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Spin-glass phase transition and behavior of nonlinear susceptibility in the Sherrington-Kirkpatrick
model with random fields
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The behavior of the nonlinear susceptibility χ3 and its relation to the spin-glass transition temperature Tf in
the presence of random fields are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is
studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the
dependence of the Almeida-Thouless eigenvalue λAT (replicon) on the random fields is analyzed. Particularly, in
the absence of random fields, the temperature Tf can be traced by a divergence in the spin-glass susceptibility
χSG, which presents a term inversely proportional to the replicon λAT. As a result of a relation between χSG and
χ3, the latter also presents a divergence at Tf , which comes as a direct consequence of λAT = 0 at Tf . However,
our results show that, in the presence of random fields, χ3 presents a rounded maximum at a temperature T ∗

which does not coincide with the spin-glass transition temperature Tf (i.e., T ∗ > Tf for a given applied random
field). Thus, the maximum value of χ3 at T ∗ reflects the effects of the random fields in the paramagnetic phase
instead of the nontrivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that
χ3 still maintains a dependence on the replicon λAT, although in a more complicated way as compared with
the case without random fields. These results are discussed in view of recent observations in the LiHoxY1−xF4

compound.
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I. INTRODUCTION

The presence of disorder in spin systems represents a
permanent source of challenging problems, due to the richness
of physical properties that emerge from the interplay between
disorder and many-spin interactions. Random-field (RF) and
spin-glass (SG) models are important examples of such rich-
ness [1–3]. Furthermore, the combination of these two highly
nontrivial manifestations of disorder leads to a fascinating area
of research in spin systems, which is not only a theoretical
possibility. Actually, they can be found in diluted Ising-like
antiferromagnets, like FexZn1−xF2 and FexMg1−xCl2 [4].
Additionally, recent investigations have suggested the diluted
Ising-like dipolar ferromagnetic compound LiHoxY1−xF4 as
a new candidate presenting these two types of disorder,
bringing novel interesting and controversial issues [5–13]. For
instance, the LiHo0.167Y0.833F4 compound, in the absence of an
applied transverse field Bt , displays χ3 (the lowest term of the
nonlinear susceptibility χnl) with a sharp peak at the freezing
temperature Tf , which resembles a conventional second-order
SG phase transition [14–16]. On the other hand, the sharp peak
of χ3 becomes increasingly rounded when Bt is enhanced,
being located at the temperature T ∗, which is lower than Tf

obtained in the absence of Bt [17].
The suggestion that an effective longitudinal RF can

be induced by the interplay of a transverse applied field
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Bt with the off-diagonal terms of the dipolar interactions
in the LiHoxY1−xF4 [5–8] brought a new push to clarify
the controversies of the experimental behavior of χ3 and,
therefore, the meaning of T ∗, i.e., whether or not it is a true SG
transition temperature. In the droplet picture used in Refs. [5]
and [6], the presence of a RF hi(Bt ), induced by the uniform
transverse field, suppresses the SG transition for the same
reason that a uniform field does it in that picture [18]. On the
other hand, within the mean-field Parisi’s framework [19,20],
Tabei and collaborators [7], using a quantum version of the
Sherrington-Kirkpatrick (SK) model [21] with additional off-
diagonal interactions, longitudinal RF hi(Bt ), and a transverse
field �(Bt ), succeeded in reproducing the χ3 experimental
behavior. Indeed, this result is a strong evidence that the
RF plays an important role in the LiHoxY1−xF4 compound.
These authors also suggested that the SG quantum criticality
is unlikely in this transverse field, induced longitudinal RF
scenario; additionally, susceptibility measurements presented
evidence of a canonical SG behavior [10,11]. From that point
of view, one can raise the question of what happens with
the SG criticality in a regime where thermal fluctuations
should be dominant as compared with the quantum ones.
One possible consequence of the transverse field, induced
longitudinal RF, is that the Almeida-Thouless (AT) line [22]
can be suppressed, as suggested by numerical simulations in
short-range-interaction SGs [23]. However, previous studies
using a mean-field Parisi’s framework have shown that the
SK model with a RF does preserve the AT line [24–28].
Consequently, assuming that Parisi’s mean-field theory is a
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valid framework to describe the SG problem with a transverse
field, induced longitudinal RF, one can also raise the question
of how the behavior of χ3 can be related with the AT line
when a RF is present in the SK model. One can expect that the
answer to this question may also help to clarify the meaning
of the temperature T ∗.

Therefore, in this work we present a detailed investigation
of the role of a RF in the behavior of χ3 and its relation to the AT
line in the SK model within the mean-field Parisi’s framework.
In order to relate with experimental verifications on the
LiHoxY1−xF4 compound, we assume that Bt is sufficiently
small to assure that quantum fluctuations are negligible but
enough to guarantee that the effective field-induced RF hi(Bt )
is still appreciable. When hi = 0 (Bt = 0), it is known that χ3

is related with the SG susceptibility,

χSG = (β/N)
∑
i,j

[(〈SiSj 〉 − 〈Si〉〈Sj 〉)2]av, (1)

where, as usual, 〈..〉 and [..]av denote, respectively, thermal av-
erages and an average over the disorder. The SG susceptibility
has a term inversely proportional to the AT eigenvalue λAT,
the so-called replicon [29]. Therefore, the diverging behavior,
χ3 ∝ (T − Tf )−γ , in the SG transition is directly related with
λAT = 0 at Tf , corresponding to the onset of replica symmetry
breaking (RSB).

However, the situation changes considerably when hi �= 0
(i.e., Bt �= 0). For instance, the RF can induce directly the
SG order parameter, but only in the replica-symmetric (RS)
approximation, since the RF is unable to produce any RSB.
This result was demonstrated not only for infinite-ranged
spin interactions [30], but also for the Bethe lattice [31].
As a consequence, the smooth behavior of the SG RS order
parameter q is not appropriate for identifying a SG transition of
the SK model in the presence of a random field; however, such
a transition may be related with the onset of RSB, associated
with the replicon λAT = 0 [24]. In spite of this, the derivative of
q with respect to the temperature increases as one approaches
Tf from above; such an increase is responsible for the rounded
maximum in χ3 at a temperature T ∗, which does not coincide
with the SG transition temperature Tf (i.e., T ∗ > Tf for a given
applied random field). Thus, the maximum value of χ3 at T ∗
should reflect the effects of the RF inside the paramagnetic
(PM) phase instead of the nontrivial ergodicity breaking of
the SG phase transition. Our results also suggest that χ3

still maintains a dependence on the replicon λAT, although
in a much more complicated way as compared with the case
without the RF.

This paper is structured as follows. In the next section
we define the model and the analytical procedure to be
used; then, we calculate λAT, the order parameters within
the one-step replica-symmetry-breaking (1S-RSB) scheme,
the susceptibilities χ1, χ3, as well as the temperature T ∗ in
the presence of RFs, following both Gaussian and bimodal
distributions. In Sec. III we discuss the numerical solutions
of the saddle-point equations for the order parameters and
susceptibilities. Finally, the last section is reserved to the
conclusions.

II. MODEL AND SUSCEPTIBILITIES

Herein we consider the infinite-range-interaction spin-glass
model, defined by the following Hamiltonian:

H = −
∑
(i,j )

JijSiSj −
N∑

i=1

hiSi − Hl

N∑
i=1

Si, (2)

where Si = ±1, Hl represents a uniform field, and the sum∑
(i,j ) applies to all distinct pairs of spins. The spin-spin

couplings {Jij } and the magnetic random fields {hi} follow
independent Gaussian probability distributions,

P (X) =
[

1

2πσ 2

]1/2

exp

[
−X2 − C

2σ 2

]
, (3)

where X may represent either couplings or random fields; in
the former case one has σ = J/

√
N and C = J0/N , whereas

in the later, σ = 	 and c = 0. We also consider a bimodal
probability distribution,

P (hi) = p δ(hi − h0) + (1 − p) δ(hi + h0), (4)

for the random fields {hi}. We follow closely the procedure
used in Ref. [24] to obtain the average free energy per spin,
f = −1/(βN )[lnZ({Jij },{hi})]J,h, where Z({Jij },{hi}) repre-
sents the partition function for a given quenched distribution
of random couplings and fields; moreover, [..]J,h denotes
averages over these types of disorder, and β = 1/T . As usual,
the replica method [1,2,29] is applied; thus,

− βf = lim
N→∞

lim
n→0

1

Nn
([Z({Jij },{hi})n]J,h − 1), (5)

where Zn corresponds to the replicated partition function.
In the replica space, the average over the disorder may be
evaluated and we adopt the 1S-RSB; this procedure leads to
the following free energy [26]:

βf = (βJ )2

4
x
(
q2

1 − q2
0

) − (βJ )2

4
(1 − q1)2 + βJ0

2
m2

− 1

x

∫
Dz ln

∫
Dv[2 cosh �(z,v)]x, (6)

with Dz ≡ 1√
2π

dz exp(−z2/2) and all integrals should be
considered over the whole interval (from −∞ to +∞). The
1S-RSB internal field �(z,v) is given by

�(z,v) = βJ (
√

q0 + �(1 − n)z + √
q1 − q0v)

+βJ0m + β(Hl + n�). (7)

The equations above apply to both types of random fields,
through the identifications n = 0 and � = (	/J )2 (Gaussian
RF), whereas n = 1 and � = h0 (bimodal RF). It should be
mentioned that in the present work the results for the bimodal
RF become independent of p, which may be seen by means
of a change of variables z → −z [27]. Therefore, the analysis
of the bimodal distribution becomes completely equivalent to
that of a shifted uniform field given by Hl + h0. Since the
analysis of the SK model in the presence of a uniform field has
been carried in the literature by many authors [26,27,32,33],
from now on we focus our analysis to the Gaussian random
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field, for which the internal field of Eq. (7) becomes

�(z,v) = βJ (
√

q0 + (	/J )2 z + √
q1 − q0 v)

+βJ0m + βHl. (8)

The 1S-RSB parameters q0, q1, and x should extremize
the free energy of Eq. (6), from which the RS solution is
recovered when q = q0 = q1 [32,33]. The linear susceptibility
χ1 = ∂m

∂Hl
|Hl→0 is given by χ1 = β[1 − q1 + x(q1 − q0)] [20]

when J0 = 0. The nonlinear susceptibility χ3 can be obtained
from χ3 = − 1

3!
∂3m

∂H 3
l

|Hl→0. Moreover, important effects on χ3

appear already inside the region where the RS solution is
stable, more precisely, χ3 presents a rounded maximum at
a temperature T ∗, above the SG transition. Particularly, we
can expand q and m in powers of Hl , for J0 = 0, as (following
Wada [14])

q(Hl) = Q0 + Q2H
2
l , (9)

m(Hl) = χ1Hl + χ3H
3
l , (10)

which results in

χ3(T ) = β3

3
(3J 2Q2 + 1)I0, (11)

with Q0 = ∫
Dz tanh2 �0(z) and Q2 = ∂2q

∂H 2
l

|Hl→0, where the

RS internal field is obtained from Eq. (8) by setting Hl = 0
and q0 = q1 = q, i.e., �0(z) = βJ (

√
q + (	/J )2 z) and

I0 =
∫

Dz[sech4�0(z) − 2 sech2�0(z)tanh2�0(z)]. (12)

Moreover, Q2 can be obtained as

Q2 = 1

2!

∂2q

∂H 2
l

|Hl→0 = β2I0

1 − (βJ )2I0
, (13)

so that χ3(T ) becomes

χ3(T ) = −β3

3

[
3(βJ )2I0

1 − (βJ )2I0
+ 1

]
I0. (14)

These results hold when the RS solution is stable, given by a
positive value of the eigenvalue λAT [24–28],

λAT = 1 − (βJ )2
∫

Dzsech4�0(z). (15)

Particularly, χ3(T ) can be written in terms of λAT,

χ3(T ) = β3

3

[
3

λAT + (βJ )2I1
− 2

]
I0, (16)

where

I1 = 2
∫

Dz sech2�0(z)tanh2�0(z). (17)

In the absence of RFs, I1 = 0 in the PM phase, implying on
a divergence of χ3 when λAT = 0, as expected [29]. Moreover,
in the presence of RFs, one has that I1 > 0, so that Eq. (16)
leads to a rounded maximum at a temperature T ∗.

III. RESULTS AND DISCUSSION

Numerical results are now presented. The effects of RFs on
the SG order parameters q0, q1, δ ≡ q1 − q0, susceptibilities
χ1 and χ3, as well as the stability of the RS solution (i.e.,
λAT) are discussed. In particular, the onset of RSB (location of
Tf ) and how χ3 behaves in the neighborhood of the SG phase
transition are studied.

For instance, Fig. 1 shows that the SG order-parameter
behavior, signaling RSB (δ > 0), occurs at lower temperatures
due to the presence of RFs, i.e., the increase of 	/J moves Tf

to lower temperatures. The freezing temperature Tf , which
is located within the 1S-RSB scheme as the onset of the
parameter δ, is shown herein to coincide with λAT = 0. As
presented in the inset of Fig. 1, the RFs induce the order
parameters q0 and q1 for T > Tf , where the RS solution is
stable [q = q0 = q1, δ = 0 and λAT > 0], characterizing the
PM phase. In the cases (	/J ) > 0 one notices that T ∗ > Tf ,
with the arrows indicating the temperature T ∗ where χ3

presents a rounded maximum.
As shown in Fig. 2, the magnetic susceptibility χ1 exhibits

a clear cusp at Tf in the absence of the RF, whereas in the
presence of a RF, one notices a smooth behavior around
Tf . Below this temperature, the 1S-RSB and RS solutions
become distinct, with the former presenting higher values,
being weakly dependent on the temperature.

In Fig. 3 we present results for the nonlinear susceptibility
χ3, computed directly from the numerical derivatives χ3 =
− 1

3!
∂3m

∂H 3
l

|Hl→0. As a check, for T � Tf , we verified that these

results coincide with those obtained from Eq. (16). For the
case without RFs, χ3 shows a strong divergence at Tf (see
inset in Fig. 3); however, the presence of a RF eliminates this

FIG. 1. The 1S-RSB parameter δ ≡ q1 − q0 and the eigenvalue
λAT are presented versus the dimensionless temperature T/J , for
typical values of 	/J . The inset shows the SG parameters q1 and
q0 separately versus the dimensionless temperature. The freezing
temperature Tf is identified with the onset of RSB, where λAT = 0,
or equivalently, where the parameter δ becomes nonzero. The arrows
indicate the temperature T ∗, where χ3 presents a rounded maximum,
showing that T ∗ > Tf . Due to the usual numerical difficulties,
the low-temperature results [typically (T/J ) < 0.05)] correspond to
smooth extrapolations from higher-temperature data.
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FIG. 2. Magnetic susceptibility χ1 versus T/J for different values
of 	/J . The arrows indicate the onset of the RSB solution (λAT =
0), defining the temperature Tf . Below Tf , solid and dotted lines
indicate linear susceptibilities computed using 1S-RSB (χRSB) and RS
(χRS) solutions, respectively. Due to the usual numerical difficulties,
the low-temperature results [typically (T/J ) < 0.05] correspond to
smooth extrapolations from higher-temperature data.

divergence, and rounded maxima appear in the χ3 curves,
defining the temperature T ∗ for each value of 	/J . It is impor-
tant to remark that T ∗ is always higher than Tf . Furthermore,
the T ∗ and χ3 values decrease for increasing values of 	/J .
Within the RSB region, similarly to what was shown for the
linear susceptibility χ1 (cf. Fig. 2), χ3 also presents a split be-
tween the results with RS and 1S-RSB solutions. However, dif-
ferently from χ1, the nonlinear susceptibility χ3 displays an ev-
ident discontinuity at Tf when the 1S-RSB solution is adopted.

An important quantity in Eq. (16) is the denominator, γ =
λAT + (βJ )2I1, which is illustrated in detail in Fig. 4 versus

FIG. 3. The susceptibility χ3 as a function of T/J for different
values of 	/J . The arrows indicate the onset of the RSB solution
(λAT = 0), defining the temperature Tf . Below Tf , solid and dotted
lines indicate 1S-RSB and RS solutions, respectively. The tempera-
ture T ∗, where χ3 presents a rounded maximum, is estimated in each
case shown. In the inset we exhibit the χ3 behavior without the RF.

FIG. 4. The quantities appearing in the denominator of Eq. (16),
γ = λAT + (βJ )2I1, are presented versus T/J for (	/J ) = 0.1. The
arrows locate the freezing temperature Tf . The inset on the right
shows in detail the behaviors of γ and 1/γ , for (	/J ) = 0.1, in the
region where the RS solution is stable (to the left of this region one
should use RSB); the quantity 1/γ presents a rounded maximum,
which is directly related with that found in χ3. The inset on the left
shows in detail the behaviors of γ and λAT, for 	/J = 0.0, which are
responsible for the divergence of χ3 in the absence of RFs.

T/J for the typical value (	/J ) = 0.1. As a comparison,
the inset on the left shows the behavior of γ and λAT, for
(	/J ) = 0.0; in this case, γ = 0 leads to the divergence of
χ3 in the absence of RFs. When (	/J ) > 0, one has that
the contribution (βJ )2I1 > 0, so that now γ > 0. The two
contributions, λAT (that increases for increasing values of T/J )
and (βJ )2I1 (that decreases for increasing values of T/J ),
are presented separately, leading to a minimum value for γ ,
which is found to occur very close to the temperature T ∗.
The inset on the right shows the maximum attained by 1/γ ,
appearing inside the region where RS is stable; to the left of this
region, one should analyze these quantities within RSB. This
maximum is directly related with the one presented in Fig. 3,
at the temperature T ∗, and since this temperature is found in
the RS region, we consider the rounded maximum to occur in
the paramagnetic phase. One should remember the role played
by the RF on the replicon, leading to a shift in the freezing
temperature towards lower temperatures, i.e., Tf (	 > 0) <

Tf (	 = 0) [24,26,27]. Hence, in Fig. 4 one notices that in the
temperature range Tf (	 > 0) < T < Tf (	 = 0) the behavior
of the denominator γ changes completely from decreasing to
increasing. This inversion yields the minimum of γ , which is
the ultimate mechanism leading to the rounded maximum of
χ3 at T ∗.

In Fig. 5 we present the phase diagram of the model,
showing the paramagnetic and SG phases. The SG phase is
associated with the onset of RSB, being signaled by the zero
of the replicon of Eq. (15) (i.e., λAT = 0), which defines the
freezing temperature Tf . The temperature Tf is lowered due
to the RFs; in fact, such a decrease in Tf can be verified
analytically for (	/J ) � 1, in which case an expansion can
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FIG. 5. Phase diagram T/J versus 	/J showing the paramag-
netic and SG phases. The freezing temperature Tf , signaling the onset
of RSB, defines the SG phase for T < Tf . For completeness, we also
present the line associated with the maximum of χ3, defining the
temperature T ∗ (dashed line). The possibility of two paramagnetic
phases (PM1 and PM2) is discussed in the text.

be obtained from Eq. (15) [24,27]:

Tf

J
≈ 1 −

(
3

4

)1/3(
	

J

)2/3

. (18)

The dashed line in Fig. 5 represents the temperature T ∗
(T ∗ > Tf ), characterizing the maximum of χ3, which exists
for any (	/J ) > 0. For T > T ∗ the phase PM2 occurs,
along which one has weak correlations and consequently, the
usual paramagnetic type of behavior. However, close to T ∗,
and particularly for temperatures in the range Tf < T < T ∗,
one expects a rather nontrivial behavior in real systems, as
happens with the compound LiHoxY1−xF4, resulting in very
controversial interpretations [5–11]. Due to such aspects,
herein we call the temperature region Tf < T < T ∗ of
PM1. The line PM1–PM2 may not characterize a real phase
transition, in the sense of a diverging χ3, but the region PM1

is certainly characterized by a rather nontrivial dynamics. As
shown in Fig. 4, the region PM2 presents small values for
the quantity I1 [cf. the denominator of Eq. (16)], whereas
along PM1 the couplings between RFs and spins become
dominant, as compared with thermal fluctuations, and I1

increases significantly. As a possible relation, one should have
a growth of free-energy barriers in the region PM1, leading to
a slow dynamics, whereas only below Tf does the nontrivial
ergodicity breaking appear, typical of RSB in SG systems.
It is important to remember also that Griffiths singularities
are found currently in disordered magnetic systems, like for
site-diluted ferromagnets [34], as well for a ferromagnet in
a random field [35]. Whether the region PM1 in the present
problem may be related to this latter type of behavior is a
matter for further investigation.

As already mentioned and addressed in several works
[14–16], in the absence of RFs, the SG phase transition is given
by the divergence of χ3 at Tf . In Parisi’s mean-field theory this
divergence is directly related with the onset of RSB, signaled
by a zero of the replicon λAT = 0 [29]. However, the presence

of RFs induces the SG order parameter q in the PM phase,
within the RS solution. Moreover, χ3 no longer diverges at
the SG transition temperature but instead, presents a rounded
maximum at T ∗, which becomes smoother as 	/J increases.
Such a difference with respect to the case without RFs can
be understood from Eqs. (16) and (17). In fact, the term I1 in
Eq. (16), which is responsible for these effects, can be rewritten
as

I1 = 2(q − r) (19)

with

〈SαSβ〉 ≡ q =
∫

Dztanh2�0(z), (20)

and

〈SαSβSγ Sδ〉 ≡ r =
∫

Dztanh4�0(z). (21)

These equations lead to γ = λAT + (βJ )2I1 = 1 − (βJ )2(1 −
4q + 3r), which is precisely the longitudinal eigenvalue of
the RS stability analysis [22,29]. This longitudinal eigenvalue
is related with the magnitude of the fluctuations of the of
RS SG order parameter q. Hence, the maximum of χ3 at T ∗
becomes completely unrelated with the SG phase transition
when 	 departs from zero, being directly associated with the
longitudinal eigenvalue.

IV. CONCLUSIONS

The role of random fields on the spin-glass freezing temper-
ature, as well as on the nonlinear susceptibility, was analyzed.
For that, we have investigated the Sherrington-Kirkpatrick
model in the presence of random fields, following a Gaussian
distribution characterized by a width 	, within a one-step
replica-symmetry-breaking procedure. We have shown that
the divergence in χ3 only occurs in the absence of random
fields and that χ3 exhibits a broad maximum at a temperature
T ∗ for 	 > 0. The freezing temperature Tf is associated with
the onset of replica symmetry breaking, signaled by the zero
of the Almeida-Thouless (replicon) eigenvalue, occurring at
lower temperatures, i.e., T ∗ > Tf for a given value of 	.

The splitting between Tf and T ∗, for 	 > 0, was studied
by analyzing the contribution due to the random fields in the
replica-symmetry spin-glass order parameter. Particularly, we
have shown that the behavior of χ3 is not regulated only by
the spin-spin correlations associated to the Almeida-Thouless
line, but also to correlations coming from the longitudinal
eigenvalue. These correlations play an important role inside
the paramagnetic phase, when the random fields are applied,
being responsible for the maximum in χ3, although they are
not directly associated with the spin-glass phase transition.

Although the present results refer a specific model, we
expect they could shed some light in the theoretical and
experimental description of disordered magnetic systems like,
for instance, the compound LiHoxY1−xF4. Considering recent
observations in LiHoxY1−xF4, we follow the proposal that
an applied transverse field Bt induces longitudinal random
fields [7], and thus, we assume herein 	 = 	(Bt ). In this way,
one can interpret the present results, e.g., the temperatures
T ∗ and Tf , as manifestations of the transverse field. Based
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MORAIS, ZIMMER, LAZO, MAGALHÃES, AND NOBRE PHYSICAL REVIEW B 93, 224206 (2016)

on this, we point out below two possibilities which may
contribute to elucidate the recent controversies on this system
[5–11]: (i) The temperature T ∗ associated with the rounded
maximum in the nonlinear susceptibility does not signal any
phase transition, being an effect of random fields inside the
paramagnetic phase, although it is related to a minimum of
the longitudinal eigenvalue, and hence, to large fluctuations
in the replica-symmetric spin-glass order parameter. A true
spin-glass phase transition, indicated through the Sherrington-
Kirkpatrick model, by means of the Almeida-Thouless line,
should occur at the lower temperature Tf . (ii) There is no
spin-glass phase transition in LiHoxY1−xF4 in the presence of a

transverse field, implying that the replica-symmetry-breaking
procedure does not apply to this compound. Certainly, these
two points require meticulous experimental observations for
temperatures around T ∗, which has been the most investigated
temperature region so far, as well as below T ∗, representing a
challenge for experiments.
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