
PHYSICAL REVIEW B 93, 224101 (2016)

Transport properties of dilute α-Fe(X) solid solutions (X = C, N, O)
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We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based
interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A
general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager
matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster.
The formalism is applied to vacancy-interstitial solute pairs in α-Fe (V X pairs, X = C, N, O), with ab initio
based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled
estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties.
Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from
the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy
second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.
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I. INTRODUCTION

α-Fe always contains interstitial impurities, for instance
C, N, and O, either as impurities or as alloying elements. It
is known that these solutes strongly bind with vacancies (V )
in the body-centered-cubic (bcc) Fe matrix [1–5], where these
solutes are preferentially located on interstitial octahedral sites
[5]. The V -X interaction (X = C, N, or O) is so strong that at
equilibrium, minor quantities of these solutes increase the total
equilibrium V concentration in the solid solution by several
orders of magnitude [6]. Because of this strong interaction, it
is suspected that interstitial solutes affect kinetic properties of
vacancies, and vice versa.

Kinetic properties of vacancies are key to understanding
out-of-equilibrium phenomena in which V supersaturation
(and hence V fluxes to point defect sinks) is created: quench-
ing, irradiation. In such systems, two aspects of the kinetics
must be understood: first one is to know if solutes increase
or decrease V fluxes and, second one is to know whether
or not the V flux induces solute redistribution. The latter
phenomenon is denoted as flux coupling. It was first predicted
by Anthony [7] from the analysis of quenched materials [8–10]
and then observed in irradiated materials [11–13]. It is of high
importance for nuclear industry as solute redistribution leads
to radiation-induced segregation [14] and radiation-induced
precipitation [15,16] that can alter the mechanical properties
of the material [17,18]. In thermochemical diffusion processes
like carburizing and nitriding of steels, interstitial solutes are
diffused into metal surfaces. The flux of these elements from
the surface into the bulk may induce a vacancy flux that could
produce nonequilibrium V redistribution and possibly the
formation of voids. Thus, the modeling of these flux-coupling
phenomena is of interest for both manufacturing processes and
steel applications in out-of-equilibrium conditions.

Flux coupling is generally studied in the thermodynamics
of irreversible processes framework (see [14] for a review).
For binary systems AB, this formalism can be summarized in
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the following equation:(
J̄ A

J̄ B

)
= −

(
LAA LAB

LBA LBB

)(∇μA

kBT

∇μB

kBT

)
, (1)

where J̄ α is the macroscopic flux of species α (α = A, B)
resulting from some driving forces, in this case expressed
as chemical potential gradients ∇μα/kBT . The coefficients
in-between fluxes and driving forces form the Onsager matrix
and contain all the kinetic information related to this system.
Equation (1) says that in the simplified scenario where
there is only one driving force (∇μA �= 0 and ∇μB = 0),
two fluxes are expected, J̄ A = −LAA∇μA/kBT and J̄ B =
−LBA∇μA/kBT = J̄ ALBA/LAA. Physically, the flux of B is
induced by the flux of A. This corresponds to the so-called
flux-coupling phenomenon, and LBA/LAA is denoted as a
flux-coupling coefficient, which is either positive or negative.

From a modeling point of view, flux coupling has been
actively studied and is now well understood for substitutional
solutes diffusing via vacancy-mediated [19–21] or dumbbell
mechanisms [22–25]. For instance, in vacancy-mediated dif-
fusion, the fact that substitutional solutes must exchange with
V to move is at the origin of flux coupling between V and sub-
stitutional solutes. When it comes to interstitial solutes, which
diffuse via interstitial migration on a sublattice (interstitial
sites) different from that of vacancies (substitutional sites),
it is not obvious to give a ruling about whether or not this
system will produce some flux coupling. V X flux-coupling
experiments in α-Fe are difficult to perform because solute
solubility limits are very low, and measuring the flux-coupling
contribution to segregation is a challenging task. Hence, we
must turn to modeling to answer these questions.

The thermodynamics of α-Fe-V -X systems is now well
understood and can be studied further using well-defined
numerical and analytical modeling methods [5,6]. Assessing
the kinetic properties of such system is a much more difficult
problem. Early studies of the kinetic interplay between defects
and interstitial solutes were related to the trapping of hydrogen
atoms in Fe [26,27]. These models assume the solute to be
immobile in the trap sites until it manages to escape, and the
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FIG. 1. Drawing of the three types of jumps considered in
this paper: vacancy (gray square) and Fe matrix atom exchange
(green arrow parallel to the [11̄1̄] direction), jump between two NN
interstitial octahedral sites (blue arrow parallel to the [1̄00] direction),
and jump between two second-NN interstitial octahedral sites around
a vacancy (orange arrow parallel to the [11̄0] direction).

effect of this trapping phenomenon on the overall diffusivity of
the solute is a function of the solute-trap interaction enthalpy
only. More recent contributions have included the possibility
that solute could move within traps (see, e.g., [28,29]), but
one still needs to compute the kinetic properties of trapped
solutes. A model to do that has been proposed by Koiwa, using
a first-passage time approach [30], but this model is limited
to first-nearest-neighbor (NN) trap-solute interaction (both for
stable and saddle-point configurations). Trapping effects have
also been addressed the other way around, in the case where
vacancies are trapped by interstitial solutes, thus affecting the
iron self-diffusion coefficient [31–33]. Some authors claim
that interstitial solutes increase the Fe diffusion coefficient
[34], while others claim the opposite [35], but it is not always
made clear whether or not the effect of solutes on vacancy
equilibrium concentration is accounted for in these studies.

Nowadays, there are ab initio data that give an accurate
picture of the local energetic landscape in various configura-
tions [36]. For substitutional solutes, there are simple models
[37,38] and more complicated ones [20,21] that can transform
this ab initio data into statistically averaged and macroscopi-
cally well-defined kinetic coefficients. With interstitial solute,
one has to deal with two simultaneous migration mechanisms
happening on two different sublattices (see Fig. 1) but affecting
each other through local energetic landscape modifications.
Because of that, the problem becomes much more complicated,
and has not been addressed yet. Moreover, it has been shown
that interstitial solutes can perform low-activation second-NN
jumps in the vicinity of V (see Fig. 1), which is an additional
complication for modeling [36]. To the best of the authors’
knowledge, there is currently no model to take into account
the full kinetic interplay between vacancies and interstitial
solutes because these can eventually move altogether in a
complicated energetic landscape, and the consequence on the
kinetic properties of the system cannot be reduced to a simple
thermodynamic trapping enthalpy. Moreover, such model
would give mobility coefficients of defect-solute clusters, a
valuable information for higher-scale models such as object
kinetic Monte Carlo [39] or cluster dynamics [3,36].

The self-consistent mean field method (SCMF) is a promis-
ing path to provide kinetic models for α-Fe-V -X systems. First
developed for vacancy-mediated diffusion in bcc lattices, it has
since then been extended to various cases [20,21,40–47], but
these always considered substitutional migration mechanisms
only. Basically, the SCMF method uses linear response theory

to compute the flux resulting from a uniform driving force,
which allows the identification of the Onsager matrix. It is
based on a microscopic master equation, and thus provides
a general way to link atomic-scale information (atomic jump
frequencies) to macroscopic transport coefficients. The same
formalism has also been extended to include the effect of
nonuniform driving forces [47].

In this paper, we make use of the SCMF method to provide
an exact kinetic model for α-Fe-V -X dilute systems, and use
this model to study flux couplings in this system. Section II
is devoted to theoretical developments. We derive the SCMF
equations for various jump mechanisms on various sublattices,
and then propose a breakdown of the Onsager matrix of
dilute alloys into cluster contributions. Section III uses these
theoretical developments. First, we present the parametrization
of our model, and then we discuss the convergence of the
mobility contribution with respect to cluster size. From this,
we were able to investigate intrinsic flux-coupling coefficients
of V X pairs, and quantify the effect of second-NN solute jumps
around V . Finally, Sec. IV provides an insightful comparison
between various approximations of cluster kinetic coefficients.

II. EXTENSION OF THE SCMF METHOD

A. SCMF for various jump mechanisms on various sublattices

In this section, we propose an extension of the self-
consistent mean field method (SCMF), first developed in [44]
for solute migration by vacancy mechanism in bcc solids, to
systems containing different diffusion mechanisms on various
sublattices. In Sec. III, we will apply this method to the case
of vacancy and interstitial solute (C, N, and O) migration
in α-Fe. To the best of the authors’ knowledge, there exists
no analytical model to compute transport coefficients in such
systems. Moreover, the extension proposed in this paper is
readily applicable to many other complex diffusive systems.
It piles up with a number of papers that have developed
various extensions of the SCMF method over the past decade
[20,21,40–47], and it provides the first theoretical steps toward
a rigorous definition of kinetic variables associated with
point-defect-solute clusters, making it a method of growing
interest, generality, and efficiency. We chose to derive the
SCMF equations from scratch to have a self-consistent paper.
Moreover, it will be easier to introduce our notations, as
well as the features of our extension. The general idea of
the method is to apply a small driving force to the system,
a chemical potential gradient, and to compute the resulting
flux in a linear approximation. The coefficients that relate
fluxes to driving forces at steady state are then identified as the
transport coefficients in the framework of the thermodynamics
of irreversible processes [see Eq. (1)].

It is assumed that the system can be mapped onto a
rigid lattice containing a number of lattice sites, each being
occupied by a single atom or defect. The derivation starts
from the microscopic master equation for a system represented
by a configuration vector n which components are the site
occupation numbers nα

i for each site and each species. nα
i = 1

if species α occupies site i in configuration n, and nα
i = 0 if not:

dP (n,t)

dt
=

∑
ñ

[W (ñ,n)P (ñ,t) − W (n,ñ)P (n,t)]. (2)
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P (n,t) is the probability of having configuration n at time t ,
and W (ñ,n) is the rate [s−1] at which a system in configuration
ñ switches to configuration n. As in Ref. [45], it is assumed that
the probability of any configuration can be expressed as the
product of its equilibrium probability P0(n) and a probability
δP (n,t) that corresponds to the deviation from equilibrium,

P (n,t) = P0(n) × δP (n,t). (3)

The δP (n,t) probability is assumed to have the same
mathematical form as the equilibrium probability, but thermo-
dynamic interactions are replaced by an effective Hamiltonian
that will reproduce the fact that two equivalent configurations
at equilibrium do not necessarily have the same probability
in out-of-equilibrium conditions (and this is because driving
forces break the symmetry of the system). In this paper, the
effective Hamiltonian is reduced to pair effective interactions
ν

αβ

ij between sites i and j , occupied, respectively, by species
α and β:

δP (n,t) = exp

⎡
⎣
⎛
⎝δ�(t) +

∑
i

∑
α

nα
i δμα

i (t)

−1

2

∑
i,j

∑
α,β

nα
i n

β

j ν
αβ

ij (t)

⎞
⎠/

kBT

⎤
⎦. (4)

δμα
i (t) is the local (site i) deviation from the equilibrium

chemical potential of species α and δ�(t) is a normalizing
constant.

The continuity equation reads as

d[α]i
dt

= −∇J α
i , (5)

where [α]i is the probability of site i to be occupied by species
α (hence the local site concentration), J α

i is the microscopic
flux of species α from site i, and ∇ is the divergence operator.
The concentration of species α on site i is also given by the
first moment of the probability distribution:

[α]i = 〈
nα

i

〉 =
∑

n

nα
i P (n,t). (6)

〈. . .〉 denotes the ensemble average over the probability
distribution P (n,t). Using the discrete divergence operator,
we get

d
〈
nα

i

〉
dt

= −
∑
sεθα

i

J α
i→s , (7)

where θα
i is the ensemble containing all sites where an atom of

species α located on site i can jump to. Equation (7) provides
an expression for the microscopic flux, so we need to evaluate
the time derivative of the local concentration. Following, we
write the step-by-step derivation for vacancies (α = V ):

d
〈
nV

i

〉
dt

= d

dt

(∑
n

nV
i P (n,t)

)
=

∑
n

nV
i

dP (n,t)

dt
. (8)

This equation stems from the definition (6). Then, Eqs. (2),
(3), and detailed balance at equilibrium [W (ñ,n)P0(ñ,t) =

W (n,ñ)P0(n,t)] are inserted in Eq. (8):

d
〈
nV

i

〉
dt

=
∑
n,ñ

nV
i [W (ñ,n)P (ñ,t) − W (n,ñ)P (n,t)]

=
∑
n,ñ

nV
i W (n,ñ)P0(n)[δP (ñ,t) − δP (n,t)]

=
〈∑

ñ

nV
i W (n,ñ)[δP (ñ,t) − δP (n,t)]

〉(0)

, (9)

where 〈. . .〉(0) denotes the ensemble average over the equi-
librium probability distribution P0(n,t). Then, we expand
Eq. (4) to first order for small deviations from equilibrium,
and evaluate δP (ñ,t) − δP (n,t):

d
〈
nV

i

〉
dt

= 1

kBT

〈∑
ñ

nV
i W (n,ñ)

⎡
⎣∑

j,α

(
ñα

j − nα
j

)
δμ

γ

k

− 1

2

∑
j,k,α,γ

(
ñα

j ñ
γ

k − nα
j n

γ

k

)
ν

αγ

jk

]〉(0)

. (10)

One must be aware of the fact that all nonzero terms in the
equilibrium ensemble average are those for which V is at site
i in configuration n. If we consider transitions between two
configurations ñ and n where the vacancy at site i does not
move, then all the terms in the bracket will cancel out when
ñ and n are inverted in the double sum over all configurations
of the system (one sum is written explicitly, while the other
is implicit in the 〈. . .〉(0) symbol). Thus, the sum over ñ is
restricted to configurations where V is one jump away from
site i, and jumps of the vacancy towards these neighboring
sites are the only transitions that do not cancel out. A denotes
matrix atoms:

d
〈
nV

i

〉
dt

= 1

kBT

〈
nV

i

∑
sεθV

i

nA
s ωV A

is

[(
δμA

i + δμV
s − δμV

i − δμA
s

)

+2νV A
is −

∑
k �=i �=s,γ

n
γ

k

(
ν

Aγ

ik + ν
V γ

sk − ν
V γ

ik − ν
Aγ

sk

)]〉(0)

.

(11)

As only differences in chemical potentials appear, the
following notation is used: δμ̄V

i = δμV
i − δμA

i . For the sake
of simplicity, we assume that effective interactions with matrix
atoms are null because they only shift the reference value for
effective interactions and do not affect the final result. Thus,
the only nonzero effective interactions are between V and X.
Lastly, it is assumed that the driving force is homogeneous in
the system and we define dis∇μ̄V = �λis . �∇μ̄V , where �λis is
the jump vector between sites i and s. It follows that effective
interactions νV X

ik can be grouped into classes of effective
interactions σ (ik) that obey translational invariance, and are
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fully determined by the �ik vector:

d
〈
nV

i

〉
dt

=
∑
sεθV

i

〈
nV

i nA
s ωV A

is

[
δμ̄V

s − δμ̄V
i

kBT
+

∑
k

nX
k

νV X
ik − νV X

sk

kBT

]〉(0)

=
∑
sεθV

i

〈
nV

i nA
s ωV A

is

[
dis

∇μ̄V

kBT
+

∑
k

nX
k

νV X
σ (ik) − νV X

σ (sk)

kBT

]〉(0)

.

(12)

Finally, comparing the last line of Eq. (12) with Eq. (7), one
can identify the expression for the microscopic flux between
sites i and s:

− JV
i→s

=
〈
nV

i nA
s ωV A

is

(
dis

∇μ̄V

kBT
+

∑
k

nX
k

νV X
σ (ik) − νV X

σ (sk)

kBT

)〉(0)

.

(13)

The exact same derivation can be done for the migration
of interstitial solutes on the sublattice containing interstitial
octahedral sites. The same arguments apply, but interstitial
solutes X exchange with interstitial vacancies ζ . In Eq. (13),
substituting V into X and A into ζ leads to

− JX
i→s

=
〈
nX

i nζ
s ω

Xζ

is

(
dis

∇μ̄X

kBT
+

∑
k

nV
k

νXV
σ (ik) − νXV

σ (sk)

kBT

)〉(0)

. (14)

Please note that Eqs. (13) and (14) only represent microscopic
fluxes between two lattice sites. Macroscopic fluxes, i.e.,
those entering Eq. (1), projected along the chemical potential
gradient are obtained as

J
α = 1

Sα
⊥

∑
sεθα

i+

J α
i→s , (15)

where Sα
⊥ is the unit surface per atom α perpendicular to the

chemical potential gradient, and θα
i+ is a subset of θα

i , restricted
to sites s for which �λis . �∇μ̄α > 0.

The unknowns in Eqs. (13) and (14) are the effective
interactions, and this is why this method is called self-
consistent. Indeed, the effective interactions are obtained
from the steady-state condition of the second moment of the
out-of-equilibrium probability distribution

d
〈
nV

i nX
j

〉
dt

=
∑
sεθV

i

〈
nX

j nV
i nA

s ωV A
is

[
dis

∇μ̄V

kBT
+ νV X

σ (ij ) − νV X
σ (sj )

kBT

]〉(0)

+
∑
sεθX

j

〈
nV

i nX
j nζ

s ω
Xζ

js

[
djs

∇μ̄X

kBT
+ νXV

σ (ji) − νXV
σ (si)

kBT

]〉(0)

= 0, (16)

which is rewritten in a more convenient form∑
sεθV

i

〈
nX

j nV
i nA

s ωV A
is dis

〉(0)∇μ̄V

+
∑
sεθX

j

〈
nV

i nX
j nζ

s ω
Xζ

js djs

〉(0)∇μ̄X

=
∑
sεθV

i

〈
nX

j nV
i nA

s ωV A
is

(
νV X

σ (sj ) − νV X
σ (ij )

)〉(0)

+
∑
sεθX

j

〈
nV

i nX
j nζ

s ω
Xζ

js

(
νV X

σ (is) − νV X
σ (ij )

)〉(0)
. (17)

If all the terms corresponding to a given effective interaction
class are grouped together, a more compact form can be
obtained: ∑

α

mV X
ij,α∇μ̄α =

∑
σ

tV X
ij,σ νV X

σ . (18)

Equation (16) must be computed for each pair of sites i

and j corresponding to an effective interaction class σ (ij ),
which will give as many different equations as the number of
effective interaction classes. Thus, all of these can be rewritten
in a matrix form, showing that the effective interaction classes
contained in vector K are the solutions to a linear system, and
require the inversion of matrix T :

T · K = M ·
(∇μ̄V

∇μ̄X

)
. (19)

Moreover, this linear system shows that the effective
interaction classes are linear with respect to the chemical
potential gradients of each species. Then, Eq. (15) can also
be written in a matrix form

J
α = − 1

Sα
⊥

∑
sεθα

i+

[
�α

0 ·
(∇μ̄V

kBT

∇μ̄X

kBT

)
+ 1

kBT
�α · K

]

= − 1

Sα
⊥

∑
sεθα

i+

[
�α

0 + �α · T−1 · M
](∇μ̄V

kBT

∇μ̄X

kBT

)
. (20)

All terms in matrices �α
0 , �α , T , and M are linear

combinations of jump frequencies ω
αβ

is , such that the final
expression of the macroscopic flux J

α
is a linear combination

of driving forces, from which it is possible to identify transport
coefficients LαV and LαX.

In the initial formulation of the SCMF method [44,45],
effective interactions are shown to be antisymmetric in a
homogeneous chemical potential gradient: ν

αβ

ij = −ν
βα

ij =
−ν

αβ

ji = ν
βα

ji . Because of this, effective interactions were
differentiated by bond length and bond projection along the
chemical potential gradient direction in previous studies using
the SCMF (e.g., [20,21]). One must be aware that in some
systems, i.e., the α-Fe-V -X system, other criteria used to
differentiate between kinetic interaction classes must be added.
In this work, effective interactions that are part of a given class
share the same symmetry with respect to the crystal and the
chemical potential gradient direction, which includes previous
criteria.
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Analytical expressions for matrices �α
0 , �α , T , and M are

provided in Appendix A.

B. Breakdown of transport coefficients
into cluster contributions

The major advantage of the SCMF theory is that it gives
analytical expressions for transport coefficients as a function
of atomic jump rates. These expressions enable to reach a
much deeper understanding of the kinetics of the system than
macroscopic transport coefficients provide. In order to keep
the discussion simple, we restrict ourselves to the purpose of
this paper: investigating the kinetic properties of an infinitely
dilute system, i.e., a α-Fe matrix in which vacancy-solute
clusters larger than V X pairs are neglected, and V clusters and
X clusters are neglected. Let us define a distance called the
pair definition radius and denoted R. For now, this definition
is arbitrary, but below we set up a framework to define this
distance more rigorously.

For a given configuration n, every jump rate ω
αβ

is that
appears in the SCMF equations can be assigned to a given
cluster:

(i) If V (resp. X) is isolated before and after the jump
(meaning that there are no X nor V at a distance lower than
R from sites i and s), the corresponding jump frequency is
related to the migration of an isolated V (resp. X).

(ii) If before and/or after the jump there is a solute (resp.
V ) near (meaning at a distance lower than R from sites i or s)
the jumping V (resp. X), the corresponding jump frequency is
related to the V X pair cluster.

Thus, in our dilute system, there are three cluster contribu-
tions to the total Onsager matrix:(

LV V LV X

LXV LXX

)
=

(
L̃V V (V ) 0

0 0

)
+

(
0 0
0 L̃XX(X)

)

+
(

L̃V V (V X) L̃V X(V X)
L̃XV (V X) L̃XX(V X)

)
. (21)

At equilibrium, for each cluster ci (concentration per unit
volume [ci]eq), we define cluster transport coefficients Lαβ(ci):

Lαβ(ci) = L̃αβ(ci)

[ci]eq
. (22)

This way, the Onsager matrix for the total system is now an
explicit function of V monomers, X monomers, and V X pairs
concentrations ([V ], [X], and [V X], respectively):(

LV V LV X

LXV LXX

)
= [V ]

(
LV V (V ) 0

0 0

)
+ [X]

(
0 0
0 LXX(X)

)

+ [V X]

(
LV V (V X) LV X(V X)
LXV (V X) LXX(V X)

)
. (23)

At thermal equilibrium ([ci] = [ci]eq), Eqs. (21) and (23)
are rigorously equivalent. Let us now emphasize the fact
that the SCMF method produces thermodynamic averages
〈nV

i nA
s ωV A

is 〉(0)
meaning that the products P0(n)W (n,ñ) are

the relevant microscopic quantities for transport coefficients,
not the atomic jump rates alone. Let �(ci) be the ensemble
containing all configurations n of the system in which V and X

are at most at distance R from each other. Then, the equilibrium

concentration of cluster ci is expressed as

[ci]
eq = 1

Vat

∑
n∈�(ci )

P0(n), (24)

where Vat is the atomic volume. From Eqs. (22) and (24),
thermodynamic averages 〈nV

i nA
s ωV A

is 〉(0)
in cluster transport

coefficients Lαβ(ci) are functions of the microscopic quantities
Vatη(n)W (n,ñ), where

η(n) = P0(n)∑
n∈�(ci ) P0(n)

. (25)

A cluster is made of various microscopic configurations n,
and η(n) gives the probability of these microscopic concen-
trations with respect to the probability of the whole cluster.
From these developments, it stems that cluster transport
coefficients Lαβ(ci) are intrinsic equilibrium properties of each
cluster, and are expressed in m2/s, like diffusion coefficient.
Transport coefficients for the whole system Lαβ may be
out-of-equilibrium quantities if concentrations in Eq. (23) are
not equilibrium concentrations.

From the same reasoning, we can go further in the
breakdown of the Onsager matrix and split each cluster
transport coefficient into two contributions, looking at the
various transition rates that appear in the SCMF equations:

(i) If before and after the jump there is a solute (resp. V )
near (meaning at a distance lower than R from sites i and s)
the jumping V (resp. X), the corresponding jump frequency is
related to the migration of the V X pair cluster.

(ii) If before or after (but not both) the jump there is a
solute (resp. V ) near (meaning at a distance lower than R

from sites i and s) the jumping V (resp. X), the corresponding
jump frequency is related to the dissociation or association of
the V X pair cluster. An association jump being necessarily
the reverse jump of a dissociation jump (and vice versa), it
stems from detailed balance at equilibrium that the association
and dissociation contributions to the overall cluster transport
coefficient are equal, which is the reason why they are grouped
together.

Practically, some of these coefficients are 0, so that the
Onsager matrix for the dilute α-Fe-V -X system reduces to the
following expression:(

LV V LV X

LXV LXX

)
= [V ]M(V )

(
1 0
0 0

)

+ [X]M(X)

(
0 0
0 1

)

+ [V X]M(V X)

(
1 1
1 1

)

+ [V X]

(
ADV V (V X) ADV X(V X)
ADXV (V X) ADXX(V X)

)
.

(26)

M(ci) is the mobility of cluster ci and ADαβ(ci) is the
association/dissociation contribution to the cluster transport
coefficient Lαβ(ci). Thus, we can take advantage of the ana-
lytical SCMF expressions derived above to compute distinct
transport coefficient contributions for this system, each having
a clear physical meaning. From a technical point of view,
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these contributions are obtained using the flux expressions
[Eq. (20)], but in which all jump frequencies that do not
correspond to this particular contribution are set to zero (see
Table I in Appendix A for an example).

A generalized and justified explanation for the breakdown
of the Onsager matrix for dilute systems will be given in
Ref. [48], so here we restrain ourselves to a few comments
concerning Eq. (26): the mobility of the V X pair appears to be
a scalar quantity which is consistent with the idea that when
a cluster moves, all of its components must move at the same
pace. Flux coupling stems from kinetic correlations, and the
relevant quantities for this phenomenon are the off-diagonal
coefficients of the Onsager matrix. For the simple system
under study, Eq. (26) clearly shows that the physics of flux
coupling is fully contained into two contributions: the mobility
of the pair (which necessarily produces positive flux coupling
as both species belonging to the cluster diffuse together),
and the association/dissociation term, that contains the spatial
correlation between association, migration, and dissociation
jumps.

In the next section, we compute the contributions appearing
in Eq. (26) for each of the three solutes, and the corresponding
analytical expressions are provided in Appendix A. Also, an
analytical expression of M(V X) is given for simplified models
in Appendix B.

III. KINETIC COEFFICIENTS OF V X PAIRS IN α-FE

A. Thermodynamic and jump frequency parametrization

In order to use Eq. (20) to obtain cluster transport
coefficients, one needs only to know the following:

(a) geometry of the lattice and jump vectors for each
species (�λis);

(b) equilibrium probability of each microscopic configu-
ration of the cluster (η(n));

(c) jump frequencies (computed at thermal equilibrium) as
a function of the local chemical environment (ωαβ

is (n)).
The equilibrium probability distribution can be obtained

by any thermodynamic method, for instance, Bragg-Williams
approximation, cluster-variation method, low-temperature ex-
pansion, or Monte Carlo sampling. Each of these methods
requires some energetic model as an input. Again, the
energetics of the system can be obtained in various ways:
density-functional theory calculations (DFT), tight-binding
potentials, semiempirical potentials, cluster expansions. Here,
we refer to Ref. [5] in which DFT binding energies of V X

pairs in Fe were consistently computed for X = C, N, and O.
Then, the equilibrium probability distribution is obtained from
a low-temperature expansion of the partition function of the
system, which, despite its name, works very well up to T =
1185 K in this system, temperature above which the Fe matrix
changes from bcc to face-centered cubic [5].

Vacancy migration energies were also computed consis-
tently using DFT in α-Fe for V monomers, X monomers,
and V X pairs [36]. From the findings of this paper, we
will investigate the effect of the low-barrier second-NN jump
of X around V on the overall kinetic properties of a V X

pair cluster. Finally, attempt frequencies ν0 are assumed to
depend on the jumping species only, and their values are
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FIG. 2. Relative difference between the pair mobility and the so-
lute diagonal Onsager coefficient for the pair 1 − M(V X)/LXX(V X)
as a function of the cluster definition distance R, expressed in units
of bcc Fe lattice parameter a. Solid lines and filled symbols are for
T = 500 K; dashed lines and empty symbols are for T = 1000 K.
The gray line is the threshold under which the mobility is considered
a converged quantity. V C pairs are shown in black (circles); V N
pairs are shown in blue (squares); and V O pairs are shown in red
(triangles).

computed from diffusion prefactors measured in self-diffusion
and solute tracer diffusivities experiments in α-Fe [49]:
ν0(V ) = 6.7 × 10−6m2/s,ν0(C) = 1.8 × 10−6 m2/s,ν0(N ) =
5.0 × 10−7 m2/s, and ν0(O) = 1.0 × 10−6 m2/s.

B. Convergence of the mobility coefficient with
respect to cluster size

The V X mobility contribution to the Onsager matrix is
computed with the SCMF method, but keeping in the equations
only jump frequencies for which X (resp. V ) is within some
distance R from V (resp. X) both before and after the jump.
Obviously, M(V X) depends on the value of R. This distance
basically divides all cluster configurations into two categories:
V and X form a cluster or V and X are isolated monomers.
The whole point of this section is trying to define a meaningful
R value. It is observed that as R increases, the mobility of
the pair M(V X) converges. This is because as R increases,
more and more kinetic trajectories are included in the SCMF
calculation, but at some point, the probability of a given
trajectory decreases with its length. Then, it should be possible
to find an R value such that all kinetic trajectories relevant to
the mobility have been included.

For all three solutes, we found LXX(V X) < LV V (V X)
over the whole temperature interval. Qualitatively, it means
that solute X diffuses slower than V when both form the
cluster. As the mobility of the whole cluster requires the
motion of each component, it is logical that M(V X) converges
towards LXX(V X). Knowing that LXX(V X) converges very
fast with R, we take the relative difference between M(V X)
and LXX(V X) as an indication of how well the mobility is
converged with R. Figure 2 shows this relative difference
convergence with respect to R, for each of the three solutes (C
in black circles, N in blue squares, and O in red triangles) at
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two different temperatures, T = 500 K (solid lines with filled
symbols) and T = 1000 K (dashed lines with open symbols).

Figure 2 shows that convergence of M(V X) is faster for
V O pairs than it is for V N pairs, than it is for V C pairs. If
we compare first-NN binding energies Eb(V O) > Eb(V N) >

Eb(V C), meaning that short kinetic trajectories will have a
higher thermodynamic weight for V O pairs than for V C pairs.
This is consistent with the observed trend (lower binding
implies that long-range kinetic trajectories represent a larger
relative contribution). On the other hand, the influence of
temperature on the convergence of M(V X) with R is difficult
to rationalize qualitatively.

One must be aware that a high R value is not desirable
because as R increases, more and more monomer contributions
are included in the pair cluster (up to the whole system if
R goes to infinity). Thus, the dilute system assumption on
which the breakdown of the Onsager matrix relies would
not be valid for high R. In this work, we arbitrarily set
our convergence criterion to the relative difference between
M(V X) and LXX(V X) being less than 30% (gray solid line in
Fig. 2), which seems reasonable. In order to have consistent
and comparable calculations for each solute, R is chosen from
the less converged case: V C pair at T = 500 K. In all results
below, R = 3.20a. Note that the first R value in Fig. 2 is
equal to the thermodynamic interaction range (1.23a). Thus,
a purely thermodynamic definition of cluster radius does not
give converged mobility coefficients.

C. Intrinsic flux-coupling ratio for V X pairs

In the previous section, we defined the pair distance R,
which relies both on thermodynamic and kinetic properties of
the cluster. Using this definition, one can obtain converged
kinetic quantities related to the association, mobility, and
dissociation of a vacancy-interstitial solute pair cluster. These
properties are intrinsic equilibrium properties of the cluster
if the system is sufficiently dilute such that all of its internal
configurations reach local equilibrium faster than the average
time between two association phenomena. There are two
flux-coupling ratios in the system under study defined as the
off-diagonal coefficient of the Onsager matrix divided by each
of the two diagonal coefficients.

It has been shown in Eq. (26) that in the dilute system,
all flux-coupling phenomena arise due to the formation of V X

pairs. The relative proportions of pairs and monomers will only
impact the amplitude of the flux coupling, but not its qualitative
nature (positive or negative sign). Because flux coupling
is usually studied in out-of-equilibrium conditions (quench,
irradiation), it is not possible to estimate the respective
concentrations of pairs and monomers in a general way.
We thus choose to restrict our discussion to the intrinsic
flux-coupling ratio of the V X pair, which will give the sign of
the flux coupling. If one knows the respective concentrations
of pairs and monomers in a given out-of-equilibrium system,
then the data below can be combined with Eq. (26) to compute
the magnitude of the flux coupling, and the result is exact in
the dilute limit:

Lαβ(V X)

Lββ(V X)
= M(V X) + ADαβ(V X)

M(V X) + ADββ(V X)
. (27)
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FIG. 3. Flux-coupling ratios related to V X pairs
[LXV (V X)/LV V (V X) as solid lines with filled symbols, and
LV X(V X)/LXX(V X) as dashed lines with empty symbols] as a
function of the inverse temperature. The gray solid line is set at 0
to help distinguish between positive and negative ratios. Colors and
symbols relate to the solute: C (black lines with circles), N (blue
lines with squares), and O (red lines with triangles).

Figure 3 shows these intrinsic flux-coupling ratios for each of
the three V X pairs.

First, it is interesting to note that despite their high binding
with V [5], each interstitial solute presents a qualitatively
different flux-coupling behavior. Over the whole temperature
range, V O pairs (red curves) show a positive flux coupling
and both ratios have comparable orders of magnitude. On
the contrary, V C pairs (black curves) show a negative flux
coupling over the whole temperature range, and both ratios
differ by 1 to 2 orders of magnitude. Finally, V N pairs (blue
curves) switch from positive flux coupling at low temperature
to negative flux coupling at high temperature, with a transition
temperature around 550 K. Note that absolute values of
LXV (V X)/LV V (V X) are always lower than absolute values
of LV X(V X)/LXX(V X). Therefore, we expect the number of
vacancies dragged by solute atoms to be larger than the number
of solutes dragged by vacancies, for a given driving force. This
difference in the behavior of each solute next to a vacancy is
attributed to the details of the local energetic landscape around
a pair, both because of different binding energies as a function
of the vacancy-solute distance [5] and specific saddle-point
energies between two configurations [36].

Some deeper, at least qualitative, understanding can be
achieved by looking at Eq. (27). The denominator is always
positive, so the sign of the flux coupling is governed by the sum
M(V X) + ADαβ(V X). This sum is symmetric with respect to
species α and β and this is why both flux-coupling ratios of
a given V X pair always have the same sign. The mobility of
a cluster being always a positive quantity, only the associa-
tion/dissociation coefficient can explain a possible negative-
flux-coupling behavior. Physically, a cluster associates, and
then later on dissociates. The association/dissociation coeffi-
cient explains the average relative position of the components
of the cluster just before association and just after dissociation,
and these two configurations are linked by the way the cluster
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moves or, in other words, the way the components of a cluster
move altogether.

It is quite simple to visualize this with a substitutional
solute vacancy pair on the bcc lattice, in which we assume
that the exchange frequency of V with a solute is orders of
magnitude lower than the exchange frequency of V with a
matrix atom. This way, we can assume that each time V will
exchange with the solute, it will then exchange with a matrix
atom and separate from the solute. Now, assume that the pair
definition distance in this example is the first-NN distance only.
V associates with the solutes by jumping to one of its first-NN
sites, then V and solute exchange their positions (which is a
mobility jump for the pair), and ultimately V migrates away
from the solute (dissociation jump). In this system, it is easy to
understand that there is a negative flux coupling because solute
and vacancy flow in opposite direction, due to the vacancy
exchange mechanism, or in other words, the way the vacancy
substitutional solute pair diffuses.

Coming back to our interstitial solute vacancy pair, the
situation is much more complicated because both of these
migrate independently while their migration paths are affected
by the complex energetic landscape due to their interactions.
Figure 3 tells us about the average result of this correlated
motion. There is an interesting trend with first-NN binding
energies: high binding energies should result in a high-
mobility contribution, which favors positive flux coupling
(M(V X) is always positive). Lower binding energies increase
the association/dissociation contribution with respect to the
mobility contribution, and this can result in negative flux
coupling (if ADαβ(V X) is negative, which is not necessarily
the case). Note that the physics of negative flux coupling is
purely contained in the association/dissociation contribution:
ADαβ(V X) = 0 will always result in positive flux coupling.

D. Effect of second-NN solute jumps around V

In Ref. [36], it is obtained from DFT calculations that
interstitial solutes are able to perform second-NN jumps
around V , with a low migration barrier. The overall effect on
the migration kinetics of a V X pair is hardly predictable. The
fast redistribution of X around V randomizes the position of X,
which can be thought to erase part of the kinetic correlations,
or to have no effect at all on the migration of V .

Figure 4 shows the relative error (difference between
calculations that do not take second-NN solute jumps around
V into account and calculations that do take them into account)
as a function of temperature for three quantities: pair mobility
M(V X) (filled triangles) and pair flux-coupling coefficients
LXV (V X)/LV V (V X) (solid lines with filled symbols) and
LV X(V X)/LXX(V X) (dashed lines with empty symbols).
Results are plotted for V C (black curves with circles) and V N
(blue curves with squares) pairs because all results for V O
pairs are lower than 10−3. Thus, it can be safely concluded
that second-NN oxygen jumps around V do not affect the
kinetic properties of V O pairs. The gray line is the 30% relative
difference threshold used in Fig. 2 as a convergence criterion.
The same criterion is used in this discussion.

The results show that second-NN nitrogen jumps around V

do not affect much the kinetic properties of V N pairs, at least
at temperatures below T 
 1000 K. For V C pairs, these jumps
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Results are plotted for V C pairs (black lines and circles) and V N pairs
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have important effect on the mobility coefficient M(V C) and
the flux-coupling coefficient LCV (V C)/LV V (V C), especially
at high temperature (T � 700 K). In such conditions, these
jumps should be taken into account when computing kinetic
properties of V X pairs.

The general conclusion drawn from this plot is that these
jumps become more and more important as temperature
increases and as the binding energy between V and X

decreases (from O to C). The effect of these jumps on the
kinetic properties of V X pairs is not spectacular, but it is
expected to be much more important for larger cluster, e.g.,
V2X, as second-NN solute jumps around vacancies provide
low migration energy trajectories that result in an effective
displacement of the cluster [36].

IV. DISCUSSION

As a final comment to this paper, we provide a comparison
between various models and approximations for the evaluation
of cluster kinetic properties. This discussion is illustrated
by the example of a V C pair in α-Fe, and five models are
being compared with the same set of thermodynamic and
kinetic properties, four of which directly stem from previous
paragraphs, while the other is a common and convenient
approximation found in the literature [4,36,39,50,51]. Note
that previous models provide the cluster mobility only, while
the SCMF method allows the exact computation of the
full Onsager matrix for each cluster. The various kinetic
coefficients obtained and discussed below are shown in Fig. 5.

Model I (blue dashed-dotted line) corresponds to the highest
barrier approximation [36] which can be summarized this
way: Given an energy landscape between two configurations
(that may or may not go through multiple stable and/or
metastable states), the effective barrier to go between these
two configurations is approximated by the energy difference
between the most stable state and the most energetic transition
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FIG. 5. Various kinetic coefficients as a function of the inverse
temperature obtained from different models and approximations (see
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state. Model II (green and black dashed lines with empty
symbols) are the diagonal V C pair Onsager coefficients in
which kinetic correlations were neglected (i.e., all effective
interactions νV X

σ contained in vector K were set to 0). This
model is in fact a thermodynamic average of all possible jump
rates for each species. Model III (green and black solid lines
with full symbols) uses the same settings as model II, except
that this time the effective interactions were given their value
as obtained from the SCMF theory [Eq. (19)]. Thus, kinetic
correlations up to 3.20a range are taken into account, where
a is the α-Fe lattice parameter. Kinetic correlations describe
the deviation from random diffusion or, in other words, the
relative probability of various jump sequences. Comparison
between models II and III shows the importance of kinetic
correlations, and that a simple thermodynamic average of jump
rates predicts kinetic coefficients that are off by several orders
of magnitude, especially at low temperature.

Moreover, each species has its own kinetic properties. This
is not taken into account in model I, in which only one
kinetic coefficient is computed for the pair. To achieve a
better understanding of this approximation, it is compared
to the mobility contribution of the V C pair, in which the
pair distance R has been set equal to the thermodynamic
interaction range 1.23a. The result is labeled model IV (orange
dashed line), and it is close to results from the highest barrier
approximation (model I): an Arrhenius fit gives a 1.25 eV
effective migration energy for model I, and 1.20 eV for model
IV. In these two models, the vacancy and the carbon atom are
constrained to migrate within distance R = 1.23a from each
other. But, we might think that higher-range kinetic trajectories
also contribute to the mobility of the pair cluster. Hence, in
model V (orange solid line), the pair distance R was increased
to 3.20a, and an Arrhenius fit to this curve gives a lower
effective migration energy for the V C pair cluster: 1.08 eV.
It is also interesting to note that model V is pretty close to
the LCC(V C) coefficient of model III. This is because, as
R increases, the mobility contribution converges towards the
cluster transport coefficient related to the slowest component,
in this case, C. In other words, the slowest species of a cluster
limits the overall mobility of the cluster.

V. CONCLUSION

In this paper, we extended the self-consistent mean field
calculation of transport coefficients to systems containing
multiple migration mechanisms taking place on various sublat-
tices. Then, we proposed a breakdown of the Onsager matrix
(valid for dilute systems) into cluster contributions, each of
these being itself separated into two contributions: mobility
and association/dissociation. The latter contains information
about the relative positions of cluster components before
association and after dissociation, these two configurations
being linked by the atomic details of cluster migration.
Analytical expressions for the SCMF equations are provided in
the Appendixes. These cluster Onsager matrices are valuable
pieces of information that can be used as input for mesoscale
simulations.

We applied this formalism to vacancy-interstitial solute
pairs (X = C, N, and O) in α-Fe, with DFT based thermo-
dynamic and kinetic parameters from earlier publications.
The convergence of the mobility contribution with respect
to the cluster definition distance R has been shown, and
allows a rigorous definition of this distance relying both on
thermodynamics and kinetics. Particularly, these results show
that taking R as the thermodynamic interaction range is usually
not sufficient to obtain converged kinetic properties.

We investigated cluster flux-coupling ratios, which give
the sign of flux couplings in dilute systems. Surprisingly,
and despite the fact that each of the three solutes has a
highly attractive binding with vacancies, they show different
flux-coupling behavior: flux coupling is positive for V O pairs,
negative for V C pairs, and positive (negative) for V N pairs
below (above) 550 K. These qualitatively different behaviors
stem from the specific energetic landscape around V X pairs,
and its evolution with respect to the distance between both
components. Nevertheless, we found an interesting qualitative
trend with first-NN binding energies: high binding energies
should result in a high-mobility contribution, which favors
positive flux coupling. Lower binding energies increase the as-
sociation/dissociation contribution with respect to the mobility
contribution, and this can result in negative flux coupling. Note
that the physics of negative flux coupling is purely contained
in the association/dissociation contribution.

For both of these properties (mobility and flux-coupling
ratios), we have shown that the effect of the low-activation
barrier second-NN jumps of X around V becomes non-
negligible for V C pairs (and to a lesser extent V N) at high
temperature only (T � 700 K). It does not affect kinetic
properties of V O pairs.

Finally, we compared different kinetic approximations for
a cluster pair. The common “highest barrier” approximation
[4,36,39,50,51] is close to the mobility contribution limited
to the thermodynamic interaction range, which is not a
converged kinetic quantity as higher-range kinetic trajectories
are important in the overall mobility of the cluster. Kinetic
correlations reduce cluster transport coefficients by several
orders of magnitude compared to a simple thermodynamic
average of jump rates. This result alone fully justifies the need
for accurate kinetic methods able to compute these kinetic
correlation effects in a general and flexible way, for instance,
the SCMF.
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Despite common geometrical and thermodynamic features,
all three solutes show qualitatively different kinetic behaviors
in the vicinity of a vacancy. This study demonstrates the
general fact that kinetic properties should not be inferred
from thermodynamics, as it is sometimes done [52]. The
breakdown of the Onsager matrix is a first step towards
a comprehensive modeling of cluster properties from the
atomic scale [48]. It allows the study of each cluster’s kinetic
properties independently, and can be combined with other
methods able to compute cluster migration paths (e.g., [53]).
In future works, we aim at generalizing this method further to
clusters containing three components or more.
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APPENDIX A: ANALYTICAL MATRICES FOR THE
COMPUTATION OF V X PAIRS TRANSPORT

COEFFICIENTS IN BCC SOLIDS

In this appendix, we provide semianalytical expressions
for the calculation of V X cluster transport coefficients on
a bcc lattice, as obtained from the SCMF method (Sec. II).
Following, we provide expressions for matrices �0,�,M, and
T = (C1|C2) − diag(D), where diag(D) is a diagonal matrix
whose diagonal elements are the components of vector D.
From Eqs. (20) and (22), the pair cluster Onsager matrix is(

LV V (V X) LV X(V X)
LXV (V X) LXX(V X)

)

= 2a(�0 + � · [(C1|C2) − diag(D)]−1 · M). (A1)

These matrices are only functions of Wα
ij = Wα

ji terms.
Wα

ij denotes the product η0(n)W (n,ñ) = η0(ñ)W (ñ,n) where
α is the jumping species (V or X), V and X are ith NN in
configuration n and j th NN in configuration ñ. We assumed
thermodynamic interactions up to the sixth NN (equivalent
distance is 1.23a), following notations from Refs. [5,36]. Let
the distance between V and X at rth-NN position be equal to
R, the pair cluster definition distance, set to R = 2.06a in this
example. It is a lower value than those used in Sec. III, but
it is a compromise between having converged V X mobilities,
and not too lengthy expressions so that they can actually be
printed. Every configuration in which V and X are kth NN
from each other with 6 < k � r is simply denoted as a rth-NN
configuration because they all have similar thermodynamic
properties (no interaction). Table I explains which jump
frequencies should be set to zero in the matrices below to
compute a given contribution to the Onsager matrix.

For completeness, Table II gives the Cartesian coordinates
of one instance of each effective interaction class, as was
obtained from the SCMF calculation. A chemical potential
parallel to the [100] direction was used in this calculation, and
the numbering of kinetic interaction classes σ is consistent
with matrices �,(C1|C2), and D below.

Finally, Eqs. (A3)–(A9) are the analytical expressions for
the matrices appearing in Eq. (A1), and enable the computation

TABLE I. 17 jump frequencies used in this calculation (R =
2.06a,1.23a < r � R). For each contribution to the Onsager matrix,
“1” indicates that Wα

ij must be set to its physical value, while “0”
indicates that Wα

ij must be set to zero. The association/dissociation
contribution is then obtained as the difference ADαβ (V X) =
Lαβ (V X) − M(V X).

Jump WV
12 WV

16 WX
12 WX

11 WV
25 WV

2r WX
25 WV

5r WV
56

Lαβ (V X) 1 1 1 1 1 1 1 1 1
M(V X) 1 1 1 1 1 1 1 1 1

Jump WX
5r WX

56 WV
6r WX

6r WV
rr WV

r∞ WX
rr WX

r∞
Lαβ (V X) 1 1 1 1 1 1 1 1
M(V X) 1 1 1 1 1 0 1 0

of V X pair cluster transport coefficients:

t� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

WV
12 − WV

16 −WX
11

2 WV
12 − 2 WV

2r WX
25 − WX

12

2 WV
25 − 2 WV

56 0

2 WV
25 − 4 WV

5r + 2 WV
56 WX

5r − WX
25

2 WV
16 − 2 WV

6r 2 WX
6r − 2 WX

56

WV
16 + 2 WV

56 − 3 WV
6r 0

WV
2r − WV

6r 0

2 WV
2r + 2 WV

6r − 4 WV
r∞ 2 WX

rr − 2 WX
6r

WV
6r − WV

r∞ 0

2 WV
5r − 2 WV

r∞ 0

2 WV
5r − 2 WV

r∞ WX
rr − WX

5r

2 WV
6r − 2 WV

rr WX
r∞ − WX

rr

2 WV
6r + 2 WV

rr − 4 WV
r∞ 0

2 WV
5r − 2 WV

r∞ 0

2 WV
5r − 2 WV

r∞ 0

2 WV
5r + 4 WV

rr − 6 WV
r∞ 2 WX

r∞ − 2 WX
rr

0 0

2 WV
6r − 2 WV

r∞ 2 WX
r∞ − 2 WX

rr

WV
6r + 2 WV

rr − 3 WV
r∞ 0

4 WV
rr − 4 WV

r∞ WX
r∞ − WX

rr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(A2)

TABLE II. Cartesian coordinates of one instance of each kinetic
interaction class (in units of a/2). The numbering of kinetic interac-
tion classes σ is arbitrary but consistent with matrices �,(C1|C2), and
D below. A chemical potential gradient parallel to the [100] direction
was used in this calculation.

σ x y z σ x y z σ x y z σ x y z

1 1 0 0 6 2 1 1 11 3 1 0 16 3 2 1
2 1 1 0 7 1 2 2 12 2 3 0 17 1 4 0
3 1 2 0 8 2 2 1 13 3 2 0 18 2 3 2
4 2 1 0 9 3 0 0 14 1 3 2 19 3 2 2
5 1 2 1 10 1 3 0 15 2 3 1 20 4 1 0
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�0(1,1) = 3
(
WV

12 + WV
16 + 2 WV

25 + WV
2r + 4 WV

5r + 2 WV
56 + 5 WV

6r + 12 WV
rr + 24 WV

r∞
)
, (A3)

�0(2,2) = WX
12 + WX

11 + WX
25 + WX

5r + 2 WX
56 + 2 WX

6r + 9 WX
rr + 8 WX

r∞, (A4)

�0(1,2) = �0(2,1) = 0, (A5)

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 WV
12 − 4 WV

16 −4 WX
11

2 WV
12 − 2 WV

2r WX
25 − WX

12

2 WV
25 − 2 WV

56 0

2 WV
25 − 4 WV

5r + 2 WV
56 WX

5r − WX
25

WV
16 − WV

6r WX
6r − WX

56

WV
16 + 2 WV

56 − 3 WV
6r 0

WV
2r − WV

6r 0

WV
2r + WV

6r − 2 WV
r∞ WX

rr − WX
6r

4 WV
6r − 4 WV

r∞ 0

2 WV
5r − 2 WV

r∞ 0

2 WV
5r − 2 WV

r∞ WX
rr − WX

5r

2 WV
6r − 2 WV

rr WX
r∞ − WX

rr

2 WV
6r + 2 WV

rr − 4 WV
r∞ 0

WV
5r − WV

r∞ 0

WV
5r − WV

r∞ 0

WV
5r + 2 WV

rr − 3 WV
r∞ WX

r∞ − WX
rr

0 0

WV
6r − WV

r∞ WX
r∞ − WX

rr

WV
6r + 2 WV

rr − 3 WV
r∞ 0

4 WV
rr − 4 WV

r∞ WX
r∞ − WX

rr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A6)

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 WV
12 + 4 WV

16 + 4 WX
12 + 4 WX

11

2 WV
12 + 2 WX

12 + 4 WV
25 + 2 WV

2r + 2 WX
25

2 WV
25 + WX

25 + 4 WV
5r + 2 WV

56 + WX
5r + 2 WX

56

2 WV
25 + WX

25 + 4 WV
5r + 2 WV

56 + WX
5r + 2 WX

56

WV
16 + 2 WV

56 + 2 WX
56 + 5 WV

6r + 2 WX
6r

WV
16 + 2 WV

56 + 2 WX
56 + 5 WV

6r + 2 WX
6r

WV
2r + WV

6r + 2 WX
6r + 4 WV

rr + 2 WV
r∞ + 2 WX

rr

WV
2r + WV

6r + 2 WX
6r + 4 WV

rr + 2 WV
r∞ + 2 WX

rr

4 WV
6r + 4 WV

r∞ + 4 WX
rr

2 WV
5r + WX

5r + 4 WV
rr + 2 WV

r∞ + 3 WX
rr

2 WV
5r + WX

5r + 4 WV
rr + 2 WV

r∞ + 3 WX
rr

2 WV
6r + 2 WV

rr + 4 WV
r∞ + 3 WX

rr + WX
r∞

2 WV
6r + 2 WV

rr + 4 WV
r∞ + 3 WX

rr + WX
r∞

WV
5r + 4 WV

rr + 3 WV
r∞ + 3 WX

rr + WX
r∞

WV
5r + 4 WV

rr + 3 WV
r∞ + 3 WX

rr + WX
r∞

WV
5r + 4 WV

rr + 3 WV
r∞ + 3 WX

rr + WX
r∞

4 WV
rr + 4 WV

r∞ + WX
rr + 3 WX

r∞
WV

6r + 2 WV
rr + 5 WV

r∞ + 2 WX
rr + 2 WX

r∞
WV

6r + 2 WV
rr + 5 WV

r∞ + 2 WX
rr + 2 WX

r∞
4 WV

rr + 4 WV
r∞ + WX

rr + 3 WX
r∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A7)
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C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 4 WX
12 0 0 0 4 WV

16 0 0 0 0

WX
12 0 WX

25 2 WV
25 + WX

25 0 0 0 2 WV
2r 0 0

0 WX
25 0 0 2 WX

56 2 WV
56 0 0 0 WX

5r

0 2 WV
25 + WX

25 0 0 2 WV
56 2 WX

56 0 0 0 0

0 0 WX
56 WV

56 0 0 WX
6r WV

6r + WX
6r 0 0

WV
16 0 2 WV

56 2 WX
56 0 0 WV

6r 2 WX
6r WV

6r 0

0 0 0 0 2 WX
6r WV

6r 0 0 0 0

0 WV
2r 0 0 WV

6r + WX
6r WX

6r 0 0 0 WV
rr

0 0 0 0 0 4 WV
6r 0 0 0 0

0 0 WX
5r 0 0 0 0 2 WV

rr 0 0

0 0 0 2 WV
5r + WX

5r 0 0 0 2 WV
rr WX

rr 0

0 0 0 0 2 WV
6r 0 0 0 0 WX

rr

0 0 0 0 0 2 WV
6r 0 0 0 0

0 0 0 0 0 0 WX
rr WV

rr 0 0

0 0 WV
5r 0 0 0 WV

rr WX
rr 0 0

0 0 0 WV
5r 0 0 0 WV

rr + WX
rr 0 0

0 0 0 0 0 0 0 0 0 WX
rr

0 0 0 0 WV
6r 0 0 0 0 0

0 0 0 0 0 WV
6r 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A8)

C2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 WV
5r 0 0 0 0 0

2 WV
5r + WX

5r 0 0 0 0 2 WV
5r 0 0 0 0

0 WV
6r 0 0 0 0 0 WV

6r 0 0

0 0 2 WV
6r 0 0 0 0 0 WV

6r 0

0 0 0 2 WX
rr 2 WV

rr 0 0 0 0 0

WV
rr 0 0 WV

rr WX
rr WV

rr + WX
rr 0 0 0 0

4 WX
rr 0 0 0 0 0 0 0 0 0

0 WX
rr 0 0 0 0 WX

rr 0 0 0

0 0 WX
rr 0 0 0 0 0 0 2 WV

rr + WX
rr

0 0 0 0 2 WX
rr 2 WV

rr 0 0 0 0

WX
rr 0 0 0 2 WV

rr 2 WX
rr 0 0 0 0

0 0 0 0 0 0 0 WV
rr + WX

rr 0 0

0 WX
rr WV

rr 0 0 0 WV
rr WX

rr WV
rr 0

0 WV
rr WX

rr 0 0 0 0 WV
rr WX

rr WV
rr

0 0 0 0 2 WV
rr 0 0 0 0 0

0 0 0 WV
rr + WX

rr WX
rr WV

rr 0 0 0 0

0 0 0 0 2 WV
rr 2 WX

rr 0 0 0 0

2 WV
rr + WX

rr 0 0 0 0 2 WV
rr 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A9)

APPENDIX B: ANALYTICAL V X PAIR MOBILITY
COEFFICIENT IN BCC SOLIDS

In bcc solids, the vacancy cannot jump directly from a
first-NN position of the interstitial solute to another equivalent

position. Thus, the minimal V X solute pair cluster able to
migrate must contain first-NN and second-NN V X configura-
tions, which is equivalent to setting the pair cluster definition
radius R = a/

√
2, where a is the lattice parameter. In such a
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simple model, the mobility of the pair cluster can be expressed
analytically with a simple expression of three jump frequencies
only (keeping the Wα

ij notation from previous section, M(V X)
is given in [m2/s]):

M(V X) =
2 a2

[
2 WV

12

(
1 + WX

11

WX
12

)
+ 6 WX

11 + 3 WX
12

]
4 + 2 WX

11+WV
12

WX
12

+ WX
12+2 WX

11

WV
12

. (B1)

This expression is provided here as it is easy to use, and
it is exact for systems where thermodynamic interactions and

kinetic correlations are limited to first NN and second NN.
The study of this expression in various limiting cases clearly
shows that the slowest species controls the mobility, and that
when one species is much faster than the other, the mobility
is well approximated by the highest barrier approximation (cf.
Sec. IV).

For more realistic systems (i.e., thermodynamic in-
teraction and kinetic interactions beyond second NN),
one should turn to the matrices given in the previous
appendix.
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