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Dimensional transformation of defect-induced noise, dissipation, and nonlinearity
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In recent years, material-induced noise arising from defects has emerged as an impediment to quantum-limited
measurement in systems ranging from microwave qubits to gravity-wave interferometers. As experimental
systems push to ever smaller dimensions, extrinsic system properties can affect its internal material dynamics.
In this paper, we identify intriguing regimes of material physics (defect-phonon and defect-defect dynamics)
that are produced by dimensional confinement. Our models show that a range of tell-tale signatures, encoded
in the characteristics of defect-induced noise, dissipation, and nonlinearity, are profoundly altered by geometry.
Building on this insight, we demonstrate that the magnitude and character of this material-induced noise is
transformed in microscale systems, providing an opportunity to improve the fidelity of quantum measurements.
Moreover, we show that many emerging nanoelectromechanical, cavity optomechanical, and superconducting
resonator systems are poised to probe these regimes of dynamics, in both high- and low-field limits, providing a
way to explore the fundamental tenets of glass physics.
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I. INTRODUCTION

The demand for ever higher-fidelity quantum measurement
and information processing using photonic, microwave, and
phononic excitations has invigorated interest in the quan-
tum origins of noise and decoherence within materials. As
scientists and engineers seek to reduce the noise in their
quantum systems, they have been operating at lower and
lower temperatures. This strategy minimizes noise induced
by thermal fluctuations, but low temperatures also reveal
a fundamental problem: excess dissipation is produced by
low-energy defect centers [1–4]. These defect centers, termed
two-level tunneling-state systems (TLSs), behave much like
atoms, and couple strongly to electromagnetic (EM) and
phononic fields; the adverse impact of these defects becomes
more acute as temperatures are reduced. While TLS defects are
inherent to amorphous materials [4,5], they occur and can be
induced in crystalline media in a number of ways, raising many
questions about their appearance in a range of new quantum
systems [6–41] (e.g., Fig. 1).

Over the past several decades the properties of dense
ensembles of low-energy defects have been extensively studied
in bulk amorphous materials [4,5]. TLS-based models of defect
physics accurately capture (predict) the observed phononic,
optical and microwave loss and noise characteristics. To
date, it has been appropriate to use the bulk models of TLS
ensembles in the vast majority of systems. However, with
the emergence of high-confinement phononic, nanoelectrome-
chanical (NEMS), optomechanical, and microwave systems,
circumstances arise where it is no longer appropriate to invoke
the many properties of bulk systems [24,27,42–45] (see Fig. 1).
As phonons and EM waves are confined to ever decreasing
volumes, it is unclear how dissipation, noise, and nonlinearity
will be altered [44].

In this paper, we show that the magnitude and character of
noise, dissipation, and nonlinearity arising from low-energy
defects is radically modified at mesoscales, offering new
challenges and opportunities for emerging NEMS, optome-
chanical, and superconducting resonator technologies (see

Fig. 1). In contrast with bulk systems, TLSs in mesoscale
structures interact with a zoo of hybridized excitations where
small mode volumes, dispersion, and changes of the density
of states strongly enhance (or suppress) coupling to the EM
and phononic fields. Consequently, appreciable modulation
of TLS-induced noise, dissipation, and nonlinearity can be
achieved by scaling system dimensions [24,27], opening a path
toward extended coherence times in qubits [27], high-fidelity
quantum information processing, phonon lasing [46,47], and
new regimes of quantum nonlinearity [45].

Starting from the established phenomenological model
of low-energy defects [4], we use techniques of quantum
statistical mechanics to characterize the dynamics of individual
TLSs in mesoscale structures. These defects interact with
confined EM and phononic fields as well as other defects. We
find that the excited state lifetime for defects is geometrically
reshaped in waveguides and resonators, for example, by
Purcell enhancement [48,49] of emission into slow group
velocity or stationary resonator modes. In addition, we show
that key defect dephasing processes depend sensitively on
the system dimension, being thoroughly suppressed in 1D
(where ‘D’ stands for dimension) waveguides (see text for
details). Utilizing the intimate connection between defect
dynamics, noise, and absorption we demonstrate that large
geometric modulation and reshaping of TLS-induced noise
spectra, dramatic system-dependent changes in the saturation
characteristics of dissipation, and unprecedented reduction in
the fundamental TLS-limited dissipation floor is achievable
with skillful device design.

The paper is organized as follows. In Sec. II, we discuss
the variety of systems affected by TLS-induced losses. In
Sec. III, we lay the foundations for the theory of defect-
induced noise applicable to reduced dimensional systems. In
Sec IV, defect decay and dephasing rates are discussed, the
acoustic analog of Purcell enhancement is derived and the
phenomenology of spectral diffusion is developed. Results
for defect-induced dissipation are presented. Dissipation in
D-dimensional systems, saturation of resonant absorption, and
the effects of a gapped phononic spectrum are discussed. The
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FIG. 1. Systems where defect-phonon and/or defect-photon in-
teractions may be dimensionally reduced: (a) silica microtoroids, (b)
silicon optomechanical systems, (c) superconducting qubits, and (d)
nanoelectromechanical systems

conditions for dimensional reduction are discussed topic by
topic. In conclusion, general results and insights of the reduced
dimensional theory are codified.

II. MATERIAL-INDUCED NOISE AND DISSIPATION

The tunneling state model (TSM) of low-energy defects
was introduced in the 1970s to explain the anomalous low-
temperature properties of the heat capacity of glasses [1–4,50].
Since the inception of the TSM, exhaustive studies have
established the TLS concept as a cornerstone of glass physics
as it provides a tractable model to describe the low-temperature
characteristics of highly disordered media [4]. Tunneling
states are hypothesized to arise from atoms (or groups of
atoms) residing in asymmetric double-well potentials that
are believed to be inherent to amorphous materials (see
Fig. 2). In recent years, however, it has been realized that
TLSs are ubiquitous: they are induced in crystalline materials
by irradiation [51], impurities [4,52,53], dislocations [24],
and oxidization [6,8,10,11,18,21,27,29], and they appear at
surfaces and interfaces [9,10,17,18,20,26,27,29,38], making
them an important consideration for noise and dissipation in a
variety of quantum systems.

Numerous studies have shown that TLSs interact strongly
with phonons [54–56], light, and microwaves [4], allowing
them to absorb and emit EM and acoustic energy. While an
individual TLS typically couples to EM and acoustic modes

FIG. 2. (a) Double-well potential of asymmetry � for a tunneling
state defect. (b) Excited |e〉 and ground |g〉 eigenstates are gapped by
energy E.

at comparable rates, the relaxation of TLSs is dominated by
phonon emission. This is because the large disparity between
the light and sound speeds makes the phonon density of states
(and emission rates) typically orders of magnitude larger.
Hence, through absorption TLSs act to dissipate coherent
excitations, and through stochastically driven emission (dom-
inated by phonons) TLSs act as a source of EM and acoustic
noise, these phenomena being intimately connected through
the fluctuation-dissipation relation.

TLS-induced noise (dissipation) has two signatures: en-
hancement at low temperature, and high-power suppression
(saturation). These signatures have been observed in an
increasing number of mesoscopic and macroscopic systems
seeking to utilize quantum coherence for both informa-
tion processing and metrology. For instance, TLSs reside
in tunnel junctions [6,8,19,21–23,30], oxide surface layers
[10,11,18,27,29,40], and at interfaces of superconducting
circuits [17,18,38] and electro-optomechanical systems [12]
(Fig. 1); similarly, they are found in crystalline bulk acoustic
wave resonators at dislocations and impurities [28,32–35].
Tunneling states are endemic to amorphous systems where
they limit the quality factor of optomechanical microtoroids
[14,15,25] as well as NEMS and micro-electromechanical
systems (MEMS) [9,24,36,37] (see Fig. 1), and they lead
to Brownian motion of mirror coatings that degrades the
finesse of interferometers used for gravity wave astronomy
[57,58]. Hence the mastery of defect-physics is essential to the
manipulation of noise and dissipation in mesoscopic systems,
and provides an avenue toward radical improvements in the
performance of cutting-edge technologies.

As an ancillary outcome, the exploration of defect physics
in mesoscale systems directly probes the foundations of glass
physics [44]. Despite the success of the tunneling state concept,
the microscopic nature and origin of TLSs is still unclear
[4], and in addition, the TSM can only explain the apparent
universality of many low-temperature glass properties [5,59]
as resulting from a fortunate fine tuning. These puzzles have
inspired researchers to look for alternative theories to the
TSM [59–63] that are testable in reduced-dimensional systems
[44].

III. THEORY OF DEFECT-PHONON/DEFECT-PHOTON
INTERACTIONS IN MESOSCOPIC SYSTEMS

At low temperatures, tunneling state defects can be modeled
as effective two-level systems with a spin analogy [1,3,4]. The
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FIG. 3. Illustration of system Hamiltonian: (a) interaction of j th
defect with qth phonon mode, (b) interaction of j th defect with the
EM field, (c) defect-defect interactions, and (d) illustration of total
coupled system.

total Hamiltonian H describing the interaction of TLSs with
phonons is given by

H =
∑

q

��qb
†
qbq +

∑
j

1

2
Ejσz,j + Hint + HTLS-TLS. (1)

The first term on the right-hand side is the free Hamiltonian
for the confined phonon field where q is a collective phonon
mode index, and bq, b†q, and �q are the respective annihilation
operator, creation operator, and angular frequency of the qth
phonon mode. The second term is the Hamiltonian for the
ensemble of noninteracting TLSs. The sum on j adds the
contribution to the system energy from each defect with respec-

tive energy Ej =
√

�2
j + �2

0j , double-well asymmetry �j ,

tunneling strength �0j , and where σk,j is the kth-component
of the defect’s Pauli spin operator [4]. The final two terms,
Hint and HTLS-TLS, describe the interactions of the coupled
system, schematically shown in Fig. 3 and described below.
In addition, TLSs interact with the confined electromagnetic
field, but the Hamiltonian for photons is not included above
for compactness.

Perturbations of the double-well potential asymmetry � by
elastic strain couple defects and phonons, and EM coupling
is produced by charge transfer connected with TLS state
transitions. These two coupling mechanisms are described by
the interaction Hamiltonian given by

Hint =
∑

j

(
�0j

Ej

σx,j + �j

Ej

σz,j

)
[dj · E(rj )+γ j : ξ (rj )],

(2)

where γ j is the j th defect’s deformation potential tensor,
quantifying an energy shift induced by strain, and dj quantifies
the defect’s electric dipole coupling [4]. The respective electric
field and strain tensor evaluated at the position of the defect
are denoted by E(rj ) and ξ (rj ), and the shorthand γ j : ξ is
defined by γ ab

j ξab where the Einstein summation convention
is used. The strain is defined as ξab ≡ (∂aub + ∂bua)/2, where
∂a is a spatial derivative in the ath direction, and ub is the bth
component of the elastic displacement field.

FIG. 4. Illustration of defect-strain coupling mechanisms. (a)
Arbitrarily oriented defect in an undeformed elastic body. (b) Defect
in elastic body undergoing compressional motion, induced defect
elastic dipole proportional to γ�(n̂). (c) Defect in an elastic body
undergoing shear motion, induced defect elastic dipole proportional
to γt (n̂) [see Eq. (30)].

The tensor structure of the deformation potential can be
worked out from the orientation of a defect’s dipole moment
and from the symmetry properties of the system material
[64]. For amorphous media, the contraction of the deformation
potential of an arbitrarily oriented TLS and the strain tensor
is given by γ : ξ = γ̃ [(1 − 2ζ )trξ + 2ζ n̂ · ξ · n̂] where tr
denotes trace, and n̂ is a unit vector parallel to the TLS elastic
dipole moment, i.e., n̂ = sin θ (cos φ x̂ + sin φ ŷ) + cos θ ẑ,
where φ and θ are the azimuthal and polar angles in spherical
coordinates [64]. The deformation potential for longitudinal
and transverse waves, averaged over all defect orientations,
is given, respectively, by γ 2

� = γ̃ 2(15 − 40ζ + 32ζ 2)/15 and
γ 2

t = 4γ̃ 2ζ 2/15 (see Fig. 4) [64]. For silica, γ� ≈ 1 eV, and
γt ≈ γ�/

√
2 [54–56,65], which results in two possible values

for the parameter ζ = {0.57,1.10}, of which we use ζ = 0.57.
It is unknown whether such a form for the deformation
potential will apply to thin films or microwires where the bulk
system symmetries may be broken.

The defect dipole electric coupling has been measured in
dielectric absorption experiments and takes the value |d| =
0.3–3.3 Debye for silica [66]. Hence for comparable mode
volumes photons and phonons couple to defects with the nearly
same strength.

The geometry of a system is encoded in the mode
structure and dispersion of the EM and acoustic fields.
These effects are elicited by representing the elastic field

as a mode summation u(x) = ∑
q

√
�

2�q
uq(x)bq + H.c.,

where uq is the spatial eigenfunction of the qth mode. uq(x)
satisfies the time-harmonic Christoffel equation [67] and
the orthonormality relation

∫
d3xρ(x)u∗

q(x) · uq′(x) = δqq′

where ρ(x) is the material density. For an isotropic material
∇ · μ∇uq(x) + ∇(λ + μ)∇ · uq(x) = −ρ�2

quq(x), where λ

and μ are the, generally space-dependent, Lamé coefficients of
the system [67]. Likewise, the strain field can be expressed as

ξ = ∑
q

√
�

2�q
ξ

q
bq+ H.c. where ξ

q,ab
≡ (∂auq,b + ∂buq,a)/2.

The final term in the Hamiltonian HTLS−TLS characterizes
the direct interaction between defects. The static elastic dipole
of a defect sources an elastostatic strain field, in analogy with
the electrostatic dipole field, that mediates a direct interaction
between TLSs given by

HTLS-TLS =
∑

j

∑
i 	=j

1

2
Jijσz,iσz,j . (3)

The defect-defect coupling strength Jij is determined by
separation, relative orientation, and system geometry (to be
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discussed in detail below). A subleading “flip-flop” contri-
bution to HTLS-TLS coupling σx,i and σx,j , and the effects of
retardation have been neglected [68], for further details see
Sec. IV C.

With the theory outlined above, characterizing the inter-
action of defects with confined EM and acoustic excitations,
we describe TLS-induced noise and dissipation in mesoscale
systems. Such processes are often determined by a large
ensemble of TLSs, in such cases the collective influence of
the defect bath can be determined statistically. A given system
contains a collection of defects, each having a unique energy,
coupling, orientation, and position. Statistically, these proper-
ties are described by a defect density of states (DDOS) given
by F (�,�0) = PD/�0 [4]. When a large number of defects
contribute to an observed process the sum

∑
j (. . . ) is well-

approximated by an ensemble average over defect properties,
i.e.,

∑
j (. . . ) = VD〈∫ d�d�0F (�,�0) . . . 〉

V
where angular

brackets indicates an average over all possible TLS positions
and orientations, and VD is the D-dimensional volume of the
system. Generally, this DDOS is position, orientation, and
energy dependent, i.e., PD ≡ PD(r,n̂,E), and has units of
inverse energy inverse D-dimensional volume [1,3,4]. A weak
energy dependence of PD ∝ Eμ has long been suspected as the
explanation of the anomalous temperature dependence of the
heat capacity in glass, scaling as T 1+μ (μ ≈ 0.3), and which
recent measurements, directly measuring the distribution of
defects in energy, have confirmed [40]. However, a constant
value of PD (P3 ≈ 5.45 × 1044J−1m−3 in silica [54–56,65])
is sufficient to qualitatively and quantitatively explain many
phenomena. It should be kept in mind that the distribution
of TLS energies, positions and orientations may not be
uniform in mesoscopic and/or anisotropic systems. Alternative
theories to the TSM attribute the approximately uniform
energy dependence of the DDOS to the nature of defect-defect
interactions in bulk systems [44,59–63], the behavior of the
DDOS is unknown in reduced dimensional systems where
defect-defect interactions are modified [44]. It is unknown
to what extent crystalline materials may exhibit anisotropy,
but systems constructed from materials such as silicon will
inevitably have native oxide layers [69] that will concentrate
tunneling states at surfaces.

IV. DEFECT-PHONON AND DEFECT-PHOTON
INTERACTIONS IN MESOSCALE SYSTEMS

The size and geometry of emerging quantum systems
impact the nature of interactions between defects and the
EM and acoustic fields, leading to striking transformations of
defect dynamics. The interplay of confinement, coherence, and
temperature lead to large changes in defect decay (T −1

1 ) and
dephasing rates (T −1

2 ), and consequently, noise and dissipation
induced by defects is drastically altered as well. In the
following sections, we discuss each of these aforementioned
processes, and how they are modified in mesoscale systems.

A. Defect decay in confined systems

Defect decay is strongly impacted in mesoscale systems
where resonant interactions, contained in Hint, allow an excited
TLS to emit into a number of dispersive, slow-group velocity,

or resonator modes. In confined structures, the number and
nature of these defect decay channels sensitively depends on
geometry. This phenomenon is characterized by an excited
state decay rate T −1

1 given by

T −1
1 (E) =

∑
q

π�2
0

�qE2
|γ : ξ

q
(r)|2 coth

(
��q

2kBT

)
δ(E − ��q)

(4)
that is computed with Eq. (1) and Fermi’s golden rule
(see Appendix A), where T is the temperature of the
phonon field. Equivalently, Eq. (4) can be expressed in
terms of the phonon density of states (DOS) g(�) by noting
that

∑
q ≡ ∫ ∞

0 d� g(�).
In contrast to the result derived from the standard TSM

[4], the excited state lifetime given in Eq. (4) depends upon
the position and orientation of the defect, and the mode
structure and dispersion of the acoustic field. Such differences
are critical to correctly compute T1 in mesoscale systems.
However, when the density is spatially uniform a simplification
of the decay rate is obtained by averaging Eq. (4) over TLS
positions and orientations using the identity

〈|γ : ξ
q
(rj )|2〉V = 1

VD

�2
q

ρD

∑
η

γ 2
η

v2
η

eqη, (5)

where ρD is the D-dimensional material density (e.g., mass
per unit area for D = 2), eqη is the fraction of energy of
the qth acoustic mode in the η-component of the acoustic
field (see Appendix B), and where vη is the velocity of
η-polarized sound waves. For example, for plane waves in
infinite D-dimensional systems, the fractions eqη equal one
when the qth mode is η-polarized and zero otherwise, but in
compact systems arbitrary modes involve the hybridization of
compressional and shear motions, and generally have highly
dispersive properties.

Using Eq. (5), the spatial and orientation averaged value of
T −1

1 is given by

〈
T −1

1 (E)
〉
V

= 1

VD

∑
q,η

π�2
0

�ρDE

γ 2
η

v2
η

eqη coth

(
E

2kBT

)

× δ(E − ��q)

≈ 1

VD

∑
q

π�2
0

�ρDE

γ 2
�

v2
�

coth

(
E

2kBT

)

× δ(E − ��q)

≈ 1

VD

g(E/�)
π�2

0

�2ρDE

γ 2
�

v2
�

coth

(
E

2kBT

)
. (6)

The second line follows for materials that satisfy
(γ�/v�)2 ≈ (γt/vt )2 (e.g., silica [64,70]) where the identity
eq� + eqt = 1 is used to evaluate the sum on η, and the
third line, expressed in terms of the phonon DOS g(�),
follows from the second. When applicable, this approximation
greatly simplifies the calculation of the decay rate in complex
structures because the acoustic eigenfunctions uq(x) are not
needed; only the dispersion properties of each acoustic mode
are required.
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FIG. 5. Conditions for dimensional reduction: (a) relevant
phonon frequencies less than cutoff �co (yellow region), e.g., E/�,
frequency of emitted phonons in defect decay, and/or ωth = kBT /�

thermal frequency, (b) mean separation between thermally active
defects � greater than one or more system dimension.

B. Defect decay in mesoscopic systems

Confined structures support a hierarchy of modes, all but
a few of which are cutoff above a system-specific frequency
�co (e.g., Fig. 5). Defects can emit into all phonon modes with
energy E, matching its gap (see Fig. 2). The decay of a defect
is dimensionally reduced when the E < ��co; in other words,
when the emitted phonon wavelength, λη, is much larger
than one or more system dimensions. In this limit, illustrated
schematically in Fig. 5(a), the direction of spontaneously
emitted phonons is reduced to one of the system’s symmetry
directions. This form of dimensional reduction can occur
for long-wavelength phonons in membranes, microwires, or
microtoroids. Despite the reduction in the number of decay
channels, the decay rate can be enhanced in mesoscale systems
by dispersion and confinement.

1. Geometric enhancement of defect decay in idealized bulk
systems

To draw out the qualitative changes to defect decay
as the system dimension is reduced, we first consider
idealized bulk D-dimensional systems (D � 1). We define
these systems as the lower-dimensional equivalent of an
infinite 3D bulk; they support nondispersive plane waves
that propagate along the system’s symmetry directions. For
such systems at low temperatures (kBT 
 �ωD , where ωD

is the Debye frequency), the sum over phonon modes is
given by

∑
q = ∫ ωD

0 d�
∑

η
VD

(2π)D SD−1
�D−1

vD
η

, where SD is

the D-dimensional unit-hypersphere surface area, ρD is the
D-dimensional density, and the acoustic modes are η-polarized
plane-waves with respective sound velocity vη. After averaging
over TLS positions and orientations, we find the decay rate

〈
T −1

1 (E)
〉
V

=
∑

η

γ 2
η

vD+2
η

πSD−1

(2π )D
ED−2�2

0

�D+1ρD

coth

(
E

2kBT

)

≡
∑

η

�
(D)
1,η . (7)

We relate the density in a D-dimensional system ρD to the bulk
density by the formula ρD = ρL3−D where L characterizes the
size of the compact dimension(s) (e.g., L2 is the cross-sectional
area of a 1D waveguide), and from hereon we drop the explicit
label D for D = 3. Thus the relative magnitude of T −1

1 for

infinite D-dimensional systems (D � 1) is captured by �
(D)
1,η ∝

SD−1(λη/L)3−D , showing that the decay rate is geometrically
enhanced as the system dimension is reduced since λη � L.

The results above give the qualitative behavior for the defect
decay in mesoscale systems when the phonon frequency is
much less than �co. However, in the next section, we show
that the behavior of T1 varies dramatically from Eq. (7) in
compact systems that support dispersive flexural modes, or
when the relevant phonon frequencies exceed �co.

2. Enhancement of defect decay in waveguides due to dispersion
and van Hove singularities

Defect decay is enhanced by emission into dispersive and
slow group velocity phonon modes. To see this, consider an
arbitrary translationally invariant system of finite cross section.
The phonon mode index q in such a system is given by {m,q}
where m = (m1,m2) are indices labeling the eigenfunctions
describing the elastic field along the cross section of the
waveguide, and q represents the wave vector of the phonon
for propagation along the waveguide. Hence the sum in
Eq. (4) can be written

∑
q = ∑

m
�

2π

∫
dq, where � is the

system length (see Fig. 6), and where it should be understood
that the mode sum should be cut off so that the number
of acoustic modes is finite. Equation (4) is then evaluated
by noting that �q is �m(q) (see Fig. 6 for the case of a
cylinder), the eigenfrequency of the mth mode evaluated at
q, and using the delta function identity δ(E − ��m(q)) =∑

j δ(q − qmj )|�(∂�m(qmj )/∂q)|−1. The wave vectors qmj

are given by all solutions to E = ��m(qmj ); for most modes
there is one solution qmj , but backwards propagating modes
(negative group velocity) occur frequently in guided acoustic
wave systems and it’s possible for such modes to contribute to
the decay rate at two values of the wave vector (for example,
see the gray points h and i in Fig. 6). Using this identity, the

FIG. 6. (Left) Dispersion relations for compressional (red), tor-
sional (blue) and flexural (black) phonon modes in a cylinder.
Excitations with zero group velocity are indicated by red points a–g.
The branches with points a and c and e and f are two examples of
modes that have wave-vector regions with negative group velocity.
The dashed gray line indicates a phonon energy supporting two defect
decay channels at the gray points h and i for a single mode. (Inset)
System geometry and four fundamental modes without cutoff (two
degenerate flexural modes). (Right) Phonon density of states in a
cylinder (gray) and idealized 1D system (gray dashed). Red arrows
indicate frequencies supporting zero group velocity excitations.
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integral over q in the mode sum can be directly performed to
give

〈
T −1

1 (E)
〉
V

= 1

A

∑
m,j,η

�2
0

�2ρ
∣∣vmj

g

∣∣E
γ 2

η

v2
η

emj,η coth

(
E

2kBT

)

≈ 1

A

∑
m,j

�2
0

�2ρ
∣∣vmj

g

∣∣E
γ 2

�

v2
�

coth

(
E

2kBT

)
, (8)

where A is the waveguide’s cross-sectional area, the label {mj}
is short for {m,qmj }, and v

mj
g is the group velocity of the mth

mode evaluated at qmj . The second line applies to systems
where (γ�/v�)2 ≈ (γt/vt )2, in this approximation, the phonon
DOS is given by

g(�) =
∑

m

�

π

(
θ
(
� − �min

m

)∣∣vm+
g (�)

∣∣ + θ
(
�co

m − �
)
θ
(
� − �min

m

)∣∣vm−
g (�)

∣∣
)

(9)

where �co
m is the cutoff for the mth phonon mode (e.g., points

a, b, d, e, and g of Fig. 6), �min
m is the minimum frequency

of the mth dispersion curve (e.g., points b, c, d, f, and g of
Fig. 6), and v±

g is the group velocity in the region where it is
positive (+) and where it is negative (−). Notice the divergences
(van Hove singularities) in the DOS for frequencies where the
group-velocity vanishes (e.g., points a, b, c, d, e, f, and g in
Fig. 6).

A similar computation for the defect decay rate in a
2D waveguide can be done. The dispersive properties of
acoustic modes in a planar structure is qualitatively similar
to a cylinder’s shown in Fig. 6, with the exception that q =
{m,k} where m is a single index labeling the eigenfunctions
describing the acoustic field normal to the plane, and k is the
phonon wave vector in the plane. Using the delta function
identity above with E = ��m(kmj ), the decay rate is given by

〈
T −1

1 (E)
〉
V

= 1

L

∑
m,j,η

�2
0

2�2ρv
mj
p

∣∣vmj
g

∣∣ γ 2
η

v2
η

emj,η coth

(
E

2kBT

)

≈ 1

L

∑
m,j

�2
0

2�2ρv
mj
p

∣∣vmj
g

∣∣ γ 2
�

v2
�

coth

(
E

2kBT

)
, (10)

where L is the plane thickness, and v
mj
p and v

mj
g are the

respective phase and group velocities of the mth mode
evaluated at |kmj | (see Appendix A). The second line above,
where (γ�/v�)2 ≈ (γt/vt )2, gives

g(�) =
∑
m

A�

vm
p (�)

(
θ
(
� − �min

m

)∣∣vm+
g (�)

∣∣
+ θ

(
�co

m − �
)
θ
(
� − �min

m

)∣∣vm−
g (�)

∣∣
)

, (11)

the phonon DOS in planar waveguides, where the convention
of Eq. (9) is used.

All but a few modes in guided-wave systems are cut
off at some finite frequency �co (e.g., see Fig. 6), and for
defect energies E 
 ��co (or equivalently λ � L,

√
A), T −1

1
is partially described by the results of the previous section. For
systems that support flexural modes, however, a more thorough

treatment is necessary and Eqs. (8) and (10) must be used.
To see how T −1

1 is modified in reduced dimensional systems
that support flexural modes, we compute the defect decay
rate for cylindrical (T −1

1,cyl.) and planar (T −1
1,pla.) waveguides for

E 
 ��co and with stress-free boundary conditions on the
acoustic modes. This calculation gives

〈
T −1

1,cyl.

〉
V〈

T −1
1,pla.

〉
V

}
≈ �qγ

2
�

�ρv2
�

coth
��q

2kBT

⎧⎨
⎩

1
A

(
1
vB

+ 1
vt

+
√

2
vB�qR

)
�q

L

(
1

v2
pl

+ 1
v2

t

+
√

3
�qvplL

) ,

(12)
where vB ≡ √

Y/ρ and vpl ≡ vB(1 − ν2)−1/2 are the bar and
plate velocity [67] (Y is Young’s modulus and ν is the Poisson
ratio), and R is the cylinder radius. The first two terms
on the right hand side above represent the contribution to
T −1

1 from the fundamental compressional (symmetric Lamb
wave) and fundamental torsional (shear-horizontal) modes
of the cylinder (plate) (Fig. 6). Well below cutoff these
modes are nondispersive and their dependence on frequency,
temperature, and geometry is captured by Eq. (7) (see Fig. 6,
inset). The last term(s) on the right-hand side of Eq. (12)
arises from defect decay into the fundamental flexural mode
(antisymmetric Lamb wave) for the cylinder (plate) (see Fig. 6,
inset). These dispersive modes depend on the system geometry
and dominate defect decay into other channels.

Also in contrast with bulk systems, a large change in
the decay rate occurs for quasi-1D and quasi-2D systems
when the energy E � ��co. For such energies the decay rate
can be dramatically enhanced by emission into higher order

FIG. 7. (a) Illustration of coupling/dynamics leading to defect
decay in a waveguide. b) Defect decay in a silica cylinder (R =
100 nm) as a function of defect frequency f = E/(2π�) computed
using the idealized 1D model (green dotted) Eq. (7), Eq. (12) for
a dimensionally reduced cylinder supporting flexural modes (green
dashed), and Eq. (8) including higher-order modes (full green line).
Red arrows denote frequencies where modes with zero group velocity
are supported (see red points of Fig. 6). The following parameters
are used: ρ = 2202 kg/m3, v� = 5944 m/s, vt = 3764 m/s (and
throughout the remainder of the paper), T = 10 mK, and (γ�/v�)2 ≈
(γt/vt )2 is assumed.
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phonon modes with small group velocity. Equivalently, this
enhancement can be interpreted as the result of van Hove
singularities in the phonon DOS (Figs. 6 and 7). Since defect
decay into a given channel scales with v−1

g , emission into
slow group velocity modes can be very large and dominate
over decay into modes with low-dispersion. Such slow group
velocity modes are essentially standing waves transverse to the
symmetry direction, and behave similarly to resonator modes.
Hence this enhancement is similar to the Purcell effect [48,49].

The effect of emission into flexural and slow group velocity
modes on the defect decay rate is illustrated in Fig. 7 by
comparing T −1

1 for an idealized 1D system, a dimensionally
reduced cylinder supporting flexural modes [described by
Eq. (12)], and a cylinder including all higher order modes.
Figure 7 shows that T −1

1 is dominated by emission into flexural
modes at low frequencies, and once E > ��co a large jump in
the decay rate is observed at each frequency where slow group
velocity excitations are supported.

3. Acoustic Purcell enhanced defect decay in resonators

Defect decay is strongly modified in high-quality acoustic
resonators. In such systems, the spectrum of acoustic modes
becomes discrete, radically modifying the phonon DOS and
leading to Purcell enhancement of the defect spontaneous
emission rate [48,49].

To understand the acoustic cavity system, a golden rule
derivation of the decay rate can be carried out that accounts
for the coupling of a defect to a discrete set of lossy phonon
modes (see Appendix A). However, if defect-induced losses
are the only source of acoustic dissipation in the system then
the validity of this treatment requires that the number of
defects interacting with a given mode is much greater than
1, i.e., P�T −1

2 V � 1. In the limit where P�T −1
2 V � 1, the

composite system will undergo Rabi oscillation (discussed in
Appendix C).

The TLS position- and orientation-averaged decay rate for
a defect in a cavity is given by

〈
T −1

1,cav(�ω)
〉
V

= 1

VD

∑
qη

2�2
q�

2
0

�3ρDω

γ 2
η

v2
η

eqη coth

(
�ω

2kBT

)

× �q(
ω2 − �2

q

)2 + ω2�2
q

, (13)

where �q is the decay rate of the qth phonon mode. A
few remarks are necessary regarding Eq. (13). Without the
adoption of an explicit cutoff, either given by the defect
size or the Debye frequency, the sum in the defect decay
rate above diverges. Consequently, Eq. (13) has a potentially
large cutoff-dependent contribution. Such a cutoff dependence
occurs in the theoretical treatment of spontaneous emission of
atoms embedded in absorbing dielectrics where it is attributed
to nonradiative decay through the near field [71]. The cutoff-
dependent component of Eq. (13) is contained entirely in
〈T −1

1,cav(�ω = 0)〉
V

, which suggests that it is the elastic analog
of nonradiative decay. It is necessary to consider the nature
of phonon decay in a given system to determine whether the
cutoff-dependent term should be retained (see Appendix A).

To interpret this result, it is useful to categorize the defects
in the cavity system into two classes: resonant defects have en-

FIG. 8. (a) Illustration of coupling/dynamics leading to defect
decay in a resonator. (b) Decay defect decay as a function of f =
E/(2π�) in a 3D bulk (blue) and a 4-μm cubic silica resonator (red).
The resonator is defined with periodic boundary conditions applied
across parallel faces. The zero energy contribution to Eq. (13) has
been subtracted, and T = 5 mK.

ergies within the linewidth of the cavity’s acoustic resonances,
and all remaining defects are deemed nonresonant. Equation
(13) predicts highly suppressed decay for nonresonant defects
as compared to a bulk medium, whereas the decay rate
of resonant defects is enhanced. In a high-finesse acoustic
cavity, the decay rate for a resonant defect with E ≈ ��q
is dominated by a single term in the sum over modes in
Eq. (13) (assuming nondegeneracy) where the Lorentzian
factor reduces to ∼2/π�q. A relationship between the decay
rate for defects in a bulk system and resonant defects in a cavity
can be derived by expressing Eq. (13) in terms of the phonon
wavelength and acoustic quality factor Qq ≡ �q/�q giving

〈
T −1

1,cav(��q)
〉
V

≈
∑

η

1

2π2

λ3
η

V
Qqeqη�1,η (14)

for D = 3. The prefactor (λ3
η/2π2V )Qqeqη gives the acoustic

analog of Purcell enhancement, and indicates that for
low-order modes, where λ3

η ∼ V , that the decay rate for
resonant defects is dramatically increased by a factor Qq.
These results are displayed in Fig. 8 where the decay rate of
a defect in a resonator and 3D bulk are compared.

4. Defect decay through photon emission

In many scenarios, defect relaxation is dominated by
decay through phonon emission. However, in high-quality EM
slow-light waveguides or resonators defect decay via photon
emission may become important. In such cases, the defect
decay rate can be obtained from the results of the preceding
sections by the replacement

〈|γ : ξ
q
(rj )|2〉V →�2

q〈|d · Eq(rj )|2〉V = �2
q|d|2

3VDε0εeff
q

. (15)
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Above, Eq is an orthonormal eigenfunction of Maxwell’s
equations satisfying ∇ × ∇ × Eq(x) = ε(x)(�q/c)2Eq(x) and∫
V em d3x ε0ε(x)E∗

q(x) · Eq′(x) = δqq′ , ε0 and ε(x) are the free
space and relative permittivity, and c is the speed of light in
vacuum. V em is the EM mode volume, which is generally
different from the volume containing the defects V , e.g., this
occurs in hollow EM resonators or waveguides that contain
oxide surface layers or small dielectric samples. εeff

q is an
effective permittivity defined as (εeff

q )−1 ≡ ε0
∫
V

d3x |Eq(x)|2
(note the spatial integral is over V ). For systems where
V 
 Vem εeff

q ∼ ε(Vem/V ), where ε is the relative permittivity
of the region not containing defects.

C. Defect dephasing in mesoscale systems

The nature of defect dephasing depends sensitively on the
interplay of geometry and defect concentration. Dephasing is
in part the result of resonant processes (as described above)
but it is often dominated by perturbations of a defect’s energy
originating from defect-defect interactions mediated by the
elastic field [68]. In general, these interactions are described
by HTLS-TLS, as well as an additional flip-flop contribution
that permits a direct transfer of energy between two mutually-
resonant defects. However, with energies distributed over a
wide range, TLSs do not have an innate energy scale, unlike
atoms and nitrogen-vacancy centers, and hence, the number
of mutually resonant TLSs at a given energy is insignificant
compared to the total sum of defects. For this reason, flip-
flop interactions do not significantly contribute to dephasing,
and the interaction Hamiltonian HTLS-TLS can be used to
estimate T2.

Defect dephasing mediated by direct defect interactions can
be understood by adding HTLS-TLS to the Hamiltonian for the
noninteracting defects. Some rearrangement shows that the
energy of the ith defect can be redefined as

E′
i = Ei +

∑
j 	=i

Jij σz,j , (16)

which is shifted by an amount determined by the configuration
of all remaining TLSs in the system. E′

i becomes a function
of time when the ith defect’s neighbors undergo dynamical
spin flips. Hence the collective oscillation of an ensemble of
defects with energy E′, excited by a strong monochromatic
acoustic pulse, dephases in time when the energy of each
defect in the ensemble randomly hops from its initial value
as it’s neighbors undergo spin flips induced by thermal
fluctuations.

This process of “spectral diffusion” arises from ther-
mally active defects, with E < kBT and a concentration
n ∼ P (kBT )kBT , that can absorb and emit thermal phonons.
Defects with E � kBT are frozen in their ground state,
and thus contribute a time-independent shift to the defect
energy. The concentration of thermally active defects defines
a spectral diffusion length scale � ∼ [P (kBT )kBT ]−1/3. For
example, � ≈ 237 nm(10 mK/T )1/3 for silica [65]. When
one or more system dimensions is much smaller than �

spectral diffusion is dimensionally reduced (see Fig. 5); a
scenario achievable with standard fabrication and cryogenic
capabilities. This dimensional reduction is accounted for in the
coupling parameter Jij whose magnitude is set by the system

dimension and the separation between the ith and j th defects
rij ≡ |ri − rj |.

Direct interactions between defects are mediated by the
static strain field (the elastic equivalent of the electrostatic
dipole field). In 3D systems, the coupling between defects
scales as Jij ∝ r−3

ij (for more details see the Appendix of [68]).

In 2D, Jij falls off as r−2
ij , enhancing defect-defect interactions,

but surprisingly, the coupling is completely local in idealized
1D systems scaling as Jij ∝ δ(rij ).

To understand the true spatial scaling of Jij in a non-
idealized 1D system we derived an approximate expression
for the static elastic strain field in a microwire with a finite
cross-section. In such a system, the strain field is represented
as an infinite sum of eigenfunctions (e.g., Bessel functions) that
describe the dependence of the elastic field perpendicular to
the symmetry direction [44]. The dependence of the strain field
along its symmetry direction scales as exp{−x|z − z′|/R},
where x is a pure number, e.g., a Bessel function zero, R

represents the system ‘radius’, and |z − z′| is the separation
along the wire between two defects. The parameter x and the
separation |z − z′| have minimum values respectively of order
1 and �. Therefore the static strain field in a nonidealized 1D
system is exponentially suppressed in the limit that �/R � 1,
yielding the coupling Jij ∼ x/2ρ1R exp{−xrij /R} [44], and
reduces to the idealized result Jij ∝ δ(rij ) in the R → 0 limit.

A qualitative understanding of spectral diffusion in reduced
dimensional systems is obtained from the dependence of Jij

on rij by following the treatment of Black and Halperin [68]
and Phillips [4]. The root-mean square variation of the energy
of a given defect due to spin flips of its neighbors �E is
estimated by replacing rij with � in E′

i − Ei [appearing in Jij

of Eq. (16)]. The dephasing time scale arising from spectral
diffusion, the time for defects excited by a monochromatic
pulse to begin oscillate out of phase, is approximately given
by T

′
2 ∼ �/�E

1

T
′

2

∼

⎧⎪⎨
⎪⎩

1
�ρ

CrmsP (kBT )kBT D = 3
1

�ρ2
C(2)

rms[P (kBT )kBT ]2/3 D = 2
x

�ρ1R
C(1)

rms exp
{ − x

R
[P (kBT )kBT ]−1/3

}
D = 1

,

(17)
where C(D)

rms , of order γ 2/v2, is defined by the tensor structure
of the static strain field (P above is the DDOS for D = 3) [68].
Recalling the definition ρD = ρL3−D , the results above show
that the increase in the defect-defect coupling enhances T ′−1

2
by �/L over the 3D result in planar systems. In contrast,
the interaction between defects is effectively local in 1D
systems, leading to the exponential suppression of spectral
diffusion. However, since defect dephasing is also augmented
by resonant phonon processes the total dephasing rate is given
by T −1

2 = 1
2T −1

1 + T
′−1

2 , meaning that 2T1 and T2 are equal in
1D systems.

Defect dephasing has been measured in phonon echo ex-
periments, finding T2 ≈ 14−20 μs for 0.68–1.2 GHz phonons
at 20 mK in silica [55,72,73], and for individual defects in
qubits [19]. In the remainder of the paper we use the measured
value of T2 = 14 μs (for all D) and extrapolate to other
temperatures using Eq. (17) for the purposes of calculation.
However, we mention that, this extrapolation overestimates
the late time value of T2 since the phonon echo experiments in
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Refs. [55,72,73] were performed in the short-time limit before
the dephasing rate reached its steady-state value [68].

D. Defect-driven noise in mesoscale systems

In this section, we investigate geometry-, dimen-
sion, and scale-induced transformations of radio-frequency
(RF) noise generated by defects. Such EM noise
has been identified as a key limitation in a num-
ber of quantum systems [6–8,10,17,18,20,26,27,29,38]
and is generated when a defect’s electric dipole mo-
ment Pj (t) ≡ dj (�0j /Ejσx,j + �j/Ejσz,j ) is stochastically
driven by thermal phonons. This physics is phenomenologi-
cally described by the Bloch equations with defect relaxation
and dephasing rates as inputs. The power spectrum of these
dipole fluctuations quantifies the electromagnetic noise arising
from defects, and can be computed from the Fourier transform
of the two-time dipole correlation function given by

Sij (ω) =
∫ ∞

−∞
dτ eiωτ 〈δP i(t)δPj (t − τ )〉, (18)

where δPj ≡ Pj − 〈Pj 〉 and 〈. . . 〉 denotes expectation
value.

We approximate the power spectrum of a single
defect’s dipole fluctuations with the quantum regres-
sion theorem (QRT) [74], a tractable method to ob-
tain a correlation function that satisfies the Pauli oper-
ator algebra and is approximately consistent with statis-
tical mechanics. Such a computation (see Appendix D)
gives

Sij (ω) = δij dd
[
�2

0

E2

(
pe(E)

2T2

1 + T 2
2 (E/� + ω)2

+pg(E)
2T2

1 + T 2
2 (E/� − ω)2

)

+ �2

E2
sech2(E/2kBT )

2T1

1 + T 2
1 ω2

]
, (19)

where pe(E) (pg(E)) is the probability for a defect of energy
E to be in the excited (ground) state [75,76].

There are two physical mechanisms leading to the noise:
resonant and relaxation processes, respectively, contributing
Sres

ij (ω) and Srel
ij (ω) to the power spectrum. Sres

ij (ω) is made up
of the terms proportional to �2

0 in Eq. (19) and arises primarily
from spin flips of defects associated with the absorption and
emission of phonons with energies matching the defect energy.
Whereas, Srel

ij (ω) is given by the term proportional to �2 in
Eq. (19) and arises from a stochastic modulation of the defect
energy levels by phonons leading the defects to reradiate.

Although we find a system-independent functional form
for the power spectrum, quantitative and qualitative changes
in the defect-induced noise result from the dependence of the
defect relaxation and dephasing rates on the system size and
geometry. To highlight the contrasting behavior of noise in
mesoscale systems, we consider noise from a single defect
in a resonator, and the noise from an ensemble of defects in
idealized bulk systems and resonators.

FIG. 9. (a) Illustration of coupling/dynamics of defect-induced
RF noise in a resonator. (b) Power spectrum of dipole fluctuations of
a single defect on-resonance (red-dashed line) and −0.04 = ��/�1

fractionally detuned from (red line) a 2-μm cubic silica resonator’s
fundamental acoustic mode at frequency �1 = (2π )1.882 GHz. The
resonator is defined by applying periodic boundary conditions to
each face, the Q of the fundamental mode is taken to be 1882, and
the temperature is 10 mK. The power spectrum for the same defects in
3D bulk is displayed in blue for comparison (blue-dashed, resonance
frequency) and (blue line, detuned frequency). S is the trace of S and
d2 = |d|2.

1. Acoustic Purcell modulation of noise from a defect in a
resonator

Here, we examine the EM power spectrum of a single defect
that interacts strongly with an acoustic resonator. Note that
the active defect is one in a coupled ensemble of defects,
as diagramed in Fig. 9. The noise from a single defect in
this resonator is strongly affected by Purcell enhancement.
Since T2 � 2T1, Eq. (19), shows that the magnitude of the
noise at low frequencies is set by T1, and therefore a sharp
contrast in the magnitude of the power spectrum will occur
for defects that are on- and off-resonance with an acoustic
mode of a high-quality resonator. This modulation is illustrated
in Fig. 9 where the dipole power spectrum for two defects
in a resonator is compared: one defect is resonant, and the
other is fractionally detuned by −4% from the fundamental
acoustic mode. Figure 9 shows that this small fractional
detuning (−82 MHz) produces shifts in the magnitude of
the low-frequency noise of nearly five orders of magnitude.
This result may point toward new techniques to engineer noise
in quantum information systems. Recently, strain tuning of
TLS frequencies, of order 100 MHz, has been demonstrated
in qubits [30], suggesting that a large modulation of the RF
noise from TLSs could be achieved in quantum information
systems formed into high-quality acoustic resonators.

2. Geometric modification of the noise from defect ensembles in
bulk systems

Geometric modifications of defect dynamics reshapes the
noise from ensembles of defects in reduced dimensional
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systems. To examine the qualitative features of such reshaping,
we consider the power spectrum arising from an ensemble of
defects in idealized bulk systems of various dimensions. When
a large number of defects contribute to the RF noise the total
power spectrum can be computed from the ensemble average
of Eq. (19) over the defect properties Stot(ω) = ∑

i Sii(ω) ≈
VD〈∫ d�d�0F (�,�0)Sii(ω)〉

V
. This approximation is valid

in the weak coupling limit when the fluctuations of any two
defects is uncorrelated to leading order.

First, we analyze the noise arising from resonant absorption
Sres

tot (ω). To compute the defect ensemble average, we take
F (�,�0) = PD(E)/�0 for simplicity, but note that a variety
of power spectra are obtained by using more general DDOS
[76]. After a change of variables to “polar” coordinates, i.e.,

� = E cos φ and �0 = E sin φ recalling E =
√

�2 + �2
0, and

evaluating the φ integral, Sres
tot (ω) is given by

Sres
tot (ω) ≈ 2|d|2

3
I VD

∫ ∞

0
dE

〈PD(E)〉V pg(E)T2

1 + (ω − E/�)2T 2
2

≈ π�|d|2
3

I VD〈PD(�ω)〉V pg(�ω). (20)

Here, I is the 3 × 3 identity matrix, a negligible contribution
from the antiresonant term has been dropped and the second
line holds for ωT2 � 1. This result shows that the noise arising
from resonant processes scales with energy dependence of the
DDOS (since pg varies between 0.5 and 1) and the system
size.

The relaxation component of the total power spectrum is
given by

Srel
tot(ω) ≈ 2|d|2

3
I VD

〈∫
d�d�0

PD(E)

�0

�2

E2
sech2

(
E

2kBT

)

× T1

1 + T 2
1 ω2

〉
V

. (21)

Noting that T1 takes a minimum value, T1,min, when �0 =
E, a change of variables to (E,φ), and expressing T1 as
T1,minE

2/�2
0 allows the φ integral to be done analytically. The

resulting expression is complicated so we present the resulting
power spectrum in the high- and low-frequency limits. For
high frequencies, i.e., ωT1,min(kBT ) � 1, the idealized bulk
system power spectrum due to relaxation processes reduces to

Srel
tot(ω) ≈ 2|d|2I VDPD(kBT )

9ω2

∑
η

γ 2
η

vD+2
η

πSD−1

(2π )D

× (2kBT )D+1

�D+1ρD

ID+μ, (22)

where Im ≡ ∫ ∞
0 dy ym sech2 y coth y, and the DDOS is

proportional to Eμ (as discussed in Sec. III). Up to pure
numerical factors, the noise from Eq. (22) is enhanced for
D < 3 by a factor (λth/L)3−D , where λth = 2π�vη/(kBT ) is
the thermal wavelength, see Fig. 10.

At low frequencies, relaxation absorption results in 1/f

noise given by

Srel
tot(ω) ≈π |d|2I VD

3ω
PD(kBT )kBT cμ, (23)

FIG. 10. (a) Illustration of coupled system leading to RF noise.
(b) Power spectrum for dipole fluctuations from an ensemble of
defects in 1, 2, and 3D. The compact dimension(s) and the temperature
are respectively taken to be 50 nm and 10 mK (ωth = 208 MHz). The
volume of each system is fixed to (10 μm)3 so that each system
possesses the same number of defects. We adopt a uniform DDOS,
given in Sec. II, and adopt the defect properties of silica to compute
the ensemble average. Stot is the trace of Stot and d2 = |d|2.

where cμ = ∫ ∞
0 dy yμ sech2 y. Since the product of VDPD is

independent of D, the low-frequency behavior of the noise is
universal (see Fig. 10).

3. Thermal suppression of noise from defect ensembles in
resonators

In this section, we illustrate how the power spectrum
from an ensemble of defects in a resonator is exponentially
suppressed at low temperatures. In resonators, Sres

tot (ω) is
well-approximated by Eq. (20), but, in contrast the noise
from relaxation absorption depends sensitively on the phonon
DOS. For realistic values of the acoustic mode decay rate, the
high-frequency limit applies over a broad range of frequencies,
allowing a Taylor expansion in large ωT1 to be taken in the
integrand of Eq. (21). Given T1 for defects in an acoustic
resonator (Eq. (13)) the integral in Eq. (21) is approximately
given by

Srel
tot,cav(ω) ≈ 4π |d|2I VD

9ω2

∑
q

〈PD(��q)|γ : ξ
q
(r)|2〉V

�q sinh
(

��q

kBT

) . (24)

Unlike bulk systems, possessing a continuum of phonon
modes to thermally drive defect fluctuations, resonators have
a gapped, discrete spectrum where Langevin forcing is
concentrated near cavity resonances. As a consequence, the
thermomechanical motion driving defect noise can be frozen
out at low temperatures (i.e., kBT < ��1, where �1 is the
frequency of the resonator’s fundamental mode) leading to
exponential suppression of Srel

tot,cav(ω). This suppression is
illustrated in Fig. 11 where the power spectral density from
an ensemble of defects in a cubic resonator made of silica is
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FIG. 11. Power spectrum per unit volume from a defect ensemble
in a 3D bulk (blue) and resonator (red) system at 10 mK. Material
properties of silica are used and periodic boundary conditions are
implemented on a cube of side L = 1 μm to model the resonator.

compared to a bulk system. The frequency of the fundamental
mode, �1 = (2π )3.7 GHz, was chosen to be much larger than
the thermal frequency ωth = 208 MHz (for T = 10 mK) in
order to freeze-out the resonator’s thermomechanical motion
and exponentially suppress the noise.

4. Scaling of frequency noise from strongly-interacting defects in
reduced dimensions

The previous sections focused on RF noise generated
by ensembles of weakly coupled defects. However, recent
measurements suggest that strongly interacting defects are
an important source of frequency noise in superconducting
circuits [38]. These measurements are explained by a gen-
eralized tunneling state theory proposed by Faoro and Ioffe
[41], which predicts a frequency noise power spectrum Sν(ω)
proportional to T2/ω at low field intensities, and proportional
to

√
T2/T1[

√
Pω]−1 at high RF power P [41]. Given the

dependence of Sν(ω) on T1 and T2 the frequency noise arising
from strongly interacting defects is sensitive to the system
geometry. The qualitative behavior of the power spectrum can
be derived at low intensities by using the scaling of the power
spectrum with T2 (Eq. (17)) for D � 3

Sν(ω) ∝ 1

ω

⎧⎨
⎩

ρT −1−μ D = 3
ρ2T

−2(1+μ)/3 D = 2
T1 D = 1

, (25)

where T2 = 2T1 has been used in the 1D case, and the spectral
diffusion length � ∼ [P (kBT )kBT ]−1/3 (P (E) ∝ Eμ), rele-
vant for a nonuniform distribution of defect energies, has been
used. By accounting for the energy dependence of the DDOS
measured by Skacel et al. [40], this theory [41] correctly
predicts the observed low-temperature enhancement of the 1/f

noise observed in superconducting resonators [38].

Similarly, the scaling of Sν(ω) at high-field intensity is given
by

Sν(ω) ∝ 1

ω
√
P

⎧⎪⎪⎨
⎪⎪⎩

√
ρ

T1
T −(1+μ)/2 D = 3√

ρ2

T1
T −(1+μ)/3 D = 2

1 D = 1

, (26)

indicating that Sν(ω) is enhanced with lower temperature,
and is suppressed as the system dimension is lowered. These
results show that the temperature scaling of noise generated by
strongly interacting defects has a unique dimension-dependent
fingerprint, and that noise could be dramatically reshaped,
through its dependence on T1, in systems possessing a
nontrivial phonon DOS.

This concludes our discussion of defect-induced noise.
In the following sections, we explore linear and nonlinear
absorption of EM and acoustic waves mediated by TLSs.

E. Defect-induced dissipation in mesoscale systems

Defects contribute a large source of dissipation in a
number of mesoscopic optomechanical [14–16,25], quantum
information [6,8,10,11], NEMS, and MEMS [9,12,24,28,32–
36] devices. As these systems push to ever-smaller sizes,
changes in defect dynamics, the dispersion of acoustic modes,
and the phonon DOS transform the character of defect-induced
dissipation. In this section, we investigate this transformation
by showing how resonant and relaxation absorption, the two
processes by which TLSs dissipate EM and acoustic waves,
are determined by extrinsic system properties.

1. Geometric, dispersive, and Purcell enhancement of the
nonlinear properties of resonant absorption

Dissipation occurs via resonant absorption when a ground
state defect absorbs a phonon or photon with energy matching
its gap and then spontaneously reradiates in a random direction.
Alternatively, amplification occurs when a phonon or photon
incident on an excited defect elicits a decay via stimulated
emission. Hence resonant absorption scales with the difference
of probabilities for a resonant defect to be in the ground versus
the excited state pg(E) − pe(E).

When the EM and acoustic fields are weak, the de-
fects remain in thermal equilibrium, and pg(E) − pe(E) =
tanh(E/2kBT ) for a defect at temperature T . In this limit, the
dissipation rate for phonons (top) and photons (bottom) can be
computed with Fermi’s golden rule, giving the inverse quality
factor (i.e., loss tangent)

1
Qac.

res,q
1

Qem
res,q

}
= πPD(��q)

⎧⎨
⎩

∑
η

γ 2
η eqη

ρDv2
η

|d|2
3ε0εeff

q

⎫⎬
⎭ tanh

(
��q

2kBT

)
, (27)

where a uniform density of defect positions and orientations
has been assumed [εeff

q is defined in Sec. IV B 4]. This
result shows a general characteristic of resonant absorption;
namely, it saturates when pg(E) − pe(E) ≈ 0, in this case at
high temperatures. In addition, Eq. (27), valid for confined
fields, is reminiscent of the prediction made by the standard
TSM, and only gives a small numerical correction to the
dissipation for systems differing from 3D bulk. However, this
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fortunate correspondence breaks down at high acoustic or EM
intensities.

As the intensity of the acoustic or EM field is raised, a point
will be reached where the mean-free-time between defect-
phonon or defect-photon interactions is equal to the defect’s
upper state lifetime. This critical intensity Jc is met when the
power incident on a defect is roughly one quanta per excited
state lifetime Jc ∼ ��q

σT1
, where σ is the cross section for the

absorption of a phonon or photon by a ground state defect.
The cross section σ can be obtained from Fermi’s golden rule,
giving the following expression for the acoustic J ac.

c and EM
J em

c critical intensities:

J ac.
c

J em
c

}
∼

{
ρv3

γ 2

3ε0
√

εc

|d|2

}
�

2

2T1T2
. (28)

At intensities exceeding Jc incident phonons or photons
begin to probe an excited defect before it returns to the ground
state, allowing the defect to decay through stimulated emission
and in turn to amplify the phonon or photon beam. Hence at
high-intensities absorption and amplification compensate one
another, and resonant absorption is saturated. Equation (28)
shows that this saturation scale is set by the defect dynamics,
and therefore, the nonlinearity of resonant absorption is shaped
by the extrinsic properties of the system.

In the high-intensity regime, perturbation theory is no
longer adequate to describe acoustic and EM dissipation,
and the Bloch equations of the coupled system must be
employed to describe resonant absorption (see Appendix E).
For an idealized D-dimensional system, resonant absorption
for plane-wave acoustic (top) or EM (bottom) modes of angular
frequency �q and polarization η is characterized by the inverse
quality factor

1
Qac.

res,q
1

Qem
res,q

}
= P D(��q)

4

∫
dϕ

⎧⎨
⎩

γ 2
η (n̂)
ρv2

η

d2
η (n̂)

3ε0ε

⎫⎬
⎭

tanh
(

��q

2kBT

)
√

1 + J
Jc(n̂)

, (29)

where J and Jc(n̂) is the intensity and orientation-dependent
critical intensity for the acoustic or EM field, i.e., the acoustic
intensity is J ac. ≡ (�ρv3

η/�q)|ξ
q
βq|2 and the EM intensity

is J em = ε0
√

εc��q|Eqαq|2 (βq and αq being the amplitude
for the qth phonon and photon mode, respectively). The
orientation-dependent deformation potential for coupling to
η-polarized acoustic plane waves is given by

γ�(n̂) = γ̃ (1 − 2ζ sin2 θ ),

γt,1(n̂) = γ̃ (2ζ sin θ cos θ cos φ), (30)

γt,2(n̂) = γ̃ (2ζ sin θ cos θ sin φ),

and dη(n̂) is given by
√

3|d| cos θ where the z axis of the
dipole orientation coordinate system has been chosen to align
with electric field.

∫
dϕ is an integral over solid angle, and

P D(��q) is the spatial average of the DDOS. The spatial
averaging is simplified for idealized bulk systems because of
the spatial-independence of T1 and the modulus of the acoustic
and EM spatial eigenfunctions.

The exact form of Jc matches well with the result antici-
pated from the basic timescale arguments that led to Eq. (28)

FIG. 12. Critical intensity at 10 mK in a silica cylinder (green),
resonator (red), and 3D bulk as a function of frequency computed
using Eqs. (6), (33), and (17). The cylinder exhibits enhancements
of the critical intensity at van Hove singularities (a) and at low
frequencies (b) where T −1

1 is dominated by emission into flexural
modes. The critical intensity is Purcell enhanced in the resonator.
Deformation potential and sound velocity for longitudinal waves and
|d| = 1.3 Debye and ε = 2.08 were used in Eq. (28).

J ac.
c (n̂)

J em
c (n̂)

}
=

⎧⎨
⎩

ρDv3
η

γ 2
η (n̂)

3ε0
√

εc

d2
η (n̂)

⎫⎬
⎭ �

2

2T1,minT2
, (31)

but we emphasize that the D-dimensional forms of T1,min and
T2 must be used. The standard TSM prediction for the damping
factor 1/Qres,q at high-intensity can be obtained from Eq. (29)
by taking γη(n̂) → γη and dη(n̂) → dη in the critical intensity
of Eq. (31).

Equation (29) has a similar functional form to resonant
absorption in the strong field regime given by the standard
tunneling state model [4]. However, striking differences arise
from the dependence of the critical intensity on T1 and T2,
and hence the distinct physics of resonant absorption in ideal-
ized bulk systems is largely characterized by a dimensional
modification of the magnitude, temperature and frequency
dependence of Jc.

The behavior of resonant absorption is nontrivial in
mesoscale systems possessing flexural, slow-group velocity,
or standing wave modes. We show that the critical intensity
is enhanced at low frequencies due to flexural modes, sharply
increases near van Hove singularities in the phonon DOS,
and is Purcell enhanced in resonators (see Figs. 12–14).
Moreover, the spatial dependence of the energy density may
have poor overlap in systems with an anisotropic DDOS, such
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FIG. 13. Acoustic quality factor for the fundamental axial-radial
mode of a 100 nm radius silica wire as a function of frequency
(green) with 100 W/m2 intensity. The wire temperature is 10 mK.
For comparison, Q factor for quasi-1D bulk (green dashed) and a
3D bulk (blue) with the same parameters are displayed, as well as
the low- and high-intensity limits, respectively, with solid black and
gray-dashed lines. The yellow region covers frequencies below cutoff.
(Inset) Q factor for frequencies above cutoff showing large changes
near van Hove singularities in the phonon DOS (red arrows).

as those constructed from crystalline media where defects are
concentrated on surfaces and at interfaces. In such mesoscale
systems, resonant acoustic absorption is characterized by
the quality factor

1

Qac.
res,q

=
〈
πVDPD

�2
q

|γ : ξ
q
|2 tanh

(
��q

2kBT

)
√

1 + Jave
J ac.

c (n̂,r)

〉
V

. (32)

For arbitrary guided traveling waves, the critical intensity is
given by

J ac.
c (n̂,r) = (��q)2vg

2T1,minT2|γ : ξ
q
(r)|2V , (33)

which depends on defect orientation and position. In contrast to
idealized bulk systems, J ac.

c (n̂,r) scales with the group velocity
vg of the driven mode, suggesting that the nonlinearity of the
system may be engineerable. For resonators, Jave/J

ac.
c (n̂,r)

should be taken to Eave/Eac.
c (n̂,r), the ratio of average mode

energy density to the critical mode energy density, in Eq. (32)
defined by EaveV = ��q|βq|2 and Eac.

c (n̂,r) = J ac.
c (n̂,r)/vg .

The loss tangent for the EM field in an arbitrary structure can
be obtained from Eq. (32) by taking |γ : ξ

q
| → �q|d · Eq|.

To illustrate the transformation of the nonlinear behavior of
resonant absorption in mesoscale systems, the critical intensity
for a silica microwire, resonator, and 3D bulk system are
compared as a function of frequency in Fig. 12. For simplicity,
the orientation- and spatial-averaged defect decay rate is used
in Eq. (33), |γ : ξ

q
|2 is replaced with 〈|γ : ξ

q
|2〉V , and the

resonator is modeled by using periodic boundary conditions
(which is why an intensity can be defined). The wire radius and
temperature are chosen so that T2 is dimensionally reduced.
Above �co the critical intensity for resonant absorption in the
cylinder exhibits sharp enhancements at van Hove singularities
in the phonon DOS [Fig. 12(a)], and the critical intensity in the

FIG. 14. Acoustic quality factor of the fundamental acoustic
mode of a silica resonator with acoustic intensity of 1 W/m2

(red-dotted), and finesse-enhanced intensity Q

2π
1 W/m2 (red). The

system temperature is taken to be 10 mK. The quality factor ceiling
for the resonator, given by Eq. (40), is shown as a black-dashed
line. For comparison the result for a 3D bulk system with intensity
1 W/m2 is displayed (blue). The resonator is defined using periodic
boundary conditions and the frequency of the fundamental shear
mode is continuously varied by scaling the resonator size.

resonator is Purcell enhanced at resonator mode frequencies.
At low frequencies, the critical intensity in the microwire is
enhanced by dispersive flexural modes [Fig. 12(b)].

2. Geometric, dispersive, and DOS transformations of relaxation
absorption

In this section, we discuss the transformation of relaxation
absorption by reduced dimensionality, phonon dispersion, and
confinement. Relaxation absorption is a nonresonant source
of dissipation that occurs when phonons or photons modulate
TLS energy levels. In this process, defects are driven in and out
of thermal equilibrium with their environment leading them
to absorb energy from phonons or photons and release it to
the environment in an irreversible fashion. Unlike resonant
absorption, relaxation absorption is not saturable, and thus it
sets the minimum level of dissipation that can be achieved
in a system containing defects. We show that this form
of dissipation is enhanced in many mesoscale systems by
dispersion and confinement, but in contrast, it is exponentially
suppressed in resonators at low temperatures.

We begin this discussion of relaxation absorption by stating
the result for the quality factor Qrel,q for an arbitrary system
(see Appendix F),

1
Qac.

rel,q
1

Qem
rel,q

}
= VD

�2
qkBT

∫
d�d�0

�2

�0E2
sech2

(
E

2kBT

)

×
〈
PD(E)

{
|γ : ξ

q
|2

�2
q|d · Eq|2

}
�qT1

1 + �2
qT

2
1

〉
V

, (34)

which accounts for the mode structure of the field, the position
and orientation of all defects, and modifications of the phonon
DOS. Notice that the relative contribution of defects of
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different energies to this process is determined by the factor
sech2 (E/2kBT ), and therefore the contribution from TLSs,
and also phonons, with E > kBT is exponentially suppressed.
Hence this process is dimensionally reduced when the fre-
quency of thermal phonons, ωth [∼ 208 MHz(T/10 mK)], is
much less than a structure’s cutoff frequency �co (e.g., see
Figs. 5 and 6).

Similar to preceding sections we consider idealized bulk
D-dimensional systems to understand the qualitative behavior
of relaxation absorption as the system dimension is lowered. To
gain more insight from Eq. (34), we consider ranges of param-
eters where Qrel,q can be approximated. For high frequencies
�qT1,min(E < kBT ) � 1, the integrand of Eq. (34) can be
Taylor expanded for small 1/(�qT1) and the integrals can be
done analytically. This calculation results in the asymptotic
form Qrel,q for η-polarized phonons and photons of frequency
�q given by

1
Qac.

rel,q
1

Qem
rel,q

}
≈ PD(kBT )

3�qρD�D+1

πSD−12D+1+μ

(2π )D

×
∑
η′

⎧⎨
⎩

[γ 4]ηη′
ρDv2

η

[d2γ 2]ηη′
ε0ε

⎫⎬
⎭ID+μ

vD+2
η′

(kBT )D, (35)

where [γ 4]ηη′ ≡ (4π )−1
∫

dϕ γ 2
η (n̂)γ 2

η′(n̂) and [d2γ 2]ηη′ ≡
(4π )−1

∫
dϕ d2

η (n̂′)γ 2
η′(n̂) = |d|2γ 2

η′/3.1 The familiar result
from the standard TSM is obtained by ignoring the angle
dependence of the deformation potential, taking D = 3, and
assuming a constant DDOS, i.e., μ = 0 [4]. Up to a pure
numerical prefactor, Eq. (35) shows that relaxation absorption
is geometrically enhanced by a factor (L/λth)D in lower-
dimensional bulk systems. We also point out that the results
of Eq. (35) agree with recent measurements of dissipation,
attributed to phonon-mediated relaxation, of quasi-1D NEMS
oscillators exhibiting a linear temperature scaling [24].

In the low-frequency limit where �qT1,min(E = kBT ) 
 1,
relaxation absorption reduces to a universal value that is
independent of the system dimension. This can be seen by
converting the integration in Eq. (34) to polar coordinates, i.e.,
(�,�0) → (E,φ) as discussed above Eq. (20), the φ integral
can be done directly. Subsequently, a Taylor expansion in small
�qT1,min may be performed resulting in

1
Qac.

rel,q
1

Qem
rel,q

}
= πPD(kBT )2μ−1cμ

⎧⎨
⎩

γ 2
η

ρDv2
η

|d|2
3ε0εeff

q

⎫⎬
⎭. (36)

Thus, in the low-frequency limit, the temperature scaling of
1/Qrel,q is given by P (kBT ) ∝ T μ, providing an indirect
window on the energy dependence of the DDOS. It is
interesting to note that Eq. (36) with the measured value of
μ ≈ 0.3 leads to a low-temperature scaling of the mechanical
dissipation in agreement with observations in quartz BAW
resonators, and a variety of NEMS and MEMS that operate in
the low-frequency limit [9,33]. Alternatively, such a scaling

1Here we do not assume that a defect’s electric dipole and
deformation potential are parallel, i.e., n̂′ 	= n̂ [77], and PD(E) ∝ Eμ.

can be explained by relaxation absorption associated with
overdamped flexural modes in the high-temperature limit [42].
These results point to an interesting direction for further study.

Now we consider acoustic waveguides that support dis-
persive flexural modes without cutoff where the reduced
dimensional behavior of relaxation absorption contrasts with
the results of Eq. (35). In waveguides, the dispersion of each
phonon branch can lead to dramatic changes in the DOS
of the phonon bath, and in turn modify the temperature
scaling and magnitude of acoustic and EM dissipation. To
explore these effects with maximum simplicity, we compute
1/Qrel,q for waveguides in the high-frequency limit using
the spatial and orientation averaged value of T1 in Eq. (34),
and consider systems where (γ�/v�)2 ≈ (γt/vt )2. With these
approximations and using Eq. (6), we find

1
Qac.

rel,q
1

Qem
rel,q

}
≈

∫ ∞

0
dE

2πP (E)E

3�2�qρkBT V
g(E/�)

γ 2
�

v2
�

×
{

γ 2
� /ρv2

�

|d|2/3ε0ε
eff
q

}
csch

(
E

kBT

)
, (37)

where the identity 2csch(x) = sech2(x/2) coth(x/2) has been
used. [The phonon DOS g(�) for 1D and 2D systems is given
by Eqs. (9) and (11)].

At low temperatures (kBT 
 ��co), the behavior of waveg-
uides contrasts sharply from the idealized bulk systems. To see
this consider a cylindrical waveguide of radius R where only
the four cylinder modes without cutoff contribute to Eq. (34)
(Fig. 6). The effect of the compressional and torsional mode is
accurately predicted by Eq. (35), but in contrast, the magnitude
and temperature scaling of relaxation absorption from flexural
modes differs substantially from bulk systems. When the
relevant (thermal) phonon wavelengths are much greater than
the wire radius R the dispersion relation for flexural modes
in the cylinder is given by � ≈ vBRq2/2 [78] (recall the bar
velocity vB defined after Eq. (12)), and the inverse quality
factor resulting from the flexural mode contribution to 1/Qrel,q
is

1
Qac.

rel,q
1

Qem
rel,q

}
flex.,1D

≈ 21+μ

3�qρA

γ 2
�

v2
�

P (kBT )√
vBR

×
⎧⎨
⎩

γ 2
�

ρv2
�

|d|2
3ε0εeff

q

⎫⎬
⎭ (kBT )1/2

�3/2
I1/2+μ (38)

[recall that Im is defined following Eq. (22)]. The result above
shows that relative magnitude of Eq. (38) to the quality factor
for an idealized bulk 1D system is enhanced by

√
λth/R

(� 1 when ��co � kBT ), showing that flexural modes
dominate relaxation absorption in waveguide systems. Losses
in such systems scale as P (kBT )T 1/2 ∝ T 1/2+μ when resonant
absorption is negligible, and may explain the temperature
dependence of mechanical dissipation observed in nanobeams
[24].

Flexural modes in 2D waveguides also lead to enhancement
of the acoustic decay over the bulk 2D result above. A similar
analysis as that performed for the cylinder above gives the
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quality factor arising from flexural modes in a planar system

1
Qac.

rel,q
1

Qem
rel,q

}
flex.,2D

≈ 21+μ

√
3�qρL

γ 2
�

v2
�

P (kBT )

vplL

⎧⎨
⎩

γ 2
�

ρv2
�

|d|2
3ε0εeff

q

⎫⎬
⎭kBT

�2
I1+μ,

(39)

where the dispersion relation for the fundamental flexural
mode � ≈ 1

2
√

3
vplLk2 (vpl is the plate velocity defined after

Eq. (12)), valid for Lk 
 1, has been used [78]. Similar to
the cylinder, flexural modes are the dominant contributor to
relaxation absorption in 2D structures at low temperatures.

Now we analyze relaxation absorption in resonant acoustic
cavities. For cavities, the decay rate T −1

1 is Purcell enhanced,
and so care must be taken when assessing the asymptotic
limits of Qrel,q. In high-finesse cavities, it may be possible
that �qT1 � 1 for nonresonant defects and �qT1 
 1 for
resonant defects. However, in certain ranges of frequencies
and temperatures, the inequality �qT1 � 1, is satisfied for all
energies contributing to the integral in Eq. (34). In this limit,
the peaked nature of the TLS-decay rate inside the integrand
samples energies matching phonon resonances and leads to
the quality factor given by

1
Qac.

rel,q
1

Qem
rel,q

}
≈ 2π

3�qVDkBT

γ 2
�

v2
�

∑
q′

PD(��q′)�q′

sinh
��q′
kBT
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⎩

γ 2
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ρv2
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|d|2
3ε0εeff

q

⎫⎬
⎭.

(40)

In the limit where the mode volume becomes large, the
resonator eigenfrequencies become dense and Eq. (40) reduces
to Eq. (35). In contrast, for small mode volumes the phonon
spectra is gapped, and as was seen for TLS-induced noise
in resonators, relaxation absorption too is exponentially
suppressed for low temperatures (i.e., kBT < ��1) (Fig. 14).

F. Estimations of TLS-induced dissipation in mesoscale
waveguides and resonators

To illustrate the contrasting behavior of defect-induced
dissipation in mesoscale systems, we compare the total the
acoustic quality factor and EM loss tangent, given by Q−1

q =
Q−1

res,q + Q−1
rel,q, for waveguides, resonators, and a 3D bulk. The

total quality factor is computed from Eqs. (32) and (34) and
the expressions for T1 and T2. For simplicity, the spatial and
orientation averaged defect decay rate [see Eqs. (8)–(13)],
including the effect of dispersive higher order modes and
Purcell enhancement, is used to compute the Jc and Qrel,q
in these examples. The defect dephasing rate is given by
T −1

2 = T −1
1 /2 + T −1′

2 , where Eq. (17) and the convention
discussed at the end of Sec. IV C are used.

1. Dissipation in nanoscale waveguides

Figure 13 illustrates the contrasting behavior of the acoustic
quality factor of the fundamental axial-radial mode of a
cylindrical nanowire and a longitudinal wave of an idealized
3D bulk as a function of frequency. Both excitations are chosen
to have an intensity of 100 W/m2, and both systems are set at a
temperature of 10 mK. The microwire system is chosen for its
simplicity; its mode functions can be obtained analytically, yet
it exhibits all of the unique behaviors of waveguides. These

behaviors include dispersive flexural modes, and van Hove
singularities in the phonon DOS. For the microwire radius
(100 nm) and 10 mK temperature, the thermal frequency is
far below cutoff (i.e., kBT 
 �co see Fig. 5), leading to
dimensional reduction of relaxation absorption.

Figure 13 shows that the quality factor of the axial-radial
mode in the cylinder (green) is much smaller than the 3D
bulk system (blue) for frequencies below �co (yellow region).
This occurs because the critical intensity is geometrically
and dispersively enhanced in the microwire (see Fig. 12),
and because relaxation absorption is geometrically enhanced
by flexural modes Eq. (38). The reduced dimensional theory
for the cylinder computed using Eq. (12) (green dashed line
of Fig. 13) differs from the exact calculation with higher
frequency due to higher order dispersion not accounted for
in Eq. (12). Above �co, sharp discontinuities are observed in
Qac. at frequencies where acoustic excitations with zero group
velocity are supported (i.e., van Hove singularities), contrast-
ing markedly from bulk systems (see Fig. 13). The dissipation
is dominated by resonant absorption at low intensities, and
the Q of all systems converges to a nearly universal value
determined by Eq. (27) (black line of Fig. 13). While this
example focuses on phononic dissipation, the EM loss tangent
has a very similar character.

2. Dissipation in acoustic resonators

The Purcell effect and the gapped phonon DOS lead to
marked differences between defect-induced dissipation in
resonators and bulk systems. Such differences are displayed in
Fig. 14, which compares Qac. for the fundamental shear wave
of a cubic silica resonator to the fundamental shear wave of a
3D bulk as a function of frequency.

We have shown that the critical intensity for a resonator
mode is Purcell enhanced (Fig. 12), and as a result Qac. is
smaller in resonators (red-dotted) than in 3D bulk systems
(blue) for fixed circulating intensity (1 W/m2) [Eq. (32)
and Fig. 14]. However, the intra-cavity power is enhanced
in resonators by energy storage. Therefore we also compare
Qac. for resonator and bulk systems with the same driving
intensity (1 W/m2), and including the effects of intracavity
power enhancement. When this enhancement is accounted for,
resonators (red) out-perform bulk systems (blue) over a broad
range of frequencies.

In resonators, the quality-factor ceiling set by relaxation
absorption is exponentially enhanced at low temperatures. This
enhancement is illustrated by the black dashed line in Fig. 14.
For the example of Fig. 14 relaxation absorption in resonators
and bulk systems is equivalent when �1 
 ωth, when a
large number of resonator modes are thermally populated.
However, at low temperatures (�1 > ωth), the resonator’s
thermomechanical motion is frozen out and Qrel is enhanced
(black-dashed line).

As a final remark, we mention that the resonator is assumed
to contain an ensemble of defects in these examples. However,
if a uniform DDOS is assumed then fewer defects are contained
in the system as its dimensions are scaled down. In such
scaled down systems, with a small number of defects, Fig. 14
describes the average quality factor (the observed dissipation
will fluctuate from sample-to-sample).
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FIG. 15. Asymptotic limits of inverse EM and acoustic quality
factor at high and low intensities. The parameter μ is set to 0.3.

3. Low- and high-intensity limits of defect-induced dissipation

Above, we saw that mesoscopic systems exhibit nontrivial
saturation and dissipation characteristics determined by the
details of the phonon DOS. However, in certain limits there
are several striking universal trends, shown in Fig. 15, that are
common to EM and acoustic dissipation.

The dissipation is universal in two limits, surprisingly hav-
ing nearly the same magnitude for EM and acoustic fields with
the same mode volume. The first regime is reached at low inten-
sity (J 
 Jc) and low temperatures (kBT < ��) where reso-
nant absorption, described by Eq. (27), dominates the dissipa-
tion (black). In this limit, the temperature dependence of the
dissipation is determined by the thermal population inversion
of the defects that interact with the wave of interest. The second
limit is reached at low-frequencies where relaxation absorption
converges to a universal value given by Eq. (36) (black-
dashed). In this limit, the temperature dependence of this
universal trend probes the energy dependence of the DDOS.

When an arbitrary mode is driven to saturation the EM
and acoustic dissipation approaches a universal (but system-
dimension dependent) dissipation floor set by relaxation
absorption. In Fig. 15, we display results for systems where
relaxation absorption is dimensionally reduced (ωth < �co),
and therefore the temperature dependence is determined by
the system dimension, the energy dependence of the DDOS,
and dispersive properties of the fundamental acoustic modes.
In Fig. 15, the high-intensity limit for the acoustic quality
factor and inverse loss tangent in 1 (green), 2 (orange),
and 3D (blue) systems supporting flexural modes is shown.
The low-temperature scaling of T 1/2+μ, T 1+μ, and T 3+μ for
1, 2, and 3D, respectively, serves as a powerful diagnostic
measurement to survey the mechanical degrees of freedom and
the DDOS that contributes to dissipation in a given system.
As a final note in this section, these results show that the
unique properties of mesoscale systems are only visible at
high intensities.

V. DISCUSSION

As an array of emerging nanoscale technologies progress
to ever-smaller sizes the interplay of geometry, dispersion and
density of states lead to radical modifications of the nature of
defect-induced noise, dissipation, and nonlinearity. We have

shown that the nature of defect dynamics is determined by the
interplay of confinement, TLS energy, defect concentration,
and temperature. Namely, emission into slow group velocity,
flexural, or resonator modes leads to a large (Purcell) enhance-
ment of the TLS decay rate, and when the separation between
thermally activated defects exceeds one or more system
dimension the behavior of spectral diffusion is transformed
(see Figs. 5, 7 and 13). As a result, the noise produced
by defects is shaped by system geometry and is suppressed
in systems constructed from high-quality acoustic resonators
operating at low temperatures (see Figs. 9, 10, and 11). In
addition, the saturation scale for defect-induced dissipation
(Fig. 12), and the dissipation floor at high-intensities is strongly
modified by geometric, dispersive, and Purcell enhancements
to T1 and T2 shown in Figs. 13–15.

We have shown that the negotiation of a system’s competing
length-scales defines a unique fingerprint for defect physics.
Such a fingerprint can serve as a powerful characterization tool,
and can be used to test the foundations of glass physics. For
example, we have demonstrated that defect decay and dephas-
ing, observable using π pulse and phonon echo [55,72,73],
directly probe the phonon DOS [e.g., Eq. (6) and Fig. 12] and
reveal the nature of defect-defect interactions. Defect-induced
electromagnetic noise reveal information about the DDOS,
the system dimension, and fundamental origins of noise in
qubits, and measurements of dissipation can probe system
dimensionality, the phonon DOS, and energy dependence of
the DDOS. A collection of such measurements can isolate
and determine each of the parameters entering the standard
tunneling state model. Thus the TSM and its alternatives
[59–63], which give contrasting predictions in reduced di-
mensional systems [44], can be put to the test.

In closing, we have demonstrated that an ever-present
source of noise and dissipation, engendered by low-energy de-
fect centers, hinges sensitively on system scale and geometry.
Our results show that this noise and dissipation can be reduced
in mesoscale systems, suggesting that thoughtful mode engi-
neering may enable unprecedented levels of performance in
an array of cutting-edge technologies.
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APPENDIX A: DERIVATION OF T−1
1

In this section, we derive the upper-state lifetime for a defect
coupled to a system’s acoustic field. We begin our derivation by
computing the transition amplitude for the coupled phonon-
defect system to go from an initial state |i〉 = |e〉 ⊗ |�i〉 at
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time ti to a final state |f 〉 = |g〉 ⊗ |�f 〉 at time tf where the
states |�i〉 and |�f 〉 are energy eigenstates of the uncoupled
phonon system. Formally, this amplitude can be written as

ci→f = 〈f |UI (tf ,ti)|i〉, (A1)

where UI (tf ,ti) is the time evolution operator in the inter-
action picture. The time-evolution operator can be written
as UI (tf ,ti) = T exp{− i

�

∫ tf
ti

dt H I
int(t)}, where HI

int is the
interaction Hamiltonian in the interaction picture. In the
weak-coupling approximation, the transition amplitude takes
the form

ci→f ≈ − i

�

∫ tf

ti

dt〈f |HI
int(t)|i〉. (A2)

The probability of deexcitation, for the process described
above, is given by the modulus square of the transition
amplitude. The total probability of deexcitation, via emission
into all channels, is given by averaging over the initial state of
the phonons and summing over all final states:

P tot
e→g ≈ 1

�2

∑
�f

∑
�i

pi

∫ tf

ti

dt

∫ tf

ti

dt ′〈g|⊗〈�f |HI
int(t)|e〉 ⊗ |�i〉

× 〈e| ⊗ 〈�i |HI
int(t

′)|g〉 ⊗ |�f 〉. (A3)

Since
∑

�i
pi |�i〉〈�i | = ρ̂ is the initial density matrix of the

phonon field,
∑

�f
|�f 〉〈�f | = I, and the relevant component

of the interaction Hamiltonian is proportional to σx and the
strain field the transition probability is given by

P tot
e→g ≈ 1

�2

�2
0

E2

∫ tf

ti

dt

×
∫ tf

ti

dt ′eiE/�(t−t ′)〈γ : ξ (t ′,r)γ : ξ (t,r)〉, (A4)

where 〈g|σ I
x (t)|e〉 = e−iEt/� has been used, 〈. . . 〉 ≡ tr{ρ̂ . . . },

ξ (t ′,r) is the freely evolving strain field, and r is the position
of the defect.

We define the strain correlation function
G+(t,t ′) ≡ 〈γ : ξ (t,r)γ : ξ (t ′,r)〉 that only depends upon
the difference in time arguments in steady state. When
tf , − ti → ∞ a change of variables gives the decay rate T −1

1 ,
i.e., (P tot

e→g + P tot
g→e)/(tf − ti), as

T −1
1 ≈ 1

�2

�2
0

E2
(G+(E/�) + G+(−E/�)) (A5)

where G+(E/�) is the Fourier transform of G+(t,t ′). For a
phonon bath in thermal equilibrium, the fluctuation-dissipation
relation can be applied to reduce the expression above to

T −1
1 ≈ 2

�

�2
0

E2
coth

E

2kBT
ImG(E/�), (A6)

where G(ω) is the retarded Green’s function related to γ :
ξ (t,rj ). G(t,t ′) can be derived from the Green’s function for
the displacement field glm(x,x ′),[(

ρ∂2
t + ρ�∂t

)
δl
i − ∂jC

jkl

i ∂k

]
glm(x,x ′) = δ4(x − x ′)δim,

(A7)
where Cijkl is the system’s elastic tensor, and where we have
assumed that the phonons experience a linear dissipation �.

We write glm as a Fourier transform g̃lm(ω,x,x′) =
(1/2π )

∫
dωe−iωtglm(t,x; 0,x′). The spatial dependence can

be obtained by decomposing g into spatial eigenfunctions of
Eq. (A7)

g̃(ω,x,x′) =
∑

q

Aquq(x). (A8)

Plugging this expansion into the equation above, and using the
eigenvalue and orthonormality properties of the eigenfunc-
tions, results in an expression for Aq yielding the following
representation for g̃:

g̃(ω,x,x′) =
∑

q

uq(x)u∗
q(x′)

�2
q − iω�q − ω2

. (A9)

Contracting each vector eigenfunction uk
q with γik∂i gives G

G(ω,x,x′) =
∑

q

γ : ξ
q
(x)γ : ξ ∗

q
(x′)

�2
q − iω�q − ω2

, (A10)

which has an imaginary part at coincidence given by

ImG(ω,x,x) =
∑

q

ω�q|γ : ξ
q
(x)|2(

�2
q − ω2

)2 + (ω�q)2
. (A11)

The equation above leads to the decay rate for the defect given
by

T −1
1 (E) ≈ 2

�

∑
q

�2
0

E2
coth

E

2kBT

×
�q(E/�)|γ : ξ

q
(r)|2(

�2
q − (E/�)2

)2 + ((E/�)�q)2
, (A12)

which agrees with Eq. (4) in the limit �q → 0 and with Eq. (13)
when averaged over defect orientations and positions.

1. Waveguides

In this section, we compute the decay rate for a defect in
a 2D waveguide. We begin from Eq. (6). The mode index q
can be represented as {m,k}, where m is an index labeling
the eigenfunctions describing the elastic field in the dimension
normal to the plane, and k is a wave vector in the plane. Hence
the mode sum

∑
q is given by

∑
m(A/4π2)

∫
d2k, where A is

the area of the plane, to be taken to infinity at the end of the
calculation, and the mode eigenfrequencies can represented
as �q ≡ �m(k). Using the delta function identity listed inline
above Eq. (8), we find

〈
T −1

1 (E)
〉
V

= 1

L

∑
m,j,η

∫
d2k

�2
0

2�ρ

γ 2
η

v2
η

emj,η

× coth

(
E

2kBT

)
δ(k − |kmj |)∣∣�v

mj
g

∣∣ , (A13)

where |kmj | is defined inline above Eq. (10), and mj is short for
m,kmj . Equation (10) is obtained by evaluating the k integral
and using v

mj
p = �m(|kmj |)/|kmj |.
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2. Bulk medium with dissipation

In Eq. (A12), we have derived the formal expression for
the decay rate of a defect interacting with a collection of lossy
phonon modes. It is interesting to evaluate the expression for
T −1

1,min in the infinite volume limit where the sum over modes
becomes an integral. The result for T1 in this limit depends
upon the physical origin of the phonon decay. If the phonon
dissipation is assumed to arise from local absorption due to
the intrinsic losses present in the material, we find the decay
rate

T −1
1 (E) ≈ 2

2π2�ρ

∑
η

γ 2
η

v5
η

coth
E

2kBT

×
∫ �

0
d�

�(E/�)�4

(�2 − (E/�)2)2 + ((E/�)�)2
, (A14)

where we have introduced a high-frequency cutoff � repre-
senting the defect “size.” If we take � to be constant and
assume � � E/�,�, we find

T −1
1 (E) ≈ 1

π2�ρ

∑
η

γ 2
η

v5
η

E

�
coth

E

2kBT

[
�� + π�

4

× Re(ω̃3)

Im(ω̃)Re(ω̃)
+ O(�−1)

]
, (A15)

where ω̃ =
√

(E/�)2 + i�(E/�).
Notice that the decay rate is composed of a potentially

large cutoff-dependent term when the acoustic medium is
assumed to be lossy, and a cutoff independent term. This
cutoff dependent contribution to the decay rate is encountered
in the study of spontaneous emission of atoms embedded
in absorbing dielectrics where it is attributed to nonradiative
decay through near-field interactions [71]. This interpretation
is consistent in the acoustic case treated here as the cutoff-
dependent part of the decay rate arises entirely from the
E = 0 component of T −1

1 , i.e., from static elastic fields, the
elastic equivalent of the electrostatic dipole field. Systems with
large sources of intrinsic acoustic dissipation may require a
more general treatment than that leading to Eq. (4). As an
example consider phonon-phonon scattering in glass which
leads to decay rates of order (2π )1 Hz [34] at 3.8 K for GHz
frequency phonons. For � = 0.1 nm the cutoff-dependent
contribution to T −1

1 is four orders of magnitude smaller
than the cutoff-independent component, and hence Eq. (4)
gives a quantitative estimation of the defect decay rate in a
dissipative bulk. When phonon dissipation arises from defects
(all remaining defects) we find that GHz phonons and for
� = 0.1 nm that the cutoff-dependent term is comparable to
Eq. (4). We plan to investigate this effect further in future work.

Dissipation of phonon modes occurs even in lossless media
when energy leaks from a resonator into a supporting structure.
For this case, a decay rate can be added to the equation of
motion for the phonon field to model the energy leakage from
a mode. For such a system, the decay rate will scale as � ∼
− 4v

L
ln r , where v is the sound speed, L is the characteristic size

of the resonator, and r is the reflection coefficient, representing
the fraction of energy retained in the system for each cycle.
Unlike the previous example, the dissipation is not distributed
throughout the resonator, i.e., the losses occur as energy leaks

away upon reflection at the resonator-support interface. Hence,
for this system, the cutoff-dependent component of the decay
rate is an artifact of the way we have modeled the cavity losses
and thus should be subtracted. Indeed, for the case of an atom
in an inhomogeneous dielectric, a calculation of the decay
rate is cutoff-independent so long as the dielectric imediately
surrounding the atom is not lossy [79]. Also, note that the decay
rate vanishes in the infinite-volume limit, and hence Eq. (A15)
appropriately reduces to Eq. (4) for a lossless medium in the
infinite volume limit.

APPENDIX B: ELASTIC ENERGY AND ANGULAR
AVERAGES OF γ : −ξq

The elastic energy of a system occupying volume V is given
by

E = K + V = 1

2

∫
V

d3x (ρu̇2 + Cijklξij ξkl),

where K is the kinetic energy, V is the potential energy, and
Cijkl is the elastic tensor. By decomposing, the elastic field
into normal modes, using the orthonormality relation for the
displacement field, integrating the potential energy term by
parts, and using the eigenvalue equation for the normal modes
one finds the following identities

K = V = 1

4

∑
q

��q(bqb
†
q + b†qbq). (B1)

For an isotropic medium, the elastic tensor is Cijkl = λδij δkl +
μ(δikδjl + δilδjk) where λ = ρ(v2

� − 2v2
t ) and μ = ρv2

t (recall
v� and vt are the longitudinal and shear wave sound speed in
bulk). With a mode decomposition of the strain, the identity
E = 2V , and the orthonormality relation, we find

E =
∑

q

1

2
��q(bqb

†
q + b†qbq)

[
1

�2
q

∫
V

d3x ρv2
� |trξq

|2

+ 2v2
t (ξ

q
: ξ ∗

q
− |trξ

q
|2)

]
. (B2)

The quantity in square brackets is equal to 1, and which
we interpret as the sum of the fractions of elastic energy in
compressional eq� and shear eqt motion of the qth mode

eq� = 1

�2
q

∫
V

d3x ρv2
� |trξq

|2, (B3)

eqt = 2

�2
q

∫
V

d3x ρv2
t (ξ

q
: ξ ∗

q
− |trξ

q
|2). (B4)

Now we evaluate 〈|γ : ξ
q
|2〉V . Using γ : ξ = γ̃ [(1 −

2ζ )trξ + 2ζ n̂ · ξ · n̂] [64], the n̂-orientation average of |γ :
ξ

q
|2 can be performed giving∫

dϕ

4π
|γ : ξ

q
|2 = γ 2

� |trξ
q
|2 + 2γ 2

t (ξ
q

: ξ ∗
q
− |trξ

q
|2). (B5)

Finally, averaging the result above over the system volume,
we arrive at Eq. (5) if we assume that the density throughout
the system is uniform.
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APPENDIX C: SMALL MODE VOLUME LIMIT

The analysis of defect-induced dissipation in the main body
of the text applies to the scenario where a large number
of defects interact with each phonon mode. However, for
resonator systems, as the system volume becomes small a
point is reached where the acoustic modes interact with a
single defect, occurring when Nres � 1. In this case, the defects
no longer act as a spin bath, which can irreversibly absorb
acoustic energy, and the defect-phonon system will undergo
Rabi oscillation. For silica based systems,

Nres ∼ P��qV = �q

2πMHz

V

(1 μm)3
, (C1)

meaning that the small mode volume limit can be achieved
with 1 MHz linewidth modes in systems with volumes less
than a 1 μm3. For the formula above, the acoustic mode decay
rate is determined by all other sources of loss in the system
such as phonon-phonon scattering.

The energy of systems with Nres = 1 will oscillate between
the defect and phononic degrees of freedom with the frequency

�̂2
Rabi = 2

��q

�2
0

E2
|γ : ξ

q
(r)|2

(
N̂ + 1

2

)
+ (�q − E/�)2,

(C2)
which is calculated from the Heisenberg equations (Ap-
pendix A) of the coupled system in the rotating wave
approximation (RWA) [80]. The operator N̂ = b

†
qbq + 1

2σz is
conserved in the RWA.

APPENDIX D: DIPOLE-DIPOLE CORRELATION
FUNCTION

In this section, we compute the dipole-dipole correlation
function for the defects using the quantum regression theorem
(QRT). For weak coupling, the dipole-dipole correlation
function separates into two terms

〈δP i(t)δPj (t ′)〉 = δij dd
[
�2

0

E2
〈σx(t)σx(t ′)〉

+ �2

E2
(〈σz(t)σz(t

′)〉 − w2
0(E))

]
, (D1)

where we have suppressed the defect labels i and j on
defect parameters, and w0(E) ≡ − tanh E

2kBT
is the thermal

equilibrium value of σz. The correlation functions above can
be approximated using the quantum regression theorem [74],
positing that the two-time correlation function of an operator
A 〈A(t)A(0)〉 satisfies the same equation of motion as the mean
value 〈A(t)〉, giving

〈σx(t)σx(t ′)〉 ≈ 1
2 (1 + w0(E))ei E

�
(t−t ′)− |t−t ′ |

T2

+ 1
2 (1 − w0(E))e−i E

�
(t−t ′)− |t−t ′ |

T2
, (D2)

〈σz(t)σz(t
′)〉 ≈ e

− |t−t ′ |
T1 + w2

0(E)
(
1 − e

− |t−t ′ |
T1

)
. (D3)

The correlation functions above satisfy the Pauli operator
algebra at equal times, and at large time separations, i.e.,
for |t − t ′| � T1 (or T2), the two operators appearing in

〈σz(t)σz(t ′)〉 are completely uncorrelated and hence the cor-
relation function factorizes 〈σz(t)σz(t ′)〉 = 〈σz(t)〉〈σz(t ′)〉 =
w2

0(E). The QRT is valid in the weak-coupling limit.

APPENDIX E: DERIVATION OF RESONANT ABSORPTION

In this section, we derive resonant absorption of a driven
acoustic mode.

1. Heisenberg equations of motion

To orient the reader and establish notation, we first give the
Heisenberg equations of motion for the coupled defect-phonon
system in full generality

σ̇z,j = 2

�

∑
q

(gq,0j bq + g∗
q,0j b

†
q)σy,j , (E1)

σ̇y,j = 1

�

[
E′

j + 2
∑

q

(gq,j bq + g∗
q,j b

†
q)

]
σx,j

− 2

�

∑
q

(gq,0j bq + g∗
q,0j b

†
q)σz,j , (E2)

σ̇x,j = −1

�

[
E′

j + 2
∑

q

(gq,j bq + g∗
q,j b

†
q)

]
σy,j , (E3)

ḃq = −i�qbq − i

�

∑
j

[g∗
q,j σz,j + g∗

q,0j σx,j ], (E4)

where the shorthand gq,0j ≡ �0j

Ej

√
�

2�q
γ : ξ

q
(rj ) and gq,j ≡

�j

Ej

√
�

2�q
γ : ξ

q
(rj ) has been introduced. The equations for the

coupled defect-photon system can be derived by taking gq,0j =
−i

�0j

Ej

√
��q

2 d · Eq(rj ) and gq,j = −i
�j

Ej

√
��q

2 d · Eq(rj ) and
bq → aq, the annihilation operator for the EM field, in the
equations above.

2. Bloch equations

For the purposes of deriving resonant absorption, we work
with the Bloch equations describing the mean-field dynamics
of the interaction of a single phonon mode with the defect
ensemble. In addition, we neglect the diagonal coupling �,
which plays a minor role in this process. The Bloch equations
can be derived from the Heisenberg equations of motion in
leading-order perturbation theory resulting in

Ṡz = − 1

T1
(Sz − w0) − i2

�
(gq,0βqS

+ − g∗
q,0β

†
qS

−), (E5)

Ṡ+ = (
iE/� − T −1

2

)
S+ − i

�
g∗

q,0β
†
qSz, (E6)

β̇q = (−i�q − �q/2)βq − i

�
gq,0S

− + fq, (E7)

where Sk ≡ 〈σk〉, S± = (Sx ± iSy)/2, the effect of thermal
fluctuations of the phonon field have been accounted for in
the decay rates T1 and T2, βq is the driven component of the
phonon field, fq ∝ e−iωt is an external drive, and the RWA has
been used which is valid so long as �q � �q. The dephasing
time T2 results from thermalization by the phonon field and
by other thermally active defects in the system. The latter is
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unimportant when PkBT V < 1, i.e., there are no thermally
active defects present in the system, which is feasible with
very small mode volumes and low temperatures. For silica,
PkBT V ≈ 75 for T = 10 mK and V = 1 μm3.

With a strong external drive oscillating at ω we look for
solutions with βq and S− both oscillating as e−iωt and Sz

time-independent. In this approximation, the solution for S+
and Sz are given by

Sz = w0

1 + 4|gq,0|2T1T2

�2
1

1+(E/�−ω)2T 2
2
|βq|2

, (E8)

S+ = − i

�
g∗

q,0
T2

1 − iT2(E/� − ω)
β†

qSz. (E9)

When plugged into the equation of motion for the phonon,
these solutions account for the back reaction of the defect on
the phonon mode. This is manifested as a frequency shift and
a dissipation function: [−i��res

q − �res
q /2]βq,

− iωβq = [ − i
(
�q + ��res

q

) − (
�q + �res

q

)
/2

]
βq + fq,

(E10)

�res
q = −2

|gq,0|2
�2

T2

1 + T 2
2 (ω − E/�)2

Sz (E11)

= 2
|gq,0|2

�2

tanh
(

E
2kBT

)
√

1 + 4|gq,0|2T1T2

�2 |βq|2
T̃2

1 + T̃ 2
2 (ω − E/�)2

,

(E12)

where T̃2 =
√

1 + 4|gq,0|2T1T2

�2 |βq|2T2. Equation (E11) gives the
dissipation rate for resonant absorption of acoustic energy
by a single defect. In the case when the energy of a large
number of defects fall within 1/2πT2 of the mode frequency
the dissipation rate can be calculated by taking the ensemble
average of Eq. (E11) with respect to all defect properties. Such
an averaging, and using �q � �q, results in Eq. (32).

APPENDIX F: DERIVATION OF RELAXATION
ABSORPTION

In this section, we derive the phonon dissipation rate due
to relaxation absorption. We begin with the observation, with
some rearrangement of Eq. (1), that the energy level of a
given defect is modulated by an incident strain field as Ej →
Ej + 2�j

Ej
γ j : ξ (rj ). This energy-level modulation will drive

the level inversion, which can be accounted for by Taylor
expanding w0(E) for small strain in the Bloch equation for
the Sz,

Ṡz ≈ − 1

T1

(
Sz − w0 − 2

∂w0

∂E

�

E
γ : ξ (r)

)
, (F1)

where the off-diagonal coupling, proportional to gq,0j , and the
suffix j has been dropped.

The strain field on the right-hand side of Eq. (F1) drives
oscillations of the level inversion, and in turn, level inversion
oscillations lead to the radiation of phonons in a random
direction. This acoustic radiation can be computed by finding
the solution of Sz and plugging it’s solution into the equation
of motion for the mean acoustic field

β̇q = (−i�q − �q/2)βq − i

�
gqSz, (F2)

where the diagonal coupling has been reintroduced and gq,0j

has been set to zero. The oscillating component of the level
inversion δSz is given by

δSz ≈ 2

1 − i�qT1

∂w0

∂E
gqβq. (F3)

Plugging this expression into the equation of motion for the
phonon, i.e., using the RWA, results in dissipation and a
frequency shift

− i

�
gqδSz =( − i��rel

q − �rel
q /2

)
bq, (F4)

where

��rel
q = 2

�
|gq|2 1

1 + �2
qT

2
1

∂w0

∂E
, (F5)

�rel
q = −4

�
|gq|2 �qT1

1 + �2
qT

2
1

∂w0

∂E
, (F6)

which is the frequency shift and dissipation from relaxation
absorption for a single defect. When averaged over all defect
properties Eq. (F6) reduces to Eq. (34) in the main text.

�rel
q can be interpreted as the energy lost from the phonon

mode as it drives a defect, and the defect reradiates that
energy into a random direction with a strength set by T −1

1 .
In the high-frequency limit, notice that the defect decay
is proportional to T −1

1 . Hence, for a cavity based system,
only resonant defects will appreciably reradiate the phonon’s
energy. Given the exponential suppression of �rel

q with E

by ∂w0
∂E

= − 1
2kBT

sech2 E
2kBT

, the dominant contribution to
relaxation absorption in a cavity based system is given by
the defects that are resonant with the fundamental mode �0.
Hence the quality factor is given by

1

Qrel,q
≈ 4

�
|gq|2 1

�2
qT1

1

2kBT
sech2 ��1

2kBT
(F7)

with T1 evaluated at E = ��1, and hence relaxation absorption
is exponentially suppressed for low temperatures where
��1/kBT � 1. After averaging over defect properties, it can
be shown that Eq. (F7) is the first term of Eq. (40).
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