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Statistics of plastic events in post-yield strain-controlled amorphous solids
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Amorphous solids yield in strain-controlled protocols at a critical value of the strain. For larger strains the
stress and energy display a generic complex serrated signal with elastic segments punctuated by sharp energy
and stress plastic drops having a wide range of magnitudes. Here we provide a theory of the scaling properties
of such serrated signals taking into account the system-size dependence. We show that the statistics are not
homogeneous: they separate sharply to a regime of “small” and “large” drops, each endowed with its own scaling
properties. A scaling theory is first derived solely by data analysis, showing a somewhat complex picture. But
after considering the physical interpretation one discovers that the scaling behavior and the scaling exponents are
in fact very simple and universal.
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I. INTRODUCTION

Serrated signals are ubiquitous in “stick-slip” physical
systems; examples range from earthquakes [1], through
Barkhausen Noise in magnetic systems [2,3], to stress and
energy as a function of strain in amorphous solids [4–13].
The analysis of such signals often tends to seek power
laws to describe the statistics of the magnitude of serrated
events [14,15]. In this paper we stress that a more complete
understanding of the statistics of such phenomena calls for
scaling functions which incorporate knowledge of the system
size dependence. The system-size dependence reveals crucial
information pertaining to the underlying physics responsible
for the serrated signals. We will show that the examination of
the statistics of the magnitude of serrated responses together
with the system-size dependence may reveal important inho-
mogeneities in the statistics that may escape attention when
focusing on power laws alone. In typical cases there is more
than one physical mechanism contributing to the observed
signal, and these mechanisms must be identified [16]. Finally,
we will show that a full understanding of the statistics of such
signals and their scaling properties calls for an examination
of the physical processes involved. After such an examination
the picture may be clarified considerably and even universal
results may be gleaned.

The context of our analysis is the mechanical responses
of amorphous solids, and the serrated signals of stress and
energy as a function of strain. Thus we will consider the shear
stress σxy and the energy U as a function of shear strain γxy in
amorphous solids [17]. Since we will only concern ourselves
with one component of the stress and strain tensors, we denote
them below as σ and γ respectively. Typically the stress vs
strain curves and the energy vs strain curves as measured in
amorphous solids exhibit two distinct regions. At lower strain
values the stress σ and the energy U increase on the average
upon the increase of strain γ , but this increase is punctuated by
plastic events. A second region, at higher values of the strain,
displays an elasto-plastic steady state in which the stress and
energy cannot increase on the average even though the strain
keeps increasing. We will present an analysis of the statistics of
the sharp drops involving plastic events in this second region,
where the steady-state properties allow us to gather enough

data for accurate statistics [18]. Typical shear stress and energy
vs shear strain curves at zero temperature are shown in Fig. 1.
The aim of this paper is to understand the statistics of the
complex looking serrated signal in the post-yield steady-state
regime [19].

II. SIMULAITONS AND DATA ANALYSIS

A. System details

In this work, we employ a two-dimensional Kob-Andersen
[20] binary glass former with a 65:35 ratio of point particles A
and B having equal mass m, with interaction given by shifted
and smoothed Lennard-Jones (LJ) potentials, uαβ(r),

uαβ(r) =
{
uLJ

αβ + Aαβ + Bαβr + Cαβr2 if r � Rcut
αβ ,

0 if r > Rcut
αβ ,

(1)
where

uLJ
αβ = 4εαβ

[(σαβ

r

)12
−

(σαβ

r

)6
]
. (2)

The smoothing of potentials in Eq. (1) is such that they vainsh
with two zero derivatives at distances Rcut

αβ = 2.5σαβ . The
parameters for smoothing the LJ potentials in Eq. (1) and
for A and B particle type interactions in Eq. (2) are given in
the following table:

Interaction σαβ εαβ Aαβ Bαβ Cαβ

AA 1.00 1.0 0.4527 −0.3100 0.0542
BB 0.88 0.5 0.2263 −0.1762 0.0350
AB 0.80 1.5 0.6790 −0.5814 0.1271

The reduced units for mass, length, energy, and time have
been taken as m, σAA, εAA, and σAA

√
m/εAA respectively.

B. Preparation of amorphous solids

To prepare the amorphous solid, we start with a configura-
tion generated randomly at ρ = 1.162 and then equilibrate it
using molecular dynamics (MD) technique at higher temper-
ature T = 0.4 for 400 000 MD steps. Next, we cool down the
system, with a cooling rate of Ṫ = 10−6 in reduced units, to
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FIG. 1. Typical stress vs strain and energy vs strain curves
obtained in a strain-controlled athermal quasistatic (AQS) shearing
protocol. The insets show blown up versions of the shaded regions in
the main curves. Note that the stress reaches a steady state much faster
than the energy. The average stress is constant already after 10% in
strain, whereas the energy needs more than 100% in strain before
steady conditions are met. Here the system size is 10 000 particles;
see the text for further simulational details.

the desired temperature of T = 0.000 001. Finally we instantly
quench the configuration obtained at T = 0.000 001 to the
nearest inherent minima at T = 0 using the conjugate gradient
minimization technique. We repeat this process starting from
different initial conditions at T = 0.4 to generate the ensemble
of 1000 amorphous solids at each system size. The different
system sizes used for the analysis are N = 200, 500, 1000,
2000, 4000, and 10 000.

C. Athermal quasistatic (AQS) protocol

Once we have the ensemble of amorphous solids at each
system size, we strain each amorphous solid in an athermal
quasistatic (AQS) limit, T → 0 and γ̇ → 0, to examine its
stress-strain curve and to collect the statistics of post-yield
plastic events. In each step of this method, the particle positions
are subjected to the affine transformation,

xi → xi + yiδγ, yi → yi, (3)

with Lees-Edwards boundary conditions [21]. The change in
the particle positions due to the affine transformation puts the
system out of mechanical equilibrium due to the amorphous
nature of the system. To regain mechanical equilibrium we
perform a second step which is a nonaffine transformation
r i → r i + ui . This step annuls the forces between the parti-
cles, returning the system back to mechanical equilibrium. We
choose the basic strain increment step to be δγ = 5 × 10−5

for all the simulated system sizes.
On increasing the external strain, when the system’s

reversible elastic branches are terminated by mechanical
instability, a plastic event is detected. We measure the
corresponding energy drop 	U = Ubefore − Uafter and stress
drop 	σ = σbefore − σafter. On the other hand 	γ is defined as
the interval between two successive plastic events. In order to
increase the precision in determining the locations and values
of stress and energy drops in the elastoplastic steady state
and to ensure that we do not overshoot and miss the next
plastic event, we stop the simulation after a drop is detected,
backtrack to the configuration prior to the drop, and use much
smaller strain increment of δγ = 1 × 10−7 until the drop is
detected. Next, to collect the statistics of plastic drops in the
steady state, we keep on straining the system until it reaches
stationarity. In the present simulation, we observe stationarity
in the system after 100% straining. For the present study, we
collect data corresponding to plastic drops from 200% to 300%
of straining.

D. Data analysis

The steady-state branch itself is independent of the prepa-
ration protocol; we will collect data from the region where the
memory of the initial state is lost. Note that the steady state
in stress appears to set in much earlier than the steady state
in energy, which keeps increasing beyond the “yield” point at
which the stress achieves a steady state. It is important to wait
for true steady state to collect precise stationary statistics. We
judge the stability of the steady state by computing the mean
values of the stress and energy, denoting them below as σ∞
and U∞, making sure that they reach stationary values.

To begin the discussion of the statistics of stress and energy
drops, we summarize briefly what is known. Most pertinent
are the scaling laws for the mean stress and energy drops as a
function of the system size,

〈	σ 〉 ∼ Nβ, 〈	U 〉 ∼ Nα. (4)

It was argued [22] that exact scaling relations imply exact
values for the scaling exponents, i.e., α = 1/3 and β = −2/3.
Indeed, measurements of the mean drops in the steady-state
regime confirm these predictions to high accuracy; see Fig. 2
and Table I. This figure shows the system-size dependence of
not only the mean drop size, but also of the nth moments of
the drop sizes as defined by

〈(	σ )n〉 ∼ Nβn, 〈(	U )n〉 ∼ Nαn, n = 1,2, . . . ,10. (5)

In Table I the measured values of the exponents αn and βn

are displayed. These are obtained from straightforward least-
squares fit to the data shown in Fig. 2.

To understand the scaling exponents we need to examine
the probability distribution functions (pdf’s) of the stress and
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TABLE I. Scaling exponents αn and βn for n = 1,2, . . . ,10.

n 1 2 3 4 5 6 7 8 9 10

αn 0.33 0.77 1.22 1.68 2.14 2.59 3.05 3.50 3.94 4.38
βn −0.65 −1.13 −1.58 −2.02 −2.46 −2.90 −3.34 −3.78 −4.22 −4.66

energy drops. Collecting enough data allows us to present
accurate pdf’s which we denote as P (	σ ; N ) and P (	U ; N )
respectively. These are displayed in Fig. 3. In many studies of
such pdf’s one tends to fit a power low to the apparent straight
regimes shown in such plots. We will show here that this is not
necessarily a very useful procedure. It is much more rewarding
to try to determine and to understand the scaling exponents by
trying to rescale the pdf’s and to collapse the data for all the
system sizes on one curve. It immediately turns out that it
is not possible to rescale the entire pdf to accomplish such
a data collapse: one needs to decide which part of the pdf to
collapse. Large drops and small drops display different scaling
properties.

To make the point clear, we present in Figs. 4 and 5 the
results of the following rescaling. First we rescale 	σ and
	U by the mean values in the steady-state stress σ∞ and
energy per particle U∞:

	σ̃ ≡ 	σ/σ∞, 	Ũ ≡ 	U/|U∞|. (6)
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FIG. 2. Scaling plots for the moments defined in Eq. (4).

Next we represent the pdf using a scaling function of
dimensionless variables:

P (	σ̃ ) = (	σ̃ )ζσ fσ (	σ̃Nθσ ),
(7)

P (	Ũ ) = (	Ũ )ζU fU (	ŨN−θU ).

In trying to optimize the data collapse by selecting appropriate
values for the scaling exponents ζσ , θσ , ζU , and θU , we discover
that we can collapse either the part of the pdf that pertains to
large or to small drops. By choosing ζσ = 0.55, θσ = 0.45,
ζU = 1.25, and θU = 0.45 we can achieve an apparent good
collapse of the pdf’s for larger values of the stress and energy
drops, on the expense of a divergence of the rescaled pdf’s
from each other for small values of the drops (see Fig. 4). As
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FIG. 3. The distribution functions P (	σ ; N ) and P (	U ; N ) of
the stress (upper panel) and energy (lower panel) drops for different
system sizes
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FIG. 4. Rescaled pdf’s stressing data collapse for the larger drops
of 	σ and 	U (upper and middle panel), and stressing collapse for
the smaller drops of 	σ (lower panel). Note that the data collapse of
one part is at the expense of the other.

can be gleaned from Fig. 4, this divergence is most apparent
in the stress drop distribution, and less so in the energy drop
pdf. The reason and implications of this difference will be
discussed below.
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FIG. 5. Rescaled pdf’s for the stress and energy drops with data
collapse achieved in the range of large stress and energy drops.

E. Scaling exponents of the positive moments: Numerical results

Since the scaling exponents of the positive moments of
the stress and energy drops are expected to be dominated by
large rather than small values of the drops, we can use now
the rescaled versions of the pdf’s to predict the values of the
scaling exponents shown in Table I. Using the forms Eqs. (7)
we compute the predictions

βn = θσ (−n + ζσ − 1), αn = θU (n − ζU + 1). (8)

The reader can verify that these prediction are in apparent
agreement with the measured values reported in Table I up
to errors of the order of 0.02 in αn and up to 0.04 in βn.
The conclusion is that the scaling behavior of the positive
moments is “simple scaling” resulting in a linear law for αn

and βn which is determined by two independent numbers for
each set of moments. These four independent numbers seem
to be nontrivial. We will show below that this is a result of the
direct numerical analysis, but in fact a simpler picture is going
to emerge once the physics is considered.
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FIG. 6. The system-size dependence of the negative moments of
the stress drops according to Eq. (9).

F. Small drops and negative moments

It is interesting and relevant that the pdf restricted to the
smaller stress drops does not conform to the scaling data
collapse proposed for the large drops. To study this further
we address now the negative moments of stress drops, i.e.,

〈(	σ )−n〉 ∼ Nεn. (9)

The data for the system-size dependence of these negative
moments is shown in Fig. 6. From the best linear fits to the
log-log plots of the moments vs the system size we extract the
set of exponents presented in Table II. One should note that the
accuracy of the scaling laws deteriorates for the higher order
negative moments and the determination of the scaling law
for n > 6 becomes less definite. Nevertheless we proceed to
rescale the pdf of the stress drops, restricted to the small drops
to understand these exponents. The numerical fit for achieving
data collapse is written as

P (	σ̃ ) = (	σ̃ )0.97fσ (	σ̃N0.95). (10)

The resulting data collapse is shown in Fig. 7. One should note
that with the present choice of rescaling exponents the parts of
the pdf’s pertaining to the larger stress drops do not collapse
on each other (see Fig. 4). Using the rescaled form of the pdf
we can now compute the expected exponents εn. The resulting
exponents are in reasonable agreement with the list shown in
Table II, with errors not exceeding 8–9%. Below we will argue
that the real picture is in fact much simpler.

The real nature of the small drops becomes apparent when
we consider the small energy drops. We consider now the
pdf of the energy drops restricted to small values. As before,
we can plot the negative moments 〈	U−n〉 as a function
of the system size, shown in Fig. 8. Evidently there is no

TABLE II. Scaling exponents εn for n = 1,2, . . . ,10.

n 1 2 3 4 5 6 7 8 9 10

εn 0.94 1.78 2.65 3.52 4.38 5.25 6.12 6.98 7.85 8.71
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FIG. 7. The numerical choice of the rescaled pdf of stress drops
with attention to the smaller drops.

difference in the scaling exponents, meaning that the small
energy drops are system-size independent, i.e., 	U ∼ N0.
This is a clear indication that the small drops are associated
with localized events, forcing us at this point to consider the
physical significance of the analysis discussed so far.

III. PHYSICAL SIGNIFICANCE AND THEORETICAL
RESULTS

First, since the small energy drops are system-size indepen-
dent, we must associate the small drops with localized events
[22]. But then the stress drops, being intensive rather than
extensive like the energy drops, are expected to scale like 1/N

if the energy drops are proportional to N0. We then realize that
Eq. (7) is only approximate, and that the exact representation
of the pdf of the small stress drops must read

P (	σ̃ ) = (	σ̃ )fσ (	σ̃N ). (11)
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FIG. 8. The negative moments 〈	U−n〉 vs the system size. The
lack of change in the slopes indicate the the small energy drops are
system-size independent in agreement with a localized event.
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FIG. 9. The theoretically proposed rescaled pdf of stress drops
with attention to the smaller drops.

Having realized this, we now check whether using the trivial
scaling form (11) collapses the data as well as Eq. (10). The
answer is yes, as can be inferred from Fig. 9. The quality of
the data collapse is as good, if not better. We therefore can
conclude that the small drops occurring in the steady state
are in fact regular plastic drops of the type that are prevalent
before yield. These are typical Eshelby quadrupolar events
which indeed are known to be associated with an energy drop
which is system-size independent. With this realization we
can now correct the list of exponents εn. The actual theoretical
exponents should be εn = n, very trivial, and the discrepancy
with the list in Table II is simply due to numerical inaccuracies.

This leaves us now with the large drops. But these must
be the “microshear bands” that were identified and discussed
in some depth in Refs. [23–25]. In short, these are events
that appear only after yield, never before, and they are
represented as a concatenated series of Eshelby quadrupoles
that span the system. These are in fact plastic events that
organize the displacement field to sharply concentrate the shear
over a narrow band which traverses throughout the system.
Accordingly the number of particles involved must scale like√

N . Accepting this, we must conclude that θU = 1/2. To
get agreement with α1 = 1/3 we must accordingly assign the
theoretical value ζU = 4/3. Since the associated large stress
drops are the intensive counterparts of the large energy drops,
we are led to the assignment θσ = 1/2, and to get the exact
β1 = −2/3 we end up with ζσ = 2/3. In Fig. 10 we show the
final, theoretically propose rescaled pdf’s for the large stress
and energy drops, and we conclude that they indeed collapse
the data, possibly not as well as the numerically optimized
ones, but this discrepancy should be only taken as a warning
against straight numerics.

To increase the confidence in the theoretical scaling
predictions we can now analyze separately small or large
drops, and find the the moments of their fluctuations. Thus for
example we can focus on stress drops that obey 	σ̃N � 20
(see Fig. 9), and plot their positive moments; see Fig. 11. The
slopes of these plots are −n with errors of less than 1%. This
is of course a direct consequence of the trivial scaling function
Eq. (11).
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FIG. 10. Theoretical rescaled pdf’s with attention to the large
values of stress and energy drops.

IV. CONCLUDING REMARKS

We presented a detailed analysis of a typical “stick-slip”
serrated signal of stress and energy drops in the post yield
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FIG. 11. The system-size dependence of the positive moments of
the small stress drops 	σs ≡ 	σ̃N � 20.
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elasto-plastic steady state of a strain-controlled typical amor-
phous solid. Numerical data analysis of the rather complex
looking signal yielded pdf’s whose scaling properties appeared
to call for a definition of a number of nontrivial scaling
exponents. Further scrutiny however revealed that much of
the apparent complexity was due to the mixture between
two types of stress and energy drops: small, or system-size
independent, and large, which were system-size dependent.
The interpenetration of the two types of drops confused
the statistical properties of each independent type of events,
leading to a complex looking scaling theory which eventually
turned out to be unnecessary. At the end the statistics is
very simple, mixing events where 	U ∼ N0 and 	σ ∼ 1/N

with system spanning shear bands with 	U ∼ N1/2 and

	σ ∼ N−1/2. It is very likely that other serrated signals
measured in other “stick-slip” systems may hide rich mixtures
of physical processes in much the same way as presented
here. For example a similar appearance of “small” and “large”
events was reported in earthquakes [26] and in sand piles [27].
Similar care in the analysis of such data should therefore be
exercised.
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