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Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations
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The effect of composition on the antiphase boundary (APB) energy of Ni-based L12-ordered alloys is
investigated by ab initio calculations employing the coherent potential approximation. The calculated APB
energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies
for the nonstoichiometric γ ′ phase increase with Al concentration and are in line with the experiment. The
magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the
alloy according to the alloying element’s position in the 3d row. The elements from the left side of the 3d row
increase the APB energy of the Ni-based L12-ordered alloys, while the elements from the right side slightly affect
it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is
discussed.
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I. INTRODUCTION

Nickel-based superalloys represent an important class of
materials which have outstanding high-temperature strength
and oxidation resistance [1,2]. They are widely used in aircraft
and power-generation turbines and rocket engines, which
work in high-temperature environments. Due to their high
technological importance, these alloys have been attracting
researchers’ interest for several decades [2,3].

The strength of Ni-based superalloys originates from the
presence of the ordered γ ′ (Ni3Al-type structure) phase, which
is distributed within the disordered fcc γ matrix [2,3]. High
resistance to the plastic deformation of two phase γ /γ ′ alloys
is caused by the need of the antiphase boundary (APB) ribbon
formation when a single γ -phase 1/2〈110〉 dislocation cuts a
γ ′ particle in two-phase γ /γ ′ alloys. Thus, the APB energy
is one of the most important parameters that determines the
superdislocation structure [1,2,4,5], the mechanical behavior
of the γ ′ phase, and the strength of the γ /γ ′ alloys.

Unfortunately, it is not possible to measure the APB energy
directly. The most promising experimental technique is based
on the measurement of the dissociation splitting distance
of superpartial dislocations within the γ ′ phase followed
by the estimate of the APB energy on the basis of the
theoretical dislocation description (e.g., continual elasticity
or Peierls-Nabarro model) [6–10]. For the measurement of
the splitting distance, the weak-beam transmission electron
microscopy is commonly used. It is, however, somewhat
difficult to determine the exact orientation of superpartial
dislocations within the lattice, which results in a significant
spread in experimental values of APB energies.

The first theoretical estimation of the APB energy based
on the simple central pair interatomic interactions model was
proposed in Ref. [11]. This model was further developed in

Refs. [12–15] in which an attempt was made to establish
the relation between the APB energy and thermodynamic
parameters of alloys such as mixing and ordering enthalpies
(or ordering temperature). This approach reveals general
trends in the family of Ni3Al-type alloys. However, it does
not provide a reliable value of the APB energy due to
well-known limitations of the nearest-neighbor pair potential
approximation in metallic alloys.

Atomistic calculations of APB energies were performed
using various techniques. It was found that results of molecular
dynamic simulations (see Ref. [16] and references therein)
are very sensitive to details of approximations for interatomic
potentials and contain uncontrollable errors. At the same time,
theoretical methods based on first-principles calculations using
density functional theory (DFT) are now becoming an efficient
and accurate research tool permitting wide possibilities for
modeling defects. The {111} and {001} APB energies of
ordered L12 alloys were calculated using full potential methods
[6,17,18] and Green’s-function technique within the linear
muffin-tin orbital method [19]. It was revealed that first-
principles calculations predict APB energies in agreement with
experiments when atomic relaxations near APB planes are
taken into account [20]. However, previous ab initio calcu-
lations of the APB energy in Ni-based L12 alloys [6,17–21]
have been performed for ferromagnetic or nonmagnetic states,
while they are paramagnetic for all temperatures of interest
(TCurie = 41.5 K for Ni3Al).

Various experiments show that the APB energy is very
sensitive to the alloy composition (stoichiometry deviation,
alloying addition, etc.) [7,8,22,23]. According to Dimiduk
et al. [24], the {001}APB energy increases with Al content, but
results by Yu et al. [25] show the opposite trend. Meanwhile,
a study by Kruml et al. [8] confirms the results of Ref. [24]
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showing an increase of both {001} and {111} APB energies
along with Al content.

Despite the importance of the composition effect on APB
energies, there are few theoretical studies of ternary and
multicomponent systems [21,26–28]. In Ref. [28], a predictive
approach to estimate the APB energy for the γ ′ phase as a
function of its chemistry was proposed. It included a thermody-
namic modeling and ab initio calculations of ordering energies
in ternary Ni3Al-based alloys. First-principles calculations
of APB energies in the {111} plane were performed in
Refs. [21,26,27] for Ni3Al1−xZx (Z = Ti, Nb, Ta) within the
supercell approach with a quasirandom distribution of alloying
elements at Al sites. According to Ref. [21], for all of these
elements, the APB energy in the {111} plane slightly increases
with concentration of addition up to x = 20 at.% and decreases
(at fixed concentration) in sequence Ti, Nb, and Ta.

Due to the absence of the unique ground-state structure,
accurate energy calculations of random alloys require con-
figurational averaging of energies. The technique, however,
used in Refs. [21,26,27] did not provide reliable configuration
statistics. An approach based on the cluster expansion and
Monte Carlo method using first-principles total-energy calcu-
lations was recently proposed and allowed for studying the
effect of Ti on APB energies [29]. One of the effective ways
to solve this problem is to employ a single-site mean-field
type of averaging, which, for instance, is done in the coherent
potential approximation (CPA) [30] used for the electronic
structure calculations of alloys. This makes the CPA-based
technique attractive for investigations of the alloying effect on
APB energies. In the present paper, the CPA-based approach
is employed for direct calculations of {111} and {001} APB
energies in binary Ni3−xAl1+x and ternary Ni3−xAl1−yZx+y

alloys, in which Z is a 3d transition element (i.e., Z = Ti,
V, Cr, Mn, Fe, Co, Cu). The obtained results allow for an
identification of the alloying effect in the APB energy in
L12-ordered Ni-based alloys and open a way to predict the
APB energy for multicomponent systems.

II. METHODOLOGY

The conservative APB energy, ξhkl , for a crystal plane {hkl}
is postulated as the excess free energy (per unit area) due to
the shift of one part of a crystal along a {hkl} plane by the
vector b (b = 1/2 < 110 >). The temperature dependence
of ξhkl is caused by the thermal expansion and the change
of a free energy of an alloy as a result of different thermal
excitations [31]. The vibrational entropy and the thermal
electronic excitation contributions were calculated from first
principles using the quasiharmonic approximation [32]. It was
shown that the finite-temperature {001} APB free energy was
reduced approximately by 10% in the temperature range 0
to 300 K. The {111} APB free energy was found to be
practically independent of the temperature. The temperature
dependence of APB energies was found experimentally to be
small in Ref. [25] in which the temperature increase from
25 to 300 ◦C leads to the decrease of the {001} APB energy
by 3% and the increase of the {111} APB energy by 7%.
Therefore, the present study focuses on the alloying effect at
the ambient temperature and neglects the entropy contribution.
It is assumed that alloying elements are randomly distributed in

the alloy and there is no segregation on the APB itself, which
can be formed under certain conditions such as annealing.
This corresponds to the homogeneous APB [27] that is related
to the dislocation structure and the mobility at the ambient
temperature. The effect of segregation on the thermodynamics
of the {111} APB was discussed in Ref. [33]. According to
Refs. [34,35], the elements, which occupy the Al sublattice,
segregate away from the {111} and {001} APBs.

For APB simulations in the L12 structure, the 48-atomic
supercell was built by stacking 12 {111} layers for the {111}
APB and the 32-atomic supercell was built by stacking 16
{001} layers for the {001} APB. As is shown in Refs. [21,36],
such supercell sizes are large enough to avoid interactions
between neighboring APBs. Due to periodic boundary con-
ditions, the supercell contains two APBs, so the value of the
APB energy has been calculated as

ξhkl = [Esc({hkl},b) − Esc({hkl},0)]/2S. (1)

Here, Esc({hkl},b) and Esc({hkl},0) are total energies of the
supercells with and without APB, and S is the area of the
antiphase boundary.

The magnetic and the atomic configurational disorders
have been treated using the CPA [30], which accurately
describes disordered systems in the single-site approximation.
In this method, the real distribution of atoms in the alloy
is represented by an effective medium with self-consistent
parameters of the electron scattering. This approach gives a
reliable way to model alloys with alloying elements randomly
distributed in a particular sublattice. The paramagnetic state
of the γ ′ phase has been considered using the disordered local
moment (DLM) model [37]. This model treats spin-up (↑)
and spin-down (↓) components for each magnetic element as
randomly distributed.

In the case of deviation from the stoichiometric composi-
tion, the excess of Al or Ni was substituted into the opposite
sublattice. For the ternary alloy modeling, solute atoms were
randomly distributed between sublattices of the ordered γ ′
phase using the site preference of alloying elements, which
was determined in a number of studies [3,38–44]. In Ni3Al
structure, Ti, V, Cr, and Mn atoms occupy the Al sublattice;
Co and Cu occupy the Ni sublattice; and Fe can occupy
both sublattices. The ternary addition Z was placed randomly
in the Al and/or the Ni sublattice in Ni3−xAl1−yZx+y alloy
according to its site preference. Within the CPA, sites in Ni
and Al sublattices are occupied by the mixture of atomic
species Ni and Z, as well as Al and Z, with concentrations
cNi = 1 − x/3, cZNi = x/3 and cAl = 1 − y, cZAl = y for each
sublattice accordingly. It should be noted that the actual
distribution of alloying elements between sublattices depends
on composition and temperature.

Electronic structure and total-energy calculations have been
done by the exact muffin-tin orbitals (EMTO) method [45–47].
Atomic and magnetic disorders were introduced by applying
CPA [30]. The accuracy of EMTO-CPA has been checked by
locally self-consistent Green’s-function (LSGF) calculations
[48]. The LSGF method was also used to calculate screening
parameters determining the contribution of screened Coulomb
interactions to the one-electron potential V scr

i of the alloy
component i and to the total energy Escr within the single-site
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DFT formalism [49]:

V scr
i = −αscr

e2qi

s
and Escr = βscr

2

∑

i

ciqiV
scr
i . (2)

Here, e is the electron charge, s is the Wigner-Seitz radius,
and qi and ci are the average net charge of the atomic
sphere and the concentration of the ith alloy component,
respectively. Screening constants were calculated for fixed
alloy compositions. For example, the calculated screening
constants for Ni3Al are αscr = 0.68 and βscr = 1.10.

EMTO-CPA total energies were calculated in the general-
ized gradient approximation (GGA) [50] using the full charge
density formalism [45]. The multipole-moment correction in
the atomic sphere approximation [51] was used. All self-
consistent EMTO-CPA calculations were performed for the
orbital momentum cutoff of lmax = 3 for partial waves. The
integration over the Brillouin zone was done using 18 × 18 × 4
and 24 × 24 × 3 grid of k points determined according to
the Monkhorst-Pack scheme for 48-atomic and 32-atomic
supercells, respectively [52]. Experimental values of lattice
parameters of the Ni3Al and ternary alloys at room temperature
were used in the present calculations [53]. It should be noted
that to estimate the effect of the lattice constant, EMTO-CPA
calculations were performed with experimental and theoretical
lattice parameters. Our calculations showed that the change
of the lattice parameter of 0.4% did not affect our final
conclusions.

To estimate the relaxation energy correction �ξrel, the APB
energy difference between the relaxed and the unrelaxed states
of ferromagnetic and nonmagnetic Ni3Al was calculated with
the 48-atomic and the 32-atomic supercells for the {111} and
{001} APB by using the projector augmented wave (PAW)
method [54] as implemented in the VASP code [55]. For
three planes above and below the APB plane {hkl}, local
lattice relaxations were performed by allowing displacements
in the direction perpendicular to the APB plane only using
the conjugate-gradient algorithm. This partial local relaxation
gives the main contribution to �ξrel. Permitting the in-plane
relaxation causes an undesirable distortion of a crystal that
destroys the APB geometry. As was shown in Ref. [6], the
shift of one part of a crystal in the 1/2 < 110 > direction (it
corresponds to the so-called geometrical APB) moves atoms
of adjacent crystal layers to positions which do not provide a
local energy minimum. Since the true position of the energy
minimum in Ni3Al is only slightly shifted from its geometrical
counterpart, we perform calculations for the latter APB that is
a characteristic for the dislocation structure.

Ordering energies for Ni3Al and ternary Ni3Al-based alloys
are calculated as the difference of the energies of ordered
and random alloys with the same composition. In the case of
ternary alloys, the alloying element is randomly distributed
in a particular sublattice according to its site preference.
Ordering energies in ternary Ni3Al-based alloys were obtained
by EMTO-CPA calculations, while an ordering energy in
Ni3Al was defined using both EMTO-CPA and PAW-VASP

calculations. Random alloys for PAW-VASP calculations were
modeled by a 108-atom 3 × 3 × 3 supercell built upon a cubic
fcc unit cell consisting of four atoms.

PAW-VASP calculations were performed using the GGA
with the kinetic energy cutoff of 350 eV and using uniform
18 × 18 × 4, 24 × 24 × 3, and 6 × 6 × 6 meshes of k points
for 48-, 32-, and 108-atomic supercells, respectively. The
convergence tolerance for the total energy was 10−6 eV/atom
and 10−3 eV/Å for forces. The lattice constant of Ni3Al in the
ground state is 3.57 Å in the spin-restricted calculations, in
agreement with the room-temperature experimental data [56].
Spin-polarized calculations show a similar result. This lattice
constant was used in PAW-VASP calculations.

Values of �ξrel for the {111} and {001} APB energies
are found to be 70 and 14 mJ/m2, correspondingly, in
the nonmagnetic state. The relaxation correction energies
depend weakly on the magnetic state of Ni (the difference
of �ξrel between nonmagnetic and ferromagnetic states does
not exceed a few percent). Effects of the magnetic state as well
as the alloying effect on the relaxation (discussed below) are
small and the same value of �ξrel was used for all considered
cases.

III. RESULTS AND DISCUSSION

A. APB energies in Ni3−xAl1+x alloy

Results of supercell EMTO-CPA calculations of APB
energies for paramagnetic (DLM) binary Ni3−xAl1+x alloys
with the relaxation correction (calculated by PAW-VASP), �ξrel,
are presented in Fig. 1 and Table I together with avail-
able experimental data and results of previous calculations.
Table I shows that calculated APB energies are in reasonable
agreement with experiments. They are within the range of the
measured APB values. Slightly higher experimental values
for the {001} plane [references (A)–(D) in Fig. 1] could
originate from the fact that the structure of the superdislocation
in the {001} plane is not coplanar. Therefore, the use of
mechanical equilibrium conditions for describing the structure
of the superdislocation leads to the underestimation of its width
[5,10].

Calculations show that the APB energy for the para-
magnetic state is about 10% lower than the one in the
ferromagnetic state (see Fig. 1) for both {111} and {001}
APB planes. The same effect of the magnetic order was
reported in Ref. [20]. Note that the difference between
APB energies for the ferromagnetic and paramagnetic states
decreases with Al concentration increase. Meanwhile, the APB
energies in nonmagnetic calculations are found to be close to
paramagnetic results. For the {111} APB, the relaxation has
a larger effect on the energy than the magnetic state effect. At
the same time, for the {001}, both of the APB contributions
are comparable.

As can be seen in Fig. 1, the APB energy is very sensitive
to Al concentration: ξ001 changes by up to 50% with only a
2.5% variation in the composition. In the Ni-rich γ ′ phase,
the presence of Ni in the Al sublattice leads to a decrease
of both {111} and {001} APB energies. This is consistent
with earlier theoretical investigations [26]. Simultaneously, it
was found that in the Al-rich γ ′ phase (when Al is present
in the Ni sublattice), both the APB energies are increased
and this effect is more pronounced for the {001} APB. Both
{111} and {001} calculated APB energies are in agreement
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FIG. 1. Effect of deviation from stoichiometry on APB energies. Open circles and boxes (dashed lines) correspond to results of ferromagnetic
and paramagnetic EMTO-CPA calculations. Closed circles and boxes (solid lines) correspond to EMTO-CPA results with the relaxation
correction for Ni3Al. The circles with bars show the variations due to local atomic relaxations in Ni3Al-based alloys. The effect of different
alloy configurations on the relaxation correction dispersion is indicated by error bars. Experimental data are from Dimiduk et al. [24] (A),
Karnthaler et al. [7] (B), Kruml et al. [8] (C), Yu et al. [25] (D), Hemker and Mills [9] (E), Veyssiere et al. [57] (F), and Douin and Veyssire
[58] (G).

TABLE I. APB energies in Ni3−xAl1+x (mJ/m2).

(hkl) Al (at.%) Present calculations Experiment [Ref.] Previous calculations

{111} 27.5 247
26.5 178 ± 12 [25]
26 219 ± 17 [8]

25.9 250 ± 29 [24]
25.5 175 ± 13 [25]
25 211 195 ± 13 [8], 180 ± 30 [57] 210 [6], 252 [16], 240 [19], 181 [21],

188 [61], 179 [36], 223 [60], 177 [20]
24.6 179 ± 15 [25]
24.2 194 ± 22 [24]
24 176 ± 11 [8]
24 180 ± 20 [9]

23.5 183 ± 12 [25]
22.9 206 ± 22 [24], 140 ± 21 [24,59]
22.5 142
22 175 ± 15 [7]

{001} 27.5 190
26.5 113 ± 10 [25]
26 184 ± 16 [8]

25.9 170 ± 25 [24], 120 ± 20 [58]
25.5 134 ± 8 [25]; 90 ± 5 [58]
25 112 160 ± 20 [8], 140 ± 14 [57] 80[16], 137 [19], 107 [21], 96 [36], 82 [32]

24.6 143 ± 7 [25]
24.4 75 ± 25 [58]
24.2 122 ± 12 [24]
24 135 ± 18 [8]

23.5 157 ± 8 [25]
22.9 104 ± 11 [24], 92 ± 10 [24,59]
22.5 59
22 104 ± 15 [7]
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with the most reliable experimental data [points (A) and (C)
in Fig. 1] and show a general trend of the APB energy to
increase with Al concentration [8,24]. It should be noted that
at the same time, experimental results in Ref. [25] [points
(D) in Fig. 1] for the {001} APB energy are in contradiction
with Refs. [8,24,57] and show the opposite trend. Keeping
in mind that experimental data on the APB energy contain
errors, the experimental and calculated results are in reasonable
agreement.

Results presented in Fig. 1 are obtained in the approx-
imation that the relaxation correction does not depend on
composition of alloys. To estimate the effect of deviation from
the stoichiometry on the value of �ξrel, the APB energy of
the Ni3−xA1+x alloy was calculated by using the PAW-VASP

method with relaxations as in the case of a stoichiometric
alloy for x = ±2.08 at.% for the {111} plane and x =
±3.125 at.% for the {001} plane. Because obtained results
depended on specific distribution of chemical components,
calculations were done for several particular placements of
excess atoms in corresponding sublattices. Results of these
calculations are shown in Fig. 1 at corresponding concentra-
tions of Al. As can be seen within the considered concentration
interval, the effect of composition on the relaxation correction
�ξrel appears to be small. The increase of a lattice constant
due to the thermal expansion leads to a reduction in the
effect of relaxations on the APB energy. Thus, the CPA-based
approach provides a reliable description of the homogeneous
APB energy in spite of the simplified relaxation treatment.

B. APB energies in ternary Ni3Al-Z alloy

Figure 2 presents the calculated APB energies in ternary
Ni3Al-based alloys with 2.5 at.% of 3d dopants. The solute
atoms were distributed between sublattices according to their
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FIG. 2. Ab initio calculated APB energies in the {111} and
{001} planes of Ni3Al alloyed by 2.5 at.% of 3d elements without
(unfilled square and circle) and with (filled square and circle) the local
relaxation corrections for Ni3Al. The effects of local relaxations for
ternary alloys on the relaxation correction are indicated by error bars.
Calculated APB energies in the {111} and {001} planes of Ni3Al are
shown by horizontal lines. Circles and squares with bars correspond
to the effect of atomic local relaxations in Ni3Al-based alloys.

site-preference energy (see Sec. II). The relaxation correction
for the stoichiometric Ni3Al, �ξrel, was taken into account
as in the previous section. It was found that the 3d alloying
elements, such as Ti, V, and Cr, which occupy the Al sublattice,
increase the APB energy for both {111} and {001} planes,
while Mn has little effect on the APB energy for the {001}
plane and decreases it for {111}. While Fe atoms occupy both
the Al and Ni sublattices, Cu and Co atoms occupy only the Ni
sublattice. They do not produce a strong effect on both {111}
and {001} APB energies. Substitution of Al by Ni, however,
strongly lowers both of the APB energies.

To estimate the effect of alloying elements on �ξrel, the
APB energy of ternary alloys was calculated by using the
PAW-VASP method taking into account partial local atomic
relaxations (see above for details). Calculations were done
for several particular placements of ternary elements in
corresponding sublattices with concentrations 2.08 at.% for
the {111} plane and 3.125 at.% for the {001} plane. These
concentrations are the closest to 2.5 at.%, which can be
implemented within the used supercell geometries. Results
of these calculations are shown in Fig. 2. As can be seen
for the considered concentration, the error due to an ad
hoc added relaxation and, consequently, the effect of ternary
additions on the relaxation correction �ξrel appear to be small
for all elements except Cr, Mn, Fe, and Ni. Among these
elements, only Cr is present in large concentrations in modern
superalloys. In this case, the error may be more significant for
larger concentrations and the employed method provides only
qualitative conclusions. For other alloying elements, the use of
the relaxation correction �ξrel for stoichiometric Ni3Al gives
reliable results. Thus, this approximation can be considered as
a reasonable one for the assessment of APB energies in ternary
Ni3Al-based alloys.

Figure 3 shows dependencies of APB energies calculated by
EMTO-CPA with the relaxation correction in ternary Ni3Al-
based alloys as a function of an addition concentration. The
variation of the APB energy in the γ ′ phase is mostly linear
with the concentration of alloying elements up to 10 at.% with
the exception of Cr addition. As in the case of the deviation
from stoichiometry, the effect of the alloying addition on the
APB energy is stronger for the {001} plane [cf. Figs. 3(a) and
3(b)], which is also reported for V in Ref. [24].

Results for Ti are in satisfactory agreement with previous
calculations [21,26–28,36] for both APB planes and with the
experiments [62,63]. The effect of V alloying was found to
be similar. The increase of APB energies due to alloying
by Ti and V is expected because both additions increase
the stability of the γ ′ phase [2,22]. The Cr addition results
in the nonmonotonic dependence of the APB energy on the
concentration. With a small addition of Cr up to 5 at.%, APB
energies increase in a manner similar to that of Ti and V.
At the same time, the further increase of Cr content in the
γ ′ phase leads to a substantial decrease of APB energies.
This behavior of APB energies distinguishes Cr among other
alloying elements and correlates with the nonmonotonicity of
the enthalpy of the formation of Ni-rich Ni-Cr alloys [64].
The nonmonotonic dependence of the APB energy in the
case of Cr is unclear and requires further study. It should
be noted that our result for ξ111 at 10 at.% Cr is close to that in
Ref. [28].
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FIG. 3. Calculated APB energies in the (a) {111} and (b) {001} planes of Ni3Al alloyed by 3d elements. The composition of ternary alloys
Ni3−yAl1−xZx+y has been chosen following sublattice occupation of alloying elements. y = 0 for Ti, V, Cr, Mn; x = 3y for Fe; y = 0 for Co,
Cu. Results are obtained by EMTO-CPA, taking into account the local relaxation for Ni3Al from PAW-VASP calculations.

Finally, the magnetic effect will be discussed. It should
be noted that APB energies in paramagnetic and nonmagnetic
Ni3Al are close to each other because it is a weak ferromagnet.
At the same time, other alloying elements can exhibit quite dif-
ferent local magnetic behavior in Ni3Al due to their magnetic
properties and, in particular, the ability to keep local magnetic
moments in the paramagnetic state (it can also be induced
by spin fluctuations, but such effects are neglected here since
the high-temperature state is not considered). For instance,
Mn, Fe, and Co exhibit remarkably different effects on the
APB energy in nonmagnetic and paramagnetic calculations,
which are also known to increase the Curie temperature of
Ni3Al [65]. In particular, the {111} and {001} APB energies
of the γ ′ phase containing 2.5% Mn are larger by 19%
and 35%, respectively, in nonmagnetic than in paramagnetic
calculations. In the case of Co and Fe, the difference between
nonmagnetic and paramagnetic calculations is much smaller
and does not exceed 5%.

C. Relation between APB energy and ordering energy

To understand trends in the APB energy caused by
alloying elements, we calculated the ordering energy Eord

of ternary alloys. This is defined as the energy difference
between the ordered alloy with the alloying element randomly
distributed in a particular sublattice and a completely random
alloy configuration with the same composition. The ordering
energies for Ni3Al and Ni3Al-based alloys were calculated at
the room-temperature lattice constant. The ordering energy for
Ni3Al has been found to be −0.13 eV/atom by EMTO-CPA
without atomic relaxations in the paramagnetic (DLM) state,
which is in line with previously calculated results [66].
This is in agreement with the result −0.12 eV/atom and
−0.15 eV/atom obtained by nonmagnetic PAW-VASP supercell
calculations with and without atomic relaxations.

The effect of alloying on Eord and the APB energies ξ111

and ξ001 is presented in Fig. 4 as a function of a solute
element position in the 3d row. It should be noted that Fig. 4

shows only a chemical contribution to the ordering and APB
energies (without relaxations). As can be seen in Fig. 4, the
variation of the APB energy, ξ111, for alloying elements with
concentration of 2.5% correlates very well with the ordering
energy Eord along the 3d row, although such a correlation
worsens with alloying concentrations. For solutes from Ti to
Mn which occupy the Al sublattice, Eord and ξ111 decrease
when the number of valence electrons increases. For solutes
from Fe to Cu occupying Ni or both Ni and Al sublattices, these
values show only a slight variation with the number of valence
electrons. Ni addition in the Al sublattice is an exception in that
it results in a sharp drop of both Eord and ξ111 energies. This
reflects the sensitivity of the APB energy to the stoichiometry
variation in Ni-rich compositions.
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FIG. 4. Calculated ratio of the ordering energy of ternary alloys
to the ordering energy of stoichiometric Ni3Al, Eord/E

Ni3Al
ord (curve

1), and ratios of APB energies of ternary alloy and Ni3Al, ξ111/ξ
Ni3Al
111

and ξ001/ξ
Ni3Al
001 (curve 2 and 3, respectively), for 3d solutes. The

concentration of alloying elements is 2.5 at.%.
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The correlation between the APB energy ξ111 and the
ordering energy Eord is not surprising and is expected within
the quasichemical approximation for the alloy model when the
nearest-neighbor interatomic interactions dominate. Indeed,
the ordering energy for A3B of a completely ordered L12 alloy
is

E
L12
ord = − 3

16
(2V1 − 3V2 + 4V3 − · · · ), (3)

while {111) and {001} APB energies are [13]

ξ111 = 1

a2
√

3
(V1 − 3V2 + 4V3 − · · · ), (4)

ξ001 = 1

a2
(−V2 + 4V3 − · · · ), (5)

where Vi is the effective interaction energy for the ith
coordination sphere.

As is suggested in Ref. [14], the alloying element modifies
values of effective interactions, so Vi → Ṽi . This is the
major effect at small concentrations. In this case, the ratio
is ξ111/ξ

Ni3Al
111 ≈ Eord/E

Ni3Al
ord ≈ Ṽ1/V1 if the nearest-neighbor

interaction V1 dominates. Note that Eqs. (4) and (5) neglect
the atomic relaxation contribution which is essential for the
{111} plane (see Fig. 1). Nevertheless, the ratios ξ111/ξ

Ni3Al
111

and Eord/E
Ni3Al
ord show a good correlation with the alloying

element position in the 3d row. It means that the effect of
alloying on ξ111 can be understood from the variation of the
ordering energy which can be easily obtained from ab initio
calculations. At the same time, for the {001} plane, there is no
pronounced correlation between APB and ordering energies
(see Fig. 4) because the effective interaction energy V1 is not
included in Eq. (5). Thus, direct ab initio calculations of the
{001} APB energy are necessary.

IV. SUMMARY

The composition effect on the APB energy in Ni3Al-based
alloys has been investigated using ab initio modeling. The
employed approach includes CPA-DFT calculations of the
alloy energy variations due to the APB presence with randomly
distributed substitute atoms in specific sublattices. It was
assumed that there was no atomic segregation on the APB
itself and there was neglected thermal entropy contributions to
the APB energy. This corresponds to the homogeneous APB
[27] formation, which is a controlling factor in the resistance
to plastic flow in two-phase γ /γ ′ alloys. A contribution to the
APB energy from local atomic relaxations has been accounted
for with the relaxation correction for Ni3Al, which is calculated

by the PAW method. The use of the relaxation correction
�ξrel for stoichiometric Ni3Al gives reliable results not only
for nonstoichiometric but also for Ni3Al alloyed by chemical
elements, which are contained in the γ ′ phase of Ni-based
superalloys in a small amount and/or an effect of which on the
�ξrel is small, such as, for example, Ti and Co.

In spite of using simplification, this approach provides a
reliable description of the alloy composition effect on the APB
energy in Ni3Al-based alloys. The calculated APB energies
in nonstoichiometric Ni3−xAl1+x alloys are in agreement
with available experiments. This indicates that the employed
approximations are quite reasonable. The obtained results
show a general trend: the increase of the APB energy
with Al concentration. The paramagnetic and nonmagnetic
calculations of the APB energy give similar results. At the same
time, ferromagnetic calculations overestimate both {111} and
{001} APB energies.

Ternary additions, such as Ti, V, and Cr, which occupy the
Al sublattice, increase the APB energy for both the {111}
and {001} planes, while Mn has a little effect on the APB
energy for the {001} plane and decreases the energy for
{111}. Co, Cu, and Fe, which occupy Ni or both sublattices,
slightly affect both the {111} and {001} APB energies. The
variation of the APB energy in the γ ′ phase is mostly linear
with the concentration of Ti and V, which has the largest effect
among 3d alloying elements. An exceptional and interesting
case is that of Cr alloying, which leads to the nonmonotonic
concentration dependence of ξhkl . The reasons for this behavior
call for further investigations.

To summarize, the results of our calculations reveal trends
in a variation of homogeneous APB energy ξhkl in Ni3Al
alloyed by 3d elements and pave a way for predicting the
alloying effect on the APB energy in the {111} plane based
solely on the ordering energy calculation. It should be noted
that the APB energy for Ni3Al alloyed by 3d elements
correlates with the ordering energy of these alloys. The
approach that combines thermodynamic modeling [using the
calculation of phase diagrams (CALPHAD)-based methods]
and ab initio calculated ordering and mixing energies has
been recently used in Ref. [28]. As is shown, CALPHAD
methods have strong limitations due to the requirement of a
high degree of extrapolation in the metastable phase region
and first-principles calculations are necessary. The CPA-DFT
approach with the atomic relaxation correction provides a
reliable way for estimation of APB energies in ternary alloys.
This approach can be easily extended to multicomponent
alloys. It will provide the ability to predict the impact of
substitutional additions in the ordered γ ′ phases on the
dislocation motion, and subsequently, mechanical properties
of multicomponent γ /γ ′ alloys.
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[7] H. P. Karnthaler, E. Th. Mühlbacher, and C. Rentenberger, Acta

Mater. 44, 547 (1996).

224106-7

http://dx.doi.org/10.1016/0001-6160(84)90117-2
http://dx.doi.org/10.1016/0001-6160(84)90117-2
http://dx.doi.org/10.1016/0001-6160(84)90117-2
http://dx.doi.org/10.1016/0001-6160(84)90117-2
http://dx.doi.org/10.1016/S1359-6454(02)00282-3
http://dx.doi.org/10.1016/S1359-6454(02)00282-3
http://dx.doi.org/10.1016/S1359-6454(02)00282-3
http://dx.doi.org/10.1016/S1359-6454(02)00282-3
http://dx.doi.org/10.1016/1359-6454(95)00191-3
http://dx.doi.org/10.1016/1359-6454(95)00191-3
http://dx.doi.org/10.1016/1359-6454(95)00191-3
http://dx.doi.org/10.1016/1359-6454(95)00191-3


O. I. GORBATOV et al. PHYSICAL REVIEW B 93, 224106 (2016)

[8] T. Kruml, E. Conforto, B. Lo Piccolo, D. Caillard, and J. L.
Martin, Acta Mater. 50, 5091 (2002).

[9] K. J. Hemker and M. J. Mills, Philos. Mag. A 68, 305 (1993).
[10] Dislocations in Solids. L12 Ordered Alloys, edited by F. R.

N. Nabarro and M. S. Duesbery (Elsevier, Amsterdam, 1996),
Vol. 10.

[11] P. A. Flinn, Trans. AIME 218, 145 (1960).
[12] D. J. Crudden, B. Raeisinia, N. Warnken, and R. C. Reed, Metall.

Mater. Trans. A 44, 2418 (2013).
[13] G. Inden, S. Bruns, and H. Ackermann, Philos. Mag. A 53, 87

(1986).
[14] A. P. Miodownik and N. Saunders, Applications of Thermody-

namics in the Synthesis and Processing of Materials, edited by
P. Nash and B. Sundman (TMS, Warrendale, PA, 1995).

[15] F. Kral, P. Schwander, B. Schönfeld, and G. Kostorz, Mater. Sci.
Eng. A 234-236, 351 (1997).

[16] Y. Mishin, Acta Mater. 52, 1451 (2004).
[17] A. T. Paxton, Electron Theory in Alloy Design, edited by D. G.

Pettifor and A. H. Cottrell (The Institute of Materials, London,
1992).

[18] C. L. Fu, Y.-Y. Ye, and M. H. Yoo, High-Temperature Ordered
Intermetallic Alloys V, edited by I. Baker et al. (Materials
Research Society, Pittsburgh, 1993).

[19] N. M. Rosengaard and H. L. Skriver, Phys. Rev. B 50, 4848
(1994).

[20] V. R. Manga, J. E. Saal, Y. Wang, V. H. Crespi, and Z.-K. Liu,
J. Appl. Phys. 108, 103509 (2010).

[21] M. Chandran and S. K. Sondhi, Model. Simul. Mater. Sci. Eng.
19, 025008 (2011).

[22] N. F. Stoloff, Int. Mater. Rev. 34, 153 (1989).
[23] D. M. Dimiduk, J. Phys. III 1, 1025 (1991).
[24] D. M. Dimiduk, A. W. Thompson, and J. C. Williams, Philos.

Mag. A 67, 675 (1993).
[25] H. F. Yu, I. P. Jones, and R. E. Smallman, Philos. Mag. A 70,

951 (1994).
[26] K. V. Vamsi and S. Karthikeyan, Superalloys, edited by E. S.

Huron et al. (TMS, Warrendale, 2012).
[27] K. V. Vamsi and S. Karthikeyan, MATEC Web Conf. 14, 11005

(2014).
[28] D. J. Crudden, A. Mottura, N. Warnken, B. Raeisinia, and R. C.

Reed, Acta Mater. 75, 356 (2014).
[29] R. Sun and A. van de Walle, CALPHAD 53, 20 (2016).
[30] P. Soven, Phys. Rev. 156, 809 (1967); D. W. Taylor, ibid. 156,

1017 (1967).
[31] A. J. Skinner, J. V. Lilli, and J. Q. Broughton, Model. Simul.

Mater. Sci. Eng. 3, 359 (1995).
[32] V. R. Manga, S. L. Shang, W. Y. Wang, Y. Wang, J. Liang, V. H.

Crespic, and Z. K. Liu, Acta Mater. 82, 287 (2015).
[33] M. Sluiter, Y. Hashi, and Y. Kawazoe, Comput. Mater. Sci. 14,

283 (1999).
[34] H. P. Wang, M. Sluiter, and Y. Kawazoe, Mater. Trans. 40, 1301

(1999).
[35] H. P. Wang, M. Sluiter, and Y. Kawazoe, Mater. Trans. 42, 407

(2001).

[36] X.-X. Yu and C.-Y. Wang, Philos. Mag. 92, 4028 (2012).
[37] B. L. Gyorffy, A. J. Pindor, J. B. Stauton, G. M. Stocks, and H.

Winter, J. Phys. F 15, 1337 (1985).
[38] M. H. F. Sluiter, M. Takahashi, and Y. Kawazoe, Acta Mater.

44, 209 (1996).
[39] A. V. Ruban and H. L. Skriver, Phys. Rev. B 55, 856 (1997).
[40] C. Jiang, D. J. Sordelet, and B. Gleeson, Acta Mater. 54, 1147

(2006).
[41] C. Jiang and B. Gleeson, Scr. Mater. 55, 433 (2006).
[42] C. Booth-Morrison, Z. Mao, R. D. Noebe, and D. N. Seidman,

Appl. Phys. Lett. 93, 033103 (2008).
[43] M. Chaudhari, A. Singh, P. Gopal, S. Nag, G. B. Viswanathan,

J. Tiley, R. Banerjee, and J. Du, Philos. Mag. Lett. 92, 495
(2012).

[44] A. V. Ruban, V. A. Popov, V. K. Portnoi, and V. I. Bogdanov,
Philos. Mag. 94, 20 (2014).

[45] L. Vitos, Computational Quantum Mechanics for Materials
Engineers: The EMTO Method and Applications (Springer-
Verlag, London, 2007).

[46] L. Vitos, Phys. Rev. B 64, 014107 (2001).
[47] L. Vitos, I. A. Abrikosov, and B. Johansson, Phys. Rev. Lett. 87,

156401 (2001).
[48] I. A. Abrikosov, S. I. Simak, B. Johansson, A. V. Ruban, and H.

L. Skriver, Phys. Rev. B 56, 9319 (1997).
[49] A. V. Ruban, S. I. Simak, P. A. Korzhavyi, and H. L. Skriver,

Phys. Rev. B 66, 024202 (2002).
[50] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[51] H. L. Skriver and N. M. Rosengaard, Phys. Rev. B 43, 9538

(1991).
[52] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188

(1972).
[53] Y. Mishima, S. Ochial, and T. Suzuki, Acta Metall. 33, 1161

(1985).
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