(
1 − f 0

k

) − δkk′

τk

. (92)

The quasiparticle relaxation time τk is given by

1

τk

=
∑
k′

[
f 0

k′wk′k + wkk′
(
1 − f 0

k′
)]

(93)

and becomes equal to the momentum relaxation time if the
transition rates wkk′ are independent of the angle between k

and k′.
We now expand (89). Because both the logarithm and the

prefactor vanish in equilibrium, the leading contribution is
O(δf )2. The term from expanding the logarithm is easily seen
to be

δfk′

f 0
k′
(
1 − f 0

k′
) − δfk

f 0
k

(
1 − f 0

k

) ,

while the term coming from the prefactor is

Wkk′δfk′ − Wk′kδfk. (94)

Combining these equations with (91) yields

�el =
∑

k

eE · vk

T
δfk = σE2

T
, (95)

where, in the last equality, we recognize the electric cur-
rent as e〈v̂〉 = ∑

k evkδfk = σ E, with σ being the electric
conductivity. Thus, we see that, to leading order in the
electron-phonon coupling and the electric field and on the
assumption that the phonons act as a reservoir, the electronic
entropy production predicted by our formula is exactly the
result expected from the Joule heating, T �el = σE2, implied
by the electric field. Therefore, as desired, we have arrived
at an expression of energy dissipation from a first-principles
calculation of entropy production, not the other way around,
as in previous approaches.

We remark that the results for the entropy production
presented here are beyond the linear response theory. This is
because, even when starting from the linear in the electric
field correction to the density matrix ρ̂1;t [see Eq. (67)],
we derived the leading contribution to the electronic entropy
production which is quadratic in the electric field. This is in
contrast to past approaches [43,96] for the calculation of the
Joule heating, which require going to the second order in the
electric field contribution to the density matrix ρ̂2;t for the cal-
culation of the rate of change of the energy of the electrons. A
field-theoretic approach [98,99] for the calculation of higher-
order terms in the entropy production beyond the Born-Markov
approximation will be treated elsewhere.

It is illustrative to evaluate the result explicitly, assuming,
e.g., dispersionless optical phonons ωq = ω0. With |Mq

k′k|2 =
M δq,k′−k and assuming a degenerate electron system (i.e.,
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T � εF ), we obtain

�el = (e2E2/3πmM) DεF

DεF −ω0 + DεF +ω0

(εF /T ) sinh(ω0/T ), (96)

with Dε being the electron density of states. In this case, the
entropy production becomes large at low temperatures due
to an increase in the conductivity (phonons not thermally
activated and then scarcity of scattering centers) and hence
in the Joule heating; this is expected when the only scattering
mechanism is from optical phonons.

Finally, we would like to point out the connection of the
result (95) with the discussion in Sec. III concerning the
foundations of the classical theory. With only the action of
one of the subsystems (the sources of the E field) treated
parametrically, with the three spatial components of the field
Eλ playing the role of the external parameters to the electronic
subsystem, we can define an operator F̂λ = ∂ĤF /∂Eλ for the
force exerted on the electrons upon variation of the field and
write

T �̂el =
∑

λ

F̂λ∂tEλ = ∂t

∑
λ

F̂λEλ −
∑

λ

(∂t F̂λ)Eλ

= ∂t ĤF + ev̂ · E = ev̂ · E, (97)

where ĤF = −e
∑

λ,e Eλx̂
λ
e , and to get the last equality we

use ∂t ĤF = ∂t Ĥ = 0 since the total system is isolated. Taking
the expectation value of (97), the last equality is just (95), and
the form of the first equality is reminiscent of the classical
expression (25).

We then see that, although in the present discussion
the subsystems are not separated by spatial boundaries (the
essence of the generalized thermodynamic description) and
there is no local equilibrium at all times: the phonons remain in

equilibrium, as implied by the assumption that they constitute
a good heat reservoir, but the electrons attain a nonequilibrium
steady state; the common feature with the discussion in Sec. III
is the complete factorization of the probability distribution
of the system over the degrees of freedom of the different
subsystems (uncorrelated subsystems), here manifested as the
Born-Oppenheimer approximation. An appropriate account of
the quantum correlations between subsystems is therefore the
key to purely quantum thermodynamic behavior.

VII. CONCLUSION

We have developed a theory for the entropy production
in quantum many-body systems by introducing an entropy
operator and calculating the average rate of change of its
thermodynamically measurable part. We show that the laws
of thermodynamics are satisfied exactly within our formal-
ism. In the Born-Markov approximation which describes
the physics of weakly coupled subsystems of an isolated
system in the long-time limit, the theory reproduces the
entropy balance equation which is fundamental in classical
nonequilibrium thermodynamics and the Joule heating con-
tribution to the entropy production expected in a standard
conductor. Applications to other systems as well as gener-
alizations beyond the weak-coupling limit will be presented
elsewhere.
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