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Very recently we showed that quantum centroid molecular dynamics (CMD) simulations of the velocity
autocorrelation function provide, through the Gaussian approximation (GA), an appropriate representation of
the single-molecule dynamic structure factor of liquid H2, as witnessed by a straightforward absolute-scale
agreement between calculated and experimental values of the total neutron cross section (TCS) at thermal and
epithermal incident energies. Also, a proper quantum evaluation of the self-dynamics was found to guarantee,
via the simple Sköld model, a suitable account of the distinct (intermolecular) contributions that influence
the neutron TCS of para-H2 for low-energy neutrons (below 10 meV). The very different role of coherent
nuclear scattering in D2 makes the neutron response from this liquid much more extensively determined by the
collective dynamics, even above the cold neutron range. Here we show that the Sköld approximation maintains
its effectiveness in producing the correct cross section values also in the deuterium case. This confirms that the
true key point for reliable computational estimates of the neutron TCS of the hydrogen liquids is, together with
a good knowledge of the static structure factor, the modeling of the self part, which must take into due account
quantum delocalization effects on the translational single-molecule dynamics. We demonstrate that both CMD
and ring polymer molecular dynamics (RPMD) simulations provide similar results for the velocity autocorrelation
function of liquid D2 and, consequently, for the neutron double differential cross section and its integrals. This
second investigation completes and reinforces the validity of the proposed quantum method for the prediction
of the scattering law of these cryogenic liquids, so important for cold neutron production and related condensed
matter research.

DOI: 10.1103/PhysRevB.93.224302

I. INTRODUCTION

Experimental and computational investigations of the phys-
ical properties of light molecular liquids such as H2 and D2 are
topical subjects of intense research work. The reasons for this
interest are manifold, since disparate fields of research would
greatly benefit from progresses in the understanding of these
liquids: from the formulation of appropriate quantum theories,
to the prediction of their behavior on other planets, to, finally,
well-known applications related to energy storage, cryogenics,
and neutron moderation for condensed matter spectroscopic
studies. Theoretical, computational, and technical challenges
posed by the hydrogen liquids all stem from their “mild”
quantum nature that places these two liquids midway between
the case of liquid He and that of classical fluids. This means
that most of their properties can be deduced by treating
the molecules still as Boltzmann (distinguishable) particles,
but there is no way that classical methods will be able to
reproduce the experimental reality. For instance, Monte Carlo
and molecular dynamics simulations aimed at predicting the
structural and dynamical properties of H2 and D2 at liquid
temperatures must be generalized to model, in an effective way,
the occurrence of particle quantum delocalization, as accom-
plished by the path-integral Monte Carlo (PIMC) method [1]
and by techniques like centroid molecular dynamics (CMD)
[2,3] and ring polymer molecular dynamics (RPMD) [4–6].

As far as the static and dynamic structural properties
of condensed systems are concerned, a strong coupling
has always existed between liquid hydrogens and neutron

spectroscopy, since they are mutually very important for each
other. Indeed neutrons are the ideal probe for spectroscopic
investigations, at the nanometer and picosecond length and
time scales, of light elements. Moreover, neutrons are scattered
in a very different way by the two hydrogen isotopes, making
isotopic substitution in neutron experiments a very effective
method to access either the collective or the single-molecule
dynamic properties of the pure system, as well as to sensitively
characterize the composition of hydrogen-containing samples.
Vice versa, the low mass values of the hydrogens (close to
the neutron one) make these liquids very efficient moderators
(through inelastic collisions) of the high energy neutrons
produced by nuclear fission or spallation processes. At the
same time, their range of liquid temperatures (�20 K) is such
that the final equilibrium energy distribution taking place in
a hydrogen moderator is positioned in the so-called “cold”
neutron range (1–10 meV). Therefore, liquid hydrogen and
deuterium are extremely useful materials for the production of
low energy neutrons, and have always been widely employed
as cold neutron sources for condensed matter research.

It is important to note that although H2 should be preferred
as a moderator substance because of its lower mass, liquid
(solid) deuterium is often chosen for the production of cold
(ultracold) neutrons owing to its neutron absorption cross
section, which is nearly three orders of magnitude lower than
that of hydrogen. This is of particular importance in the attempt
to obtain intense beams of cold neutrons. Indeed, absorption of
a neutron by a nucleus grows by decreasing the neutron energy,
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so use of a nuclide with a much lower absorption cross section,
while increasing the overall beam flux, enhances particularly
the flux of the least energetic neutrons. Therefore, as far as cold
neutron production is concerned, such an important property
makes D2 at least as interesting as H2, as shown, for example,
by the choice of deuterium for the new cold source at the NIST
Center for Neutron Research [7,8].

The still open questions regarding the structure and dy-
namics of these quantum liquids, our ability to predict their
behavior, as well as the more technical aspects related to
neutron moderation and production of increasingly intense
cold neutron beams have therefore, as a common denominator,
the same problem: reaching an accurate knowledge of some
basic time correlation functions for H2 and D2 and, through
these, being able to accurately reproduce the neutron scattering
properties. Validation of a parameter-free algorithm for the
computation of the neutron double differential cross section
(DDCS) then not only becomes an important test of the
dynamic structure factor used in the calculations, but also
provides the possibility to build up neutron cross section
libraries of the accuracy required at present in source design,
without limitations either on the desired mapping of the
kinematic plane, or on the initial neutron energy value E0.

In a recent paper [9], in the following referred to as I,
we started addressing the case of H2 in equilibrium at liquid
temperature (i.e., para-H2) and proposed the use of quantum
CMD simulations of the velocity autocorrelation function
(VACF) to derive the single-molecule (self) center-of-mass
(c.m.) dynamic structure factor Sc.m.,self (Q,E) through the
Gaussian approximation (GA) [10,11]. This was done in an
attempt to model at best the quantum effects that influence
the dynamics of para-H2 and that were not fully taken into
account in existing models (see I, and references therein) for
its DDCS. Proper consideration of the quantum nature of the
system allowed us to show that no adjustable parameters were
required to reach quantitative agreement with thermal and
epithermal total cross section (TCS) data on an absolute scale,
as well as with the few DDCS data available in absolute units.
The same was found for the TCS at cold incident energies,
where however also the distinct dynamics of para-H2 must be
considered along with the self one. The Sköld approximation
for the modeling of the distinct part [12] that simply exploits
the knowledge of Sc.m.,self (Q,E) and of the static structure
factor Sc.m.(Q), was found to be sufficient to account very well
for recent accurate TCS measurements in the cold range [13].
Nonetheless, the agreement found at cold-neutron incident
energies turned out to be not as perfect as that obtained at
thermal energies and above. For these reasons we hypothe-
sized, among other possibilities, a slight failure of the Sköld
approximation. This suggests we investigate more thoroughly
the role of the distinct contributions and their schematization
via the Sköld model. Between the two hydrogen liquids,
D2 is certainly the most appropriate system to refer to for
this purpose, since its neutron scattering properties are such
that both distinct (weighted by the coherent cross section
only) and single-molecule (weighted also by the incoherent
cross section) correlations are comparably highlighted by the
neutron DDCS in a wide incident energy range, differently
from para-H2 where the incoherent cross section is huge, and
distinct components in the DDCS become visible only when

the incident neutrons have energies below the threshold of the
first rotational transition, i.e., in the cold range.

This paper thus focuses on a treatment of the liquid D2

case similar to the one proposed in I for para-H2, with the
further attempt to complete the verification of our quantum
simulation-based algorithm for the calculation of the DDCS,
and of its ability to faithfully describe, after double integration,
the experimental TCS of both hydrogen liquids. Unfortunately,
like in the para-H2 case, properly corrected and normalized
DDCS data are actually unavailable also for liquid deuterium,
and quantitative comparisons with experiment can only be
performed at the less detailed level of an integrated quantity
like the TCS, for which only one data set at cold and thermal
neutron energies seems to be available, i.e., that provided long
ago by Seiffert [14]. Only very recently data in the ultracold
neutron (UCN) range (below 10−3 meV) have been published
[15] that we will take into consideration for comparison with
future calculations. However, this requires a good modeling of
the dependence of the scattering lengths on the incident ener-
gies, which is unnecessary outside the UCN range of energies.

In order to provide an additional check of the VACF
predicted by the CMD quantum simulation method, here we
also provide comparisons with the results obtained by means
of RPMD computations. Determinations of Sc.m.,self (Q,E),
i.e., the time Fourier transform of the intermediate scattering
function Fc.m.,self (Q,t) obtained in the GA from the simulated
VACF, will be synthetically indicated as CMD+GA and
RPMD+GA, depending on the simulation method used to
calculate the VACF.

The superiority of the quantum simulation based approach
with respect to other models for the self-dynamics (see I),
which cannot account properly for the “true” quanticity of the
liquid, has been already demonstrated in I, and will not be
further discussed here.

II. BRIEF REVIEW OF THE GENERAL FORMALISM

For diatomic homonuclear molecules, interacting through
a substantially isotropic potential as the hydrogen one, the
neutron DDCS in the sub-eV range can be approximated very
well by that of free vibrorotors. In particular, it can be written
as

d2σ

d�dE
=

√
E1

E0
Sn(Q,E)

with [16]

Sn(Q,E) = u(Q)Sc.m.,dist(Q,E)

+
∑

J0J1v1

FJ0J1v1 (Q)Sc.m.,self (Q,E − EJ0J1 − E0v1 ),

(1)

where the translational dynamics of the molecule is assumed
to be fully decoupled from the intramolecular degrees of
freedom, as evidenced above by the presence of the c.m.
dynamic structure factors only. In Eq. (1), Sc.m.,dist(Q,E)
and Sc.m.,self (Q,E) represent the distinct and self components
of the total dynamic structure factor per molecule [see I,
Eq. (2)], with Sc.m.(Q,E) = Sc.m.,self (Q,E) + Sc.m.,dist(Q,E).
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The rotovibrational single-molecule structure is instead ac-
counted for, in such hypotheses, by the second term on the
right-hand side of Eq. (1), and corresponds to a sum of spectral
lines centered at the energies of intramolecular rotovibrational
(J0 → J1, v0 → v1) transitions, where the subscripts 0 and
1 are used to label initial and final state, respectively, of
the rotational (J ) and vibrational (v) quantum numbers. The
ground vibrational state (v0 = 0) is assumed here as the only
one significantly populated in both hydrogen and deuterium at
liquid temperatures. The function F depends on the quantum
numbers and takes different expressions according to the
nuclear spin statistics (i.e., it changes if the constituent nuclei
are fermions or bosons) and on the ortho-para concentration,
and contains both the coherent and incoherent nuclear cross
sections [16]. Conversely, the weight of the intermolecular
dynamics u(Q) depends only on the coherent cross sections of
the nuclei in the molecule, and, as the function F , on the wave
vector Q exchanged in the scattering process.

Differently from the case of H2 [9], the coherent and
incoherent scattering lengths of the D nucleus have comparable
values (6.674 and 4.003 fm, respectively). This implies that
the distinct contributions to the neutron DDCS of D2 are as
important as the single-molecule ones for any relevant incident
energy E0 in the sub-eV range, which is a very different
situation from that of para-H2 where the intermolecular
dynamics assumes a non-negligible role only at cold neutron
energies. Thus, appropriate modeling of both Sc.m.,dist(Q,E)
and Sc.m.,self (Q,E) is crucial in the deuterium case in a much
wider E0 range than in the case of para-H2.

As stated in I, simple quantum simulation methods such
as CMD and RPMD cannot reliably be used to evaluate
time correlation functions that are not linear in position
and momentum operators [2,3,17]. Unfortunately, this is
precisely the case for the correlation functions entering the
self and total intermediate scattering functions Fc.m.,self (Q,t)
and Fc.m.(Q,t), so that also their spectra Sc.m.,self (Q,E) and
Sc.m.(Q,E) cannot be determined directly by these methods.
However, as far as the self-dynamics is concerned, it is possible
to circumvent this problem while still accounting for the
quantum behavior of the system, by using CMD or RPMD
estimates of the c.m. VACF

u(t) = 〈vc.m.(0) · vc.m.(t)〉, (2)

in combination with the GA [10,11]. More details can be found
in I. Briefly, the GA relates the VACF frequency spectrum
(ω = E/�, with 2π� Planck’s constant)

p(ω) = 1

2π

∫ ∞

−∞
dte−iωtu(t) (3)

to Fc.m.,self (Q,t). In particular, it is assumed that

Fc.m.,self (Q,t) � e−Q2γ1(t) for all Q,all t (4)

with

γ1(t) = �

2M

∫ +∞

0
dω

f (ω)

ω
A(ω). (5)

In Eq. (5) A(ω) is given by

A(ω) = [1 − cos(ωt)] coth

(
�ωβ

2

)
− i sin(ωt),

[β = (kBT )−1, with kB as Boltzmann’s constant] while f (ω)
depends on the VACF spectrum according to

f (ω) = 2M

3�ω
[p(ω) − p(−ω)]

= 4M

3π�ω

∫ ∞

0
dt sin(ωt)Im[u(t)]. (6)

By time Fourier transforming Eq. (4), a quantum determi-
nation of Sc.m.,self (Q,E) is thus achieved, and can be inserted in
the DDCS algorithm implementing the intramolecular part of
Eq. (1). As shown in I, the single-molecule dynamics obtained
in this way fulfills very well the quantum second moment sum
rule and provides TCS values in perfect agreement with experi-
ment at all incident energies for which it completely dominates
the scattering properties of para-H2. On the basis of this, the
CMD+GA results for Sc.m.,self (Q,E) are expected to provide
an even better representation of D2 self-dynamics, given the
less pronounced quanticity of this (heavier) molecule.

Concerning the total dynamics, unfortunately no analo-
gous way exists to derive a quantum-compliant Sc.m.(Q,E)
from simulation of some linear-operator time correlation
function, and from this to extract [by simple subtraction of
the CMD+GA Sc.m.,self (Q,E)] a quantum evaluation of the
Sc.m.,dist(Q,E) needed to calculate the first term of Eq. (1).
As we have shown in the case of para-H2, a simple, yet
effective, solution is to model the distinct dynamics through the
Sköld approximation [12] that provides the total Sc.m.(Q,E) =
Sc.m.,self (Q,E) + Sc.m.,dist(Q,E) as a suitable modification of
its self part alone, namely

Sc.m.(Q,E) ≈ Sc.m.(Q)Sc.m.,self

(
Q√

Sc.m.(Q)
,E

)
, (7)

so that the distinct part of the dynamic structure factor is
obtained as

Sc.m.,dist(Q,E) ≈ Sc.m.(Q)Sc.m.,self

(
Q√

Sc.m.(Q)
,E

)
− Sc.m.,self (Q,E), (8)

where Sc.m.(Q) is the c.m. static structure factor. In the present
D2 case, the Sc.m.(Q) determined by our neutron diffraction
measurements [18] was employed. Of course, in the absence
of experimental values, a valid alternative is to resort to
PIMC determinations of Sc.m.(Q). Use of accurate data for
the structure factor, along with a reliable quantum evaluation
of Sc.m.,self (Q,E), was shown in I to be a sufficiently good
method to account for the intermolecular terms contributing to
the TCS of para-H2 at cold incident energies and above. The
same scheme was thus adopted for deuterium, providing an
additional, more stringent, test of the effectiveness of such a
crude approximation in total cross section calculations for both
quantum liquids. This is indeed required to better understand
the performance of the Sköld model, which is most likely
responsible for the slightly inadequate description of the TCS
of para-H2 between 2 and 8 meV (see I).
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III. QUANTUM SIMULATIONS OF THE VACF
OF LIQUID D2

In order to provide the appropriate input for our DDCS/TCS
calculations, we have performed a series of CMD and RPMD
simulations of liquid o-D2 at T = 20 K and number density
ρ = 25.60 nm−3 (i.e., on the experimental coexistence line
[19]). Since, at that temperature, o-D2 is in the rotational
ground state, it was natural to model the intermolecular inter-
actions by the same, spherically symmetric Silvera-Goldman
pair potential [20] already used for p-H2 in I. In fact, our CMD
code was exactly that of part I, except that the molecular mass
of H2 was replaced by the D2 one. The number of molecules
in the cubical simulation box was usually N = 256, and the
Trotter number P = 64, although with RPMD we have also
performed additional simulations employing N = 500 and
P = 16 and 32. The VACFs shown below are averages over
ten independent runs, where, in the case of CMD, each single
run consisted of 105 time steps of 	t = 0.005 ps (500 ps) in
the isokinetic ensemble [21], while, for RPMD, the system
was integrated for 106 time steps of 	t = 0.001 ps (1 ns) per
run. Our implementation of CMD, which is basically classical
molecular dynamics of the centroids (of the ring polymers
replacing the quantum mechanical particles in the “classical
isomorphism” [4]), in a quantum mechanical force field that
is recalculated by short path integral Monte Carlo averages
over the polymers’ internal coordinates at each time step, has
already been described in paper I.

In RPMD the classical isomorphism is taken literally, and
the polymers internal modes are also propagated, on the
time scale of intermolecular processes, by classical molecular
dynamics [6]. This requires the introduction of fictitious
monomer masses which are chosen equal to the mass of the
original quantum particle, and, as a consequence, the polymers
internal modes must be kept at a temperature PT (P being the
number of momomers on a polymer). We have integrated the
equations of motion of both the centroids and the monomers
in real coordinates (although for the latter normal coordinates
are more usual) using a set of N + 1 Gaussian thermostats
[21,22]: a single global thermostat to keep the translational
kinetic energy of the whole system of centroids at a value
corresponding to the temperature T , and one thermostat each
to keep the polymers “internal temperature” at PT . For the
numerical integration we have again employed the leapfrog
scheme in the simple variant of Brown and Clarke [23].

In CMD as well as in RPMD, time correlation functions
were calculated up to a maximum time lag of 5 ps and tapered
to zero at the end of this interval by a Welch window [24]
when performing Fourier transforms or computing diffusion
constants (see below).

In theory, the number of molecules N and the Trotter
number P should be varied to ensure that the results of
the simulations are close to both the thermodynamic and
the quantum mechanical limit. We have verified that N =
256 and P = 64 are more than sufficient for the level of
comparison with experimental data sought in the present paper.
In particular, the Trotter number P = 64, which was chosen
for consistency with our previous study of p-H2, could have
been lowered to P = 32 or even 16 without affecting the
conclusions drawn below.
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FIG. 1. Canonical velocity autocorrelation function uc(t) of
deuterium at T = 20 K and ρ = 25.60 nm−3 obtained by means
of the quantum CMD (blue dot-dashed curve) and RPMD (red solid
curve) simulations described in the text.

The output of the quantum simulation is the canonical (or
Kubo-transformed [25]) VACF:

uc(t) = 1

β

∫ β

0
dλ〈eλH vc.m.(0)e−λH · vc.m.(t)〉, (9)

where H is the Hamilton operator of the system. The canonical
VACF is a real and even function of time, whose frequency
spectrum

pc(ω) = 1

2π

∫ ∞

−∞
dte−iωtuc(t) (10)

is related to the spectrum p(ω) of the VACF by the relation

p(ω) = pc(ω)
β�ω

1 − e−β�ω
. (11)

Note that pc(ω) is a real and even function of frequency,
while p(ω) is a real, nonsymmetric spectrum, which satisfies
the detailed balance condition p(−ω) = exp(−β�ω)p(ω).

Figure 1 reports our CMD and RPMD simulation results for
the VACF of D2. The two curves are very similar, suggesting
that both methods can effectively be used to simulate such a
correlation function. Given the results obtained in I for para-H2

using the CMD VACF, we expect then, in the present D2 case, a
successful performance of both the CMD and RPMD methods,
although these involve quite different approximations of
the exact quantum dynamics, as interestingly discussed in
Refs. [26,27].

By means of the equations given in Sec. II we calculated
the corresponding γ1(t), whose real and imaginary parts are
shown in Fig. 2. Both functions tend to linear behavior in a
very short time. A slight difference in the asymptotic limit of
Re [γ1(t)] as obtained by RPMD and CMD can be detected.
This implies that the two methods predict slightly different
values of the self-diffusion coefficient D (present values are
3.5 × 10−9 m2 s−1 for CMD, 3.4 × 10−9 m2 s−1 for RPMD)
[28], though both are well within the uncertainty on the
experimental value at 20 K, D = (3.7 ± 0.4) × 10−9 m2 s−1
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FIG. 2. Real and imaginary parts of γ1(t) as derived from CMD
(dot-dashed and dashed blue curves) and from RPMD (solid and
dotted red curves) simulations of the VACF of D2 at T = 20 K and
ρ = 25.60 nm−3.

[29]. The present D2 results confirm that CMD and RPMD
exhibit similar performances close to the triple point, as
shown by Pérez et al. [30] for the hydrogen case also by
means of general criteria that do not resort to comparison with
experimental data but give important indications on the quality
of the results. Another experiment-independent way to assess
the quality of the approximate Kubo-transformed correlation
functions obtained by RPMD has also been recently discussed
in Ref. [31]. However, as for mean kinetic energies in liquid
hydrogens, it seems that CMD is able to provide slightly more
accurate results than RPMD (see, e.g., [32]).

In our case the small difference in D does not significantly
affect the resulting self-DDCS spectra, as shown, for an
example incident energy E0 of 10 meV and for various

scattering angles θ , in Fig. 3. CMD and RPMD neutron spectra
obtained in the GA for the second term of Eq. (1) are virtually
indistinguishable at all scattering angles, and we verified
that this is the case even at other E0 values and scattering
angles. In particular, differences between the two outputs are
well below the errors typically affecting measured quantities,
so that a comparison with experiment cannot discriminate
between the two and, in this respect, the two simulation
methods turn out to be equivalent. Note how in the right
panel of Fig. 3 the spectra are, as expected, visibly shifted
due to recoil. Finally, it is important to specify that our DDCS
calculations have been performed for D2 in equilibrium at
the given temperature, corresponding approximately to a 98%
concentration of ortho-molecules.

IV. TOTAL CROSS SECTION RESULTS

As mentioned, it is not to be expected that self-calculations
alone can account for the scattering properties of D2, due to the
non-negligible coherent contribution that enhances the effect
of the distinct intermolecular correlations present in the first
term of Eq. (1). Nonetheless, it is crucial to have reliable and
quantum-compliant determinations of Sc.m.,self (Q,E) as the
starting point of any attempt to describe the total dynamics of
D2 and, thereby, the measured neutron cross section.

As shown in Fig. 4, self-calculations expectedly miss
an appropriate description of the D2 TCS data [14] in the
whole experimental range. A considerable overestimate is
indeed observed, requiring the introduction of the additional
(negative) distinct component.

Despite the drastic simplifications inherent to the Sköld
approximation, the corresponding results, also shown in Fig. 4,
turn out to be surprisingly good, provided that accurate, either
experimental or simulated, information on liquid D2 static
structure is used, as in the present case [18]. In particular,
the CMD+GA (or RPMD+GA) plus Sköld combination
reproduces rather well the shape and height of the peak
centered at about 3.5 meV. Unfortunately measured data are
provided without any indication about the errors. However,
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FIG. 3. Self part [second term of Eq. (1)] of the double differential cross section per molecule of liquid D2 at T = 20 K and ρ = 25.60 nm−3,

as a function of the exchanged energy E, at some example scattering angles θ . The CMD+GA (blue dot-dashed curves) and RPMD+GA (red
solid curves) results are equivalent, as far as a possible comparison with experimental data is concerned.
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FIG. 4. Total scattering cross section of liquid D2 at cold and
thermal energies, as measured by Seiffert (black squares) at 19 K
[14]. The CMD+GA (blue dash-dotted line) and RPMD+GA (red
solid line) self calculations expectedly overestimate the experimental
data. The addition of a distinct contribution, as provided by the Sköld
model, leading to the blue full circles and red empty squares in the
CMD+GA and RPMD+GA case, respectively, brings the computed
TCS in good agreement with the experimental data. The inset focuses
on the cold and subthermal range of incident energies. The pink star
at E0 = 5 meV corresponds to the TCS value for normal D2.

the residual deviations (apparently a small constant offset,
better detectable in the inset of Fig. 4 between 5 and 15 meV)
from the experimental cross section, are difficult to ascribe to
inaccuracies of the simulations, and in addition require us to
exclude the possible occurrence of slight systematic errors in
Seiffert data [14]. Also, the difference in temperature between
Seiffert measurements and our calculations is small enough to
exclude temperature effects and their visibility at the level of
the TCS, since, for instance, it is well known that structural
changes are extremely limited with varying temperature in
high density liquids [33]. Conversely, a brief test calculation
performed at E0 = 5 meV reveals that the offset from Seiffert
data is halved if the normal D2 ortho-to-para concentration
is considered in place of the equilibrium one. Unfortunately,
no information about the duration of the measurements and
the conversion of D2 is given in Ref. [14], differently from
the case of the hydrogen data. Concerning the remaining
minor differences in TCS, we cannot exclude that they might
be the signature of an imperfect description of the distinct
dynamics of a quantum liquid, as discussed in the next section.
Nonetheless, it would be useful that new TCS data become
available for liquid D2 too, with appropriate estimates of the
experimental uncertainties and with a good knowledge of
the sample concentrations, as recently done for para-H2 by
Grammer and co-workers [13].

V. DDCS RESULTS

As stated in the Introduction, experimental Sn(Q,E) data
for liquid D2 have been provided only in arbitrary units

(e.g., [34,35]), preventing us from a quantitative validation
of our DDCS outputs [the simple relation between DDCS
and Sn(Q,E) was given before Eq. (1) in Sec. I]. It is
anyway significant and informative to preliminary probe the
quality of the present method also in predicting the spectral
line shapes, independently from the absolute-scale values. In
Fig. 5 we report the comparison of our calculated spectra
(CMD+GA+Sköld) at several Q values of the three-axis
neutron measurements performed at E0 = 34.95 meV on
normal D2 at 20.14 K by Bermejo and co-workers [34]. For
consistency with the results presented there, new constant-
Q DDCS calculations have been performed appositely for
normal D2. Measured data were more reliably read off
from Fig. 4 of the quoted paper, although they are given
without error bars, an idea of which, at some Q values, can
be deduced from Fig. 5 of the same paper. Our absolute-
normalized data have been convoluted with the resolution
function R(E) of the measurements, and then multiplied by
an arbitrary factor to bring the two data sets on the same
scale.

At Q values above 10 nm−1, measurements and calculations
are in very good agreement, and particularly at the main peak
position Qp = 20 nm−1 of the static structure factor. Indeed,
at Qp, where collective modes in simple liquids are typically
overdamped and propagation tends to arrest (see, e.g., [36] and
Fig. 9 of Ref. [37]), a bell-shaped curve of appropriate integral
and with no inelastic features (like the Sköld one) suites a
realistic representation of the distinct dynamics. Conversely, at
and below 10 nm−1, differences show up, which increase with
decreasing Q. However, discrepancies cannot be explained
only in terms of the presence of underdamped modes in
the fluid (with related inelastic peaks in the spectrum) and
expectedly missed by the Sköld schematization. In fact, a
word of caution is due before interpreting the data at 8 and
10 nm−1. In this respect, we note that the mentioned arbitrary
scale factor takes the values 55.4, 54.9, 36.8, 36.0, 36.1, 36.8 at
the increasing Q values of Fig. 5, respectively, with an abrupt
variation between 10 and 14 nm−1. Since the use of the Sköld
model, in combination with a reliable Sc.m.(Q), does not affect
the correctness of the integrated intensity, this suggests that
the measurements or the experimental data analysis may have
been more critical at low Q, where the normalization factor
inexplicably changes (by 60%), but the largest discrepancies
in shape are also found at the same time.

We conclude, therefore, that the comparison between
spectral shapes is fully satisfactory for the majority of the
investigated Q’s. At smaller Q values, instead, it is difficult
to find out the origin of the jump in the normalization factor
and to confidently attribute problems either to calculations or to
experiment. We can only state that the absolute-scale outputs of
the DDCS code do not present discontinuities with increasing
Q, and are consistent, in integrated intensity, with the growth of
the static structure factor. Anyway, such an ambiguity prevents
one from any useful conclusion about the more or less effective
performance of the Sköld model in the low-Q range, and calls
definitely for new inelastic neutron scattering experiments,
aimed also at a quantitative absolute-scale determination of
the DDCS in well-controlled sample concentration conditions.
On the other hand, for TCS calculation purposes, we can rely
on the fact that, beyond a detailed spectral shape description
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FIG. 5. Liquid normal D2 spectra as obtained by inelastic neutron scattering three-axis measurements [34] (black dots without error bars)
and present calculations in the CMD+GA+Sköld schematization (red solid curve).

at whatever Q, computations ensure a realistic energy integral
of the DDCS.

VI. CONCLUDING REMARKS

We have shown that CMD and RPMD quantum simulations
provide comparable results for the VACF of liquid D2. The
c.m. self-dynamic structure factor obtained in the GA from
either of the two methods can then be used as the starting
point for attempts to describe the neutron scattering properties
of this quantum liquid. A simple description for the distinct
dynamics, such as the Sköld model, is found, like in para-
H2, to account rather well for the total scattering of D2,
provided it is combined with “first-principle” calculations of
the self-DDCS, based on the only hypotheses that both the
chosen intermolecular potential and the decoupling among
translations, rotations, and vibrations, permit an appropriate
description of the D2 response to neutrons in the sub-eV range.
Our quantum simulation based method proves accurate and
flexible enough for the setting up of neutron DDCS databases,
useful in important applications of both hydrogen liquids.
In particular, the present capability to predict the DDCS

without other inputs, except for the temperature and density,
the corresponding VACF, and the molecular parameters of
these molecules, may be extremely useful in determining the
performance of D2 neutron moderators. The results presented
here and in paper I suggest that further studies should be
devoted to the determination of the collective dynamics of
both liquids, not only by means of inelastic neutron scattering
measurements, but also through advancements in the field
of quantum simulation techniques, by developing methods
able to allow direct access to the total dynamics in a more
reliable way than through the Sköld recipe. In this respect,
quantum simulation algorithms such as the one very recently
proposed in Ref. [38] as a modification of the Feynman-
Kleinert linearized path integral method [39], might represent
a promising improvement worthy of further research and
experimental verification.

ACKNOWLEDGMENTS

E.G. gratefully acknowledges the welcome and nice inter-
action with the whole staff of the Institut Laue Langevin during
her 2014 work in Grenoble on the neutron cross sections of
cryogenic liquids.

[1] M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids
(Clarendon, Oxford, 1987).

[2] J. Cao and G. A. Voth, J. Chem. Phys. 100, 5106 (1994).

[3] S. Jang and G. A. Voth, J. Chem. Phys. 111, 2371 (1999).
[4] D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078

(1981).

224302-7

http://dx.doi.org/10.1063/1.467176
http://dx.doi.org/10.1063/1.467176
http://dx.doi.org/10.1063/1.467176
http://dx.doi.org/10.1063/1.467176
http://dx.doi.org/10.1063/1.479515
http://dx.doi.org/10.1063/1.479515
http://dx.doi.org/10.1063/1.479515
http://dx.doi.org/10.1063/1.479515
http://dx.doi.org/10.1063/1.441588
http://dx.doi.org/10.1063/1.441588
http://dx.doi.org/10.1063/1.441588
http://dx.doi.org/10.1063/1.441588


E. GUARINI et al. PHYSICAL REVIEW B 93, 224302 (2016)

[5] D. Chandler, J. Phys. Chem. 88, 3400 (1984).
[6] I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368

(2004).
[7] R. E. Williams, M. Middleton, P. Kopetka, J. M. Rowe, and P. C.

Brand, A Liquid Deuterium Cold Neutron Source for the NIST
Research Reactor—Conceptual Design, Proceedings of the IG-
ORR Conference 2013, Daejeon, South Korea, 2013, available
at http://www.igorr.com/home/liblocal/docs/IGORR2013/07_
1003.pdf.

[8] Z. Wu, R. E. Williams, and S. O’Kelly, Preliminary
Studies on a New Research Reactor and Cold Neutron
Source at NIST, Proceedings of the IGORR 2014/IAEA
Technical Meeting, Bariloche, Argentina, 2014, avail-
able at https://www.ncnr.nist.gov/staff/zeyun.wu/papers/Wu_
IGORR2014.pdf.

[9] E. Guarini, M. Neumann, U. Bafile, M. Celli, D. Colognesi,
E. Farhi, and Y. Calzavara, Phys. Rev. B 92, 104303
(2015).

[10] G. H. Vineyard, Phys. Rev. 110, 999 (1958).
[11] A. Rahman, K. S. Singwi, and A. Sjölander, Phys. Rev. 126, 986
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130, 184105 (2009).

[31] L. H. de la Peña, Phys. Chem. B 120, 965 (2016).
[32] T. D. Hone, P. J. Rossky, and G. A. Voth, J. Chem. Phys. 124,

154103 (2006).
[33] E. Guarini, F. Barocchi, R. Magli, U. Bafile, and M. C.

Bellissent-Funel, J. Phys.: Condens. Matter 7, 5777 (1995).
[34] F. J. Bermejo, F. J. Mompeán, M. Garcı́a-Hernández, J. L.

Martı́nez, D. Martin-Marero, A. Chahid, G. Senger, and M.
L. Ristig, Phys. Rev. B 47, 15097 (1993).

[35] M. Mukherjee, F. J. Bermejo, B. Fåk, and S. M. Bennington,
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